
Solutions to HW 3.

1. Does the non-Archimedean field R(t) satisfy the Nested Interval Property? Explain.

No. To see this, let’s argue that the nested intersection
⋂∞

n=1[n, t/n] is empty.
This is a proof by contradiction. Assume that the rational function P (t)/Q(t) of R(t)

belongs to the intersection. Here P (t) = pkt
k + · · ·+ p1 + p0 and Q(t) = q`t

` + · · ·+ q1 + q0
are polynomials with real coefficients, both must be nonzero, and both may be assumed
to have positive leading coefficients (since this is true of every element of the first interval,
[1, t]). Here the ‘leading coefficient’ of P is pk > 0 and the ‘leading coefficient’ of Q is q` > 0.
Also, the ‘degree’ of P is deg(P ) = k, while the ‘degree’ of Q is deg(Q) = `.

Lemma 1. In the ordered field R(t), if A(t) = akt
k+· · ·+a1+a0 and B(t) = b`t

`+· · ·+b1+b0
both have positive leading coefficients (i.e., ak, b` > 0), and 0 < A− nB for all n ∈ N, then
deg(A) > deg(B).

Proof. There are cases to consider:

(1) (deg(A) < deg(B)) The leading coefficient of A − nB is −nb` < 0, a contradiction
to 0 < A− nB.

(2) (deg(A) = deg(B)) Then k = ` and the leading coefficient of A − nB is ak − nbk.
If this is positive for all n, then ak > nbk for all n, or ak/bk > n for all n. But this
contradicts the Archimedean property of R: the real number ak/bk would be larger
than any natural number.

(3) (deg(A) > deg(B)) This is the only remaining case, so it must hold.

Overall, our conclusion is that deg(A) > deg(B). �

We have assumed that P/Q belongs to the intersection
⋂∞

n=1[n, t/n], so n < P/Q < t/n
for all n. The left hand inequalities, n < P/Q for all n, taken together, are equivalent to
the statement that 0 < P − nQ holds for all n. By the lemma, deg(P ) > deg(Q). The right
hand inequalities, P/Q < t/n for all n, are equivalent to the statement that 0 < tQ − nP
holds for all n. By the lemma, deg(tQ) > deg(P ).

Now we have deg(P ) < deg(tQ) = 1 + deg(Q) < 1 + deg(P ). That is, the positive integer
deg(tQ) lies strictly between the consecutive positive integers deg(P ) and 1+deg(P ), which
is impossible. This is the contradiction that completes the proof.

{Comments on this solution: How does one know (or decide) to include a lemma like
the one above? Answer: If P/Q belongs to [n, t/n] for all n, then n < P/Q for all n
and P/Q < t/n for all n. One extracts conclusions from these assumptions by the same
arguments. Typically you don’t realize this until you have written both arguments out. But
then, rather than write the argument twice, you should write it once as a lemma and refer
to the lemma twice.}
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2. Show that if S ⊆ [0, 1] is uncountable, then there is a real number r ∈ [0, 1] such
that both [0, r] ∩ S and [r, 1] ∩ S are uncountable.

Define
A = {r ∈ [0, 1] | [0, r] ∩ S is countable},

and
B = {r ∈ [0, 1] | [r, 1] ∩ S is countable}.

The set A is nonempty (0 ∈ A) and bounded above by 1, so sup(A) exists. Similarly inf(B)
exists.

Claim 2. sup(A) < inf(B).

Proof of Claim. If the claim is not true, then inf(B) ≤ sup(A), so there is a real number
t such that inf(B) ≤ t ≤ sup(A). For each n we have that t − (1/n) < sup(A), so by
Lemma 1.3.8 there is a number an ∈ A ∩ (t − (1/n), 1]. Similarly, there is a number
bn ∈ B ∩ [0, t + (1/n)). This implies that S ∩ [0, t − (1/n)] and S ∩ [t + (1/n), 1] are
both countable. Since a countable union of countable sets is countable,

S = S ∩ [0, 1]
= S ∩ (

⋃∞
n=1[0, t− 1/n] ∪

⋃∞
n=1[t + (1/n), 1] ∪ {t})

= (
⋃∞

n=1 S ∩ [0, t− (1/n)]) ∪ (
⋃∞

n=1 S ∩ [t + (1/n), 1]) ∪ (S ∩ {t})
is countable. This contradicts the uncountability of S. 2

To complete the solution, the Claim shows that sup(A) < inf(B), so there is some real
number r such that 0 ≤ sup(A) < r < inf(B) ≤ 1. For this r we have that S ∩ [0, r]
uncountable, else r ∈ A and we get the contradiction that sup(A) < r yet r ∈ A. In a
similar way, using B, we get that S ∩ [r, 1] is uncountable.

3. (Exercise 1.5.8.) Let B be a set of positive real numbers with the property that
adding together any finite subset of elements from B always gives a sum of 2 or less.
Show B must be finite or countably infinite.

Let Bk = B ∩
[
1
k
,∞
)
. Any sum of more than 2k members of Bk will exceed 2k · 1

k
= 2, so

it must be that |Bk| ≤ 2k. By the Archimedean property of R, B =
⋃∞

i=1 Bk. Hence B is
a countable union of countable sets, making B countable. (Countable = finite or countably
infinite.)


