Solutions to HW 1.
1. Show that the coimage of a function is a partition of the domain of the function.

Recall that the coimage of the function f: A — B is the set {f~!(b) | b € B} of nonempty
fibers of f.

Recall also that a partition of a set A is a set of nonempty subsets of A, say P = {4, | i €
I}, such that

(1) Uiy Ai = A, and
The sets A; are called the cells of the partition P.

Thus, we have to show that the fibers of f are the cells of a partition of A. This means
that we have to show that

(1) Upep f71(b) = A, and
(2) if f71(b) # f 7' (c), then f7H(b) N fH(c) = 0.

For Item (1), each fiber is a subset of A, so J,.5 f~'(b) € A. To show the reverse inclusion,
choose ag € A arbitrarily and let by = f(ag). Then ag € f~'(by) € Uyep f7'(b). Since ag
was chosen arbitrarily, this shows that A C J,cp f7'(b). Together, the two inclusions show
that U,z f71(b) = A.

We prove the contrapositive of Item (2). Assume that f~'(b)N f~!(c) # 0, and hence that
there is some a € f~1(b) N f~!(c). Since a € f~1(b) we have f(a) =b. Since a € f~!(c) we
have f(a) = c. Thus b = f(a) = ¢, showing that b = c. It follows that the fiber f~1(b) over
b is equal to the fiber f~!(c) over the equal element c. That is, f~*(b) = f~1(c), completing
the proof of the contrapositive.

2. (Exercise 1.2.13.) For this exercise, assume Exercise 1.2.5 has been successfully
completed.
(a) Show how induction can be used to conclude that

Sp (AjUAsU---UA,)) =A{NASN---NAS

for any finite n € N.
We prove the statement S,, by induction on n.

(Base Case, n=1) This is the statement A{ = A§, which is a tautology.
For the inductive step we also need the case n = 2, so we should prove that as
a second base case. However, the problem statement says we can assume the

truth of Exercise 1.2.5, which is Ss.
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(Inductive Step) We assume that Sy is true and derive S1.
Let B=A;UAyU---U A, for this argument.

(Al U---u Ak U A]H_l)c = (B U A]H_l)c (Defn. of B)
= B°NA;, (S2)
= (Ain--nAp N AL, ESk)

=A{N---NA;N AL, Associativity of N)

(b) It is tempting to appeal to induction to conclude

=1 =1

but induction does not apply here. Induction is used to prove that a particular
statement holds for every value of n € N, but this does not imply the validity of
the infinite case. To illustrate this point, find an example of a collection of sets
By, By, B, ... where (._, B; # 0 is true for every n € N, but (;2, B; = 0 fails.

Choose half open real intervals By, = [k, 00). Then n € (), B;, so (i, B; # 0.
On the other hand (2, B; = 0. (For a similar example, see Example 1.2.2 of
the book.)

(c) Nevertheless, the infinite version of De Morgan’s Law stated in (b) is a valid
statement. Provide a proof that does not use induction.

One can show that the sets (| J;°, 4;)° and (o, AS are equal by showing that
they have the same elements.

ve (U A) <o ¢ (U2 4)
— Vi(x € AS)
> x e e, AS.

3. (Exercise 1.3.2.) Give an example of each of the following, or state that the request
is impossible.

(a) A set B with inf B > sup B.

B = {0}. (inf B=0=sup B.)



(b) A finite set that contains its infimum but not its supremum.

The request is impossible. Any set that has a supremum is nonempty, and any
finite nonempty set must contain its infimum. Thus, either a finite set is empty,
in which case it has no infimum or supremum, or it is not, in which case it
contains both its infimum and supremum.

To see that a finite nonempty set must contain its infimum, we argue the con-
trapositive: if a nonempty set does not contain its infimum, then it is infinite.
Let F' be a nonempty set that does not contain its infimum. Choose any ag € F';
it cannot be the infimum. Therefore there is some a; € F' such that ag > a;.
Now a; is not the infimum, so the same argument shows that there is some
as € F such that ag > a; > as. This process can be continued indefinitely to
produce infinitely many elements of F: ag > a; > ag > ---.

(¢) A bounded subset of Q that contains its supremum but not its infimum.
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