
Solutions to HW 4.

1. (Exercise 2.2.4.) Give an example of each or state that the request is impossible. For
any that are impossible, give a compelling argument for why that is the case.

(a) A sequence with an infinite number of ones that does not converge to one.

(0, 1, 0, 1, 0, 1, . . .)

(b) A sequence with an infinite number of ones that converges to a limit not equal to
one.

Such a sequence cannot exist.
Assume that (ai)i∈N∗ has infinitely many 1’s, and converges to L 6= 1. Let ε =
|1−L|/2. Choose N so that whenever i > N it is the case that |ai−L| < ε. Choose
i > N so that ai = 1. Now |ai−L| = |1−L| < ε = |1−L|/2. But |1−L| < |1−L|/2
leads to |1− L| < 0, which is impossible.

(c) A divergent sequence such that for every n ∈ N it is possible to find n consecutive
ones somewhere in the sequence.

(a1, a2, a3, a4, a5, . . .) = (0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, . . .)

Here an = 0 if n is a power of 2, and an = 1 otherwise.

2. (Exercise 2.3.7 (a), (b), (c).) Give an example of each of the following, or state that
such a request is impossible by referencing the proper theorem(s):

(a) sequences (xn) and (yn), which both diverge, but whose sum (xn + yn) converges.

Let xn = n and yn = −n. Then

(x1) = (1, 2, 3, . . .) and (yn) = (−1,−2,−3, . . .)

both diverge, but their sum (xn + yn) = (0, 0, 0, . . .) converges.

(b) sequences (xn) and (yn), where (xn) converges, (yn) diverges, and (xn+yn) converges.

Such sequences cannot exist.
Assume that (xn) and (xn + yn) converge. If an = −xn and bn = xn + yn, then

both (an) and (bn) converge, by assumption and by the Algebraic Limit Theorem.
Hence (an + bn) = (yn) converges, by the Algebraic Limit Theorem.

(c) a convergent sequence (bn) with bn 6= 0 for all n such that (1/bn) diverges.
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3. (Exercise 2.4.4(a).) In Section 1.4 we used the Axiom of Completeness (AoC) to
prove the Archimedean Property of R (Theorem 1.4.2). Show that the Monotone
Convergence Theorem can also be used to prove the Archimedean Property without
making any use of AoC.

Proof. This is a proof by contradiction, so assume that R is not Archimedean.
Since R is not Archimedean, N is bounded above, which implies that (an) := (1, 2, 3, . . .)

is a monotone increasing bounded sequence. By the Monotone Convergence Theorem, this
sequence has a limit, L ∈ R. There must exist some N such that for i > N we have
ai ∈ (L− 1, L + 1), or equivalently L− 1 < ai < L + 1. In particular, this means that

L− 1 < aN+1 < aN+2 < aN+3 < · · · < L + 1.

But if L− 1 < aN+1 < L+ 1, then (by adding 2 throughout) we have L+ 1 < aN+3 < L+ 3,
leading to the contradiction that aN+3 < L + 1 < aN+3.


