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Theorem 2.19. Let A be an algebra with tolerances S, S �, T , T �

and congruences α, αi, β, δ, δ�, δj. The following are true.

(1) (Monotonicity in the first two variables) If C(S, T ; δ) holds
and S � ⊆ S, T � ⊆ T , then C(S �, T �; δ) holds.

(2) C(S, T ; δ) holds if and only if C(CgA(S), T ; δ) holds.
(3) C(S, T ; δ) holds if and only if C(S, δ ◦ T ◦ δ; δ) holds.
(4) If T ∩ δ = T ∩ δ�, then C(S, T ; δ) ⇐⇒ C(S, T ; δ�).
(5) (Semidistributivity in the first variable) If C(αi, T ; δ) holds

for all i ∈ I, then C(
�

i∈I αi, T ; δ) holds.
(6) If C(S, T ; δj) holds for all j ∈ J , then C(S, T ;

�
j∈J δj) holds.

(7) If T ∩
�
S ◦ (T ∩ δ) ◦ S

�
⊆ δ, then C(S, T ; δ) holds.

(8) If β ∧
�
α ∨ (β ∧ δ)

�
≤ δ, then C(α, β; δ) holds.

(9) Let B be a subalgebra of A. If C(S, T ; δ) holds in A, then
C(S|B, T |B; δ|B) holds in B.

(10) If δ� ≤ δ, then the relation C(S, T ; δ) holds in A if and only
if C(S/δ�, T/δ�; δ/δ�) holds in A/δ�.

Proof. Item (1) follows from the fact that M(S �, T �) ⊆ M(S, T ).

For (2), C
�
CgA(S), T ; δ

�
=⇒ C(S, T ; δ) follows from (1), since

S ⊆ CgA(S). For the reverse implication (and also for the proof of
item (5)), we will argue that if Si is a tolerance, C(Si, T ; δ) holds for
all i ∈ I, and α := tr.cl.

��
i∈I Si

�
, then C(α, T ; δ). (To complete the

proof of (2) we need this only when |I| = 1, while in (5) we need it
only when the Si are congruences.)

Choose any matrix in M(α, T ). If it is
�

p q
r s

�
=

�
f(a,u) f(a,v)
f(b,u) f(b,v)

�
,

then a is related to b by tr.cl.
��

i∈I Si

�
. It is easy to see that there

exist tuples a = a0 Si1 a1 Si2 · · · Sin an = b. These tuples determine
matrices

�
pk qk

pk+1 qk+1

�
:=

�
f(ak,u) f(ak,v)

f(ak+1,u) f(ak+1,v)

�
∈ M(Sik+1

, T ) .

We must show that p ≡δ q implies r ≡δ s, so assume that p ≡δ q. This is
the same as p0 ≡δ q0, and so by induction (using that C(Sik , T ; δ) holds
for all k) we get that pk ≡δ qk for all k. Therefore r = pn ≡δ qn = s.
This completes the proofs of (2) and (5).

For (3), the implication C(S, δ ◦ T ◦ δ; δ) =⇒ C(S, T ; δ) follows
from (1), since T ⊆ δ ◦ T ◦ δ. For the reverse implication, assume that
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C(S, T ; δ) holds, that
�

p q
r s

�
=

�
f(a,u) f(a,v)
f(b,u) f(b,v)

�
∈ M(S, δ ◦ T ◦ δ) ,

and that p ≡δ q. There exist tuples u� and v� such that u δ u� T v� δ v.
The matrix �

p� q�

r� s�

�
=

�
f(a,u�) f(a,v�)
f(b,u�) f(b,v�)

�

is an S, T -matrix. Moreover,

p� = f(a,u�) δ f(a,u) = p δ q = f(a,v) δ f(a,v�) = q� .

Since C(S, T ; δ) holds, it follows that r� ≡δ s�. Hence

r = f(b,u) δ f(b,u�) = r� δ s� = f(b,v�) δ f(b,v) = s ,

or r ≡δ s. This establishes C(S, δ ◦ T ◦ δ; δ).
For (4), recall that elements in the same row of an S, T -matrix are

T -related. So if

�
p q
r s

�
∈ M(S, T ), then since T ∩ δ = T ∩ δ� we get

that

p ≡δ q ⇐⇒ p ≡T∩δ q ⇐⇒ p ≡T∩δ� q ⇐⇒ p ≡δ� q ,

and

r ≡δ s ⇐⇒ r ≡T∩δ s ⇐⇒ r ≡T∩δ� s ⇐⇒ r ≡δ� s .

Therefore the implication p ≡δ q =⇒ r ≡δ s is equivalent to the
implication p ≡δ� q =⇒ r ≡δ� s.

For (6), assume that

�
p q
r s

�
∈ M(S, T ). If p ≡ q (mod

�
δj),

then p ≡ q (mod δj) for all j. Since C(S, T ; δj) holds for all j we get
that r ≡ s (mod δj) for all j, or equivalently that r ≡ s (mod

�
δj).

This shows that C(S, T ;
�

j∈J δj) holds.

For (7), choose an S, T -matrix M =

�
p q
r s

�
. Assume that p ≡δ q.

Since the elements in the same row of M are T -related and the elements
in the same column are S-related, we have r S p T ∩δ q S s. Moreover,
r T s since these elements belong to the same row. Together this yields
that r T ∩

�
S ◦ (T ∩ δ) ◦ S

�
s. By the assumption in (7), this implies

that r ≡δ s. This proves (7).
For item (8), if β ∧

�
α∨ (β ∧ δ)

�
≤ δ, then β ∩

�
α ◦ (β ∩ δ) ◦α

�
≤ δ,

so C(α, β; δ) holds by (7).
Item (9) holds because any instance of the implication in Defini-

tion 2.18 defining C(S|B, T |B; δ|B) in B is an instance of the implica-
tion defining C(S, T ; δ) in A.
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For item (10), it suffices to observe that, when δ � ≤ δ,
�

p�/δ� q�/δ�

r�/δ� s�/δ�

�
∈ M(S/δ�, T/δ�)

if and only if there exist p ≡δ� p�, q ≡δ� q�, r ≡δ� r�, and s ≡δ� s� with�
p q
r s

�
∈ M(S, T ),

and that p ≡δ q ⇔ p�/δ� ≡δ/δ� q�/δ� and r ≡δ s ⇔ r�/δ� ≡δ/δ� s�/δ�. �
Definition 2.20. The commutator of S and T , denoted by [S, T ],

is the least congruence δ such that C(S, T ; δ) holds. T is abelian if
[T, T ] = 0. An algebra A is abelian if its largest congruence is.

By Theorem 2.19 (6), the class of all δ such that C(S, T ; δ) holds
is closed under complete meet, so there is a least such δ. This implies
that [S, T ] exists for any two tolerances S and T .

It is a well known fact, easily derivable from the definitions, that
A is abelian if and only if the diagonal of A×A is a class of a congruence
of A×A.

Definition 2.21. The centralizer of T modulo δ, denoted by
(δ : T ), is the largest congruence α on A such that C(α, T ; δ) holds.

By Theorem 2.19 (5), the class of all α such that C(α, T ; δ) holds
is closed under complete join, so there is a largest such α. This im-
plies that (δ : T ) exists for every δ and T . By Theorem 2.19 (2),
the centralizer (δ : T ) contains every tolerance S such that C(S, T ; δ)
holds.

2.6. Congruence Identities

If V is a variety of algebras, then any lattice identity that holds
in the class {Con(A) | A ∈ V} of congruence lattices of algebras
in V is called a congruence identity of V . The congruence va-
riety of V , denoted CON(V), is the subvariety of L generated by
{Con(A) | A ∈ V}, or alternatively is the variety of lattices axiom-
atized by the congruence identities that hold in V . Similarly, a lattice
quasi-identity that holds in congruence lattices of members of V is a
congruence quasi-identity of V .

The following theorem will be used in several places in this mono-
graph.

Theorem 2.22 (Cf. [6]). Let Q be a quasi-identity satisfying (W).
The class of varieties satisfying Q as a congruence quasi-identity is
definable by a set of idempotent Maltsev conditions.


