
Solutions to HW 7.

1. (Exercise 4.3.6(a)(b)(c).) Provide an example of each or explain why the request is
impossible.

(a) Two functions f and g, neither of which is continuous at 0 but such that f(x)g(x)
and f(x) + g(x) are continuous at 0.

Let f be the Dirichlet function, namely

f(x) =

{
1 if x ∈ Q
0 else.

Let g(x) = 1− f(x), that is

g(x) =

{
0 if x ∈ Q
1 else.

Neither f nor g is continuous anywhere, but f(x)+g(x) = 1 is a continuous (constant)
function, and f(x)g(x) = 0 is a continuous (constant) function.

(b) A function f(x) continuous at 0 and g(x) not continuous at 0 such that f(x) + g(x)
is continuous at 0.

This can’t happen. If f(x) + g(x) and f(x) are continuous at 0, then (f(x) +
g(x))− f(x) = g(x) is continuous at 0.

(c) A function f(x) continuous at 0 and g(x) not continuous at 0 such that f(x)g(x) is
continuous at 0.

Let f(x) = 0 be the constant zero function and let g be any discontinuous function
(like the Dirichlet function). Then f(x)g(x) = 0 is constant zero, hence continuous.

2. Show that a nonempty subset C ⊆ R is closed iff there is a continuous function
g : R→ R such that C = g−1(0). (Hint for the proof of ⇐: explain why the inverse
image of a closed set is closed. Hint for the proof of⇒: you may cite parts of Exercise
4.3.12 if needed.)

Claim. A function g has the property that “O open implies g−1(O) open” if and only if g
has the property that “C closed implies g−1(C) closed”.

Proof of Claim. Assume that g has the property that “O open implies g−1(O) open”. Now
let C be closed. We must show that g−1(C) is closed.
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Since C is closed, R\C is open. By the property of g, g−1(R\C) is open. Now an element
x belongs to this open set iff

x ∈ g−1(R \ C) iff g(x) ∈ R \ C
iff g(x) /∈ C
iff x /∈ g−1(C)
iff x ∈ R \ g−1(C).

Hence the open set g−1(R \C) equals R \ g−1(C). But if this latter set is open, then g−1(C)
must be closed.

Altogether this shows that if “O open implies g−1(O) open”, then also “C closed implies
g−1(C) closed”. (The same argument proves the reverse implication.) End of Proof of Claim.

It follows from the Claim, and from the fact that singleton sets in R are closed, that if
g : R→ R is continuous, then g−1(0) is closed.

For the converse, assume that C ⊆ R is closed. It is shown in Exercise 4.3.12 that

g(x) = inf{|x− c| | c ∈ C}

is a continuous function that does not vanish off of C. (That is, d /∈ C implies that g(d) > 0.)
It is easy to see that g does vanish on C, that is g(b) = 0 for any b ∈ C. To see why, note
that if b ∈ C, then g(b) is the infimum of the set {|b− c| | c ∈ C}. But the elements of this
set are nonnegative, and one of them is zero, so the infimum is zero.

3. A function f : R→ R is periodic if there is a number p such that f(x+p) = f(x) for
every x. (For example, sin(x) is periodic with p = 2π, since sin(x + 2π) = sin(x).)
Prove that a continuous periodic function is uniformly continuous.

Let p > 0 be a period of f . The function f is continuous on all of R, hence continuous
on [0, 2p], hence uniformly continuous on [0, 2p] by the Heine-Cantor Theorem. This means
that ∀ε > 0 there exists δ > 0 depending on ε only (which I emphasize by writing δ = δε)
such that for all L, x ∈ [0, 2p] we have

|x− L| < δε → |f(x)− f(L)| < ε.

For any positive choice of δε that makes this statement true, any smaller positive choice will
make the statement true, so by shrinking δε if necessary we may assume that δε < p/2 for
any ε.

Now, we must show that f is uniformly continuous on all of R. Given any ε > 0, choose
the same value of δ that worked on the interval [0, 2p], namely δ = δε. For any L ∈ R there
is some integer multiple of the period, kp, so that L+ kp ∈ [p/2, 3p/2]. That is, L+ kp is a
translate of L by an integer number of periods such that it lies in [0, 2p] and is at least p/2
from the endpoints.
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Now, for any x, we have |x − L| = |(x + kp) − (L + kp)|, and we have |f(x) − f(L)| =
|f(x+ kp)− f(L+ kp)| since f has period p. Hence, replacing the appropriate subformulas
of

|(x+ kp)− (L+ kp)| < δε → |f(x+ kp)− f(L+ kp)| < ε,

which holds because x+ kp, L+ kp ∈ [0, 2p], we get

|x− L| < δε → |f(x)− f(L)| < ε,

which was what we needed to show to prove that f is uniformly continuous.


