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Congruence  lattices of finite algebras and intervals in subgroup 
lattices of finite groups 

P~TER P~ P~FY AND PAVEL PUDLAK 

Introduction 

I t  is well-known that every algebraic lattice is isomorphic to the congruence 
lattice of  an algebra. In this pape r  we are interested in the prob lem of characteriz-  

ing the finite lattices, which are isomorphic to the congruence lattices of finite 
algebras. We are not able to settle the prob lem if every finite lattice is isomorphic  
to the congruence lattice of a finite algebra (cf. [1], Problem 13). Our  main result  
shows that this problem is related to the prob lem to characterize intervals in 

subgroup lattices of finite groups. Namely,  every finite lattice is isomorphic to the 
congruence lattice of a finite algebra if and only if every finite lattice is isomorphic 

to an interval in the subgroup lattice of a finite group. 

Theorems 

I t  is a trivial fact that, while representing lattices as congruence lattices of  
algebras, we can confine ourselves to unary algebras. By a unary algebra we shall 
mean a couple ~t = (A, F), where  A is a set and F is a monoid of t ransformations 
of A. The  congruence lattice of ~t, i.e. the lattice of all congruence relations over  
~ ,  will be denoted by Con (~) .  Assuming that F is a monoid  is no loss of 
generality, since, for any set  F of  transformations,  Con (A, F ) = C o n  (A, F*), 
where F* is the monoid  generated by F. 

T H E O R E M  1. Let L be a finite lattice and ~t = (A, F) a finite unary algebra of 
minimal cardinality for which Con (~t) w_ L. Then we have 

(i) ff L satisfies (A ) below, every idempotent mapping in F is either the identity 
or a constant mapping; 

(ii) if L satisfies (A)  and (B) below, every element of F is either a permutation 
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or a constant mapping; 

(iii) if L satisfies (A), (B) and (C) below, then ~t has no proper subalgebra. 

The conditions are 

(A )  L is simple. 

(B) For any nonzero element x ~ L there exist two elements Yl, Y2 E L such that 

xvyl=xX/yE=IL and y l A y a = 0 L .  
(C) ILl ~ 2 and, for any x ~ L not an atom and not 0L, there exist at least 4 atoms 

less than x. 

We do not claim that the conditions (A), (B), (C) are the weakest  such that 
Theorem 1 holds. The theorem serves us to prove our  main result. 

T H E O R E M  2. The following statements are equivalent: 

(i) A n y  finite lattice is isomorphic to the congruence lattice of a finite algebra. 

(ii) A n y  finite lattice is isomorphic to an interval of the subgroup lattice of a 

finite group. 

Most investigations were concentrated on lattices of length 2. We shall denote 
by Mn the lattice of length two with n atoms. If n = pk + 1 for p prime, then M, is 
isomorphic to the congruence lattice of the two dimensional vector space over the 
finite field GF(pk). P. Goral~ik pointed out that perhaps M T - t h e  smallest among 
them which cannot be represented in the previous w ay -w i l l  be crucial for the 
problem of representability (see [1]). 

If n-----4, then M, satisfies the conditions (A), (B), (C), therefore,  if it is 
representable as the congruence lattice of a finite algebra, then it is isomorphic to 
an interval [H, G]  of the subgroup lattice of a finite group G. Moreover ,  we can 
suppose that H contains no nontrivial normal subgroup of G, since otherwise we 
can factorize G by this normal subgroup and get an interval isomorphic to [H, G] 
in the subgroup lattice of the factor group. The following theorem gives us 
important  information about  such representations. 

T H E O R E M  3. Let G be a finite group and H < G such that the interval [H, G] 
of the subgroup lattice of G is isomorphic to M, ,  n >- 3, and H contains no nontrivial 

normal subgroup of G. I f  G has a nontrivial abelian normal subgroup, then n - 1, is 
a prime power. 

Thus for example M7 cannot be an interval of the subgroup lattice of a finite 
solvable group. The case of non-solvable groups should be the topic of further 
investigations. 
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Proofs 

L E M M A  1. Let s l  = (A,  F)  be a unary algebra where F is a monoid and let 

e �9 F be an idempotent operation. Let  us define NI = (B, G} in the following way: 
B = e(A),  G = { e f  ~ I f � 9  Finally letot: Con (~)--> Con (~) be the restriction of 
congruences to the set B. Then ot is a surjective homomorphism (even for arbitrary 
meets and joins). 

Proof of the Lemma.  By the definition of ~ ,  a obviously maps Con (~)  in to  
Con (~) and ct is trivially/x-preserving. Now let 0, ~ �9 Con (~)  and let a, b �9 B for 

which a - b ( 0 v g z ) .  Then there exists a chain of elements Co = a, c~ . . . . .  C,_l, 

c, = b � 9  such that  c2i-~c21§ and c2i+l ~ c21+2(gz) (i = 0 ,  1, 2 . . . .  ). Now e(co), 
e(cl) . . . . .  e(c,) is a chain of elements  in e'(A) = B for which e(c21)---e(cEi+l)(o~(O)) 
and e(c2i+l)--e(c2~+2)(t~(~)) (i = 0, 1, 2 . . . .  ). Since e is idempotent  e(co)= e (a )=  
a and e(c~)=e(b)=b ,  so we have a=b(o t (O)v ,~ (~) )  that  is o t ( 0 v g z ) -  < 
a ( 0 ) v a ( g t ) .  However ,  the reverse inclusion trivially holds, so t~ is really v -  
preserving. Now let 4> be a congruence on N. Let  us denote by ~ the congruence 

on zd generated by 4>. We shall show that  t ~ ( ~ ) = ~ .  To do this let a, b � 9  for 

which a=-b(~) .  By Mal 'cev 's  l emma there exists a chain of e lements  c o = a ,  

c~ . . . . .  c, = b �9 A and exist operat ions fo, f~ . . . . .  f,_~ �9 F and e lements  c~, 
C ~ ~ . l '  t t  t t  It n __ � 9  c,_~, cl,  c2 . . . . .  c , � 9  B satisfying c~ ~ c'/+l(q>), ~(cf) = % ~(c~§ - q+~, i = 
0, 1 . . . . .  n - 1 .  Again applying e we get a chain e(co)=a, e(c~) . . . . .  e ( c , ) =  
b � 9  for which e(c~)=ef~(cf)--e~(c"§ i = 0 ,  1 . . . . .  n - l ,  there-  
fore a ( ~ ) =  ~,  indeed. 

Proof of" Theorem 1. (i) Le t  sg = (A, F)  be  a finite unary algebra of minimal 
cardinality with the congruence lattice ~ and let .~ be  simple. If e � 9  is 
idempotent ,  then L e m m a  1 can be applied. Since ~ is simple we obtain that  ei ther  
C o n ( N ) ~ - I  or  C o n ( N ) - - L .  In the first case [ B I = I ,  so e is a constant.  In the 
second case, f rom the minimality of ~ ,  we infer that N = s~, so e is the identity. 

(ii) Le t  us denote  by Fo the set of all non-permutat ions  f rom F. Define the 
congruence 4> in the following way: for a, b � 9  set a - - b ( ~ )  iff for all f � 9  
f ( a ) = f ( b ) .  Now ~ is clearly a congruence. First suppose that ~ = 0 ~ - t h e  
identity equivalence. This means  that  for  any two different e lements  a, b �9 A 
there exists an f � 9  Fo for which f ( a ) ~  f(b). Consider  the set of all o rdered  pairs of 
different elements  of A, then, f rom the finiteness of A, we obtain a sequence of 

pairs (ao, bo), (al, bl) . . . . .  (a,, b,) and a sequence of operat ions fo, f l  . . . . .  f ,  �9 Fo 
for which ~(o~) = a~+~, ~(bi) = bi+x, i = 0, 1 . . . . .  n - 1, and f , ( a , )  = ao, f,(b~) = bo. 

Let  f = f f f  , -  l " " f l f  o, then f � 9  and f ( ao) = ao, f ( bo) = bo, ao ~ bo. Because of the 
finiteness of A, an appropr ia te  power  of f is idempotent .  But  f is a non- 
permuta t ion  having more  than one fixed point which contradicts (i). So we have 
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obtained that @ = 0 ~ ,  thus the condition (B) yields two congruences 01, 02~ 
Con (s~) such that  �9 v 01 = 4~ v 02 --- 1~ = A x A, 01/x 02 = 0~. Let  a, b ~ A be arbit- 
rary elements. Then  there exist chains Co = a, Cl . . . . .  c ,-1,  c,  = b and c~= a, 

c'1 . . . . .  c '-1,  c ' - l = b  in A for which C2i~---C2i+1((I)), C21+1~---C2i+2(01), C~i~ 
C~+I(CI)), C~+1~C~+2(02), i = 0 ,  1, 2 . . . . .  Let  us choose an arbi trary f~Fo .  Then 

we have f(c2i)=f(cEi+l), f(c2~+l)--f(c2i§ f(c~i)=f(c~i+l), f(c~,+l)--- 
f(c~+2)(Oz), i = 0 , 1 , 2  . . . .  , thus f(a)=f(Co)=-f(c,~)=f(b)(Oi), ] = 1 , 2 .  Since 
01A 02 = 0~ this means that  f ( a ) = f ( b ) .  This holds for  any a, b ~ A, f ~  Fo, hence 
any e lement  of Fo is a constant,  so we are done. 

(iii) If  we omit  the constant operations,  the congruence lattice will not  change, 
so we may  suppose that  F is a permutat ion group on A. If ~ = ~ / l  U s~2, 

~/1 N ~2 = (~, 1~/21 ~ 2, 1~21 ~ 2, is a decomposition of A into subalgebras, then let 0j 
be  an a tom in Con (Mi), ] = 1, 2. Now, if we denote by ~ the smallest extension of 
0~ to A, there are only two atoms in Con (M), namely 01 and 02, which are less 
than 01 v 02 contradicting the condition (C). Therefore  M cannot be  decomposed  
in the previous way. Since F is a permutat ion group, we can decompose  M into a 
disjoint union of its minimal subalgebras. By the previous r emark  we can have 
only the following possibilities: I. ~ / = ~ l U M 2 t d s ~ 3 ,  l~ji = 1, j = 1, 2, 3; II.  ~ t =  

s~, u s~z, I~j l= 1, j = 1, 2; I II .  ~ = ~1 U ~/2, ]sg,I > 1, ~ has no p roper  subalgebra, 
1~21 = 1, I v .  ~ has no proper  subalgebra. In the cases I and I I  Con (sO) is the 
partition lattice on three and two point sets respectively, but these lattices do not 
satisfy the condition (C). In the case III ,  1~ is a v- irreducible element ,  thus 

Con (s~) does not satisfy the condition (B). Therefore  sr has no p rope r  subalgebra 
as we claimed. 

L E M M A  2. A n y  finite lattice ~ can be embedded into a finite lattice ~g' as an 
interval [u, lee,] such that .~' satisfies the conditions (A), (B) and (C). 

Proof. Given a lattice .~, the elements of ~g' will be the ones of  ~ ,  elements 
t~(z), where z ~ ,  i = 1 , 2 , 3 , 4 ,  and 0a,-. For x, y s.Le' let 

I i y' or 
x -- y iff ~ - 0~e,, y arbitrary, or  

x t ~ ( z ) , y ~ . ~ , z ~ y i n . ~ , o r  

tx, y ~ L ,  x<--y i n . ~ .  

.Le' is clearly a lattice satisfying the proper ty  (C). In order  to p rove  (B) let x be an 

arbitrary element,  x ~ 0~e,, and choose for Yl and yz two elements  f rom {t~(l:e) I i -- 
1, 2, 3} such that x, yt, y2 will be  different. Then obviously x vy~ = x v y z =  l:e,, 
y l ^ y z = 0 : e , .  The  simplicity of ~ '  (condition (A)) can be  checked by routine 
computations.  
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L E M M A  3. Let ~ = (A ,  G} be a unary algebra, where G is a transitive group 
of operations. The Con (~)  is isomorphic to the interval [G,, G] of the subgroup 
lattice of G, where G, denotes the subgroup of G consisting of all elements of G 
which fix the arbitrarily chosen element a ~ A. 

Proof. For  ~ C o n ( ~ ) ,  let G(gz )={g~GIg(a )~a( t I z ) } ,  and for H, G,~<-- 
H_-_ G, let b - c(O(H)) mean that  there exist g ~ G and h ~ H such that  gh(a)  = b, 
g(a)  =c .  If gl, g2e G ( ~ ) ,  then g~g2-~(a)=gl(a)=a(gZ), thus G ( ~ )  is a subgroup 
of G and clearly G ( ~ )  ~ Ga. I t  is also easy to see that O(H) is a congruence on s~. 
The  equality G ( O ( H ) ) = H  trivially follows f rom the definitions. On the other  
hand b -- c(O(G(gz))) ff and only if there exist g, h ~ G for which h(a) - a (g  z) and 
b = gh(a) ,  c = g(a).  Since G is transitive, it is equivalent to b -  c(gr There fore  
0 ( G ( ~ ) ) =  ~ .  Finally G(O)<-G(g z) iff O<-g t, so ~ - *  G ( g  z) is an isomorphism 
between Con (s~) and [G,, G]. 

Proof of Theorem 2. ( i ) ~  (ii). Let ~ be  an arbitrary finite lattice. Let  us 
embed  it into a finite lattice 5e' as in L e m m a  2. By (i) &r is isomorphic to Con  (~/) 

for  a finite algebra M. Choose sg to be  a finite algebra of minimal cardinality with 
Con (s~) ---- L'.  Co n (.~/) will not change ff we consider only the unary polynomials  
of ~ / a s  operations of a new algebra ~ '  with the same universe as s~. Since (A), 
(B) and (C) hold for 5f', Theo rem  1 forces that in ~ ' =  (A, G} G is actually a 
transitive permuta t ion  group on A. Now by L e m m a  3 [G,, G]-- '-Con (s~')= 
Con (s~) ~ ~ for an arbitrary a ~ A, and since .~ is an interval of ~ '  we obtain that  
in fact ~ is isomorphic to an interval of the subgroup lattice of a finite group. 

(ii) ~ (i). Le t  .~ be a finite lattice and G a finite group, H a subgroup of G 
such that [H, G ] ~ .  We assume here that  H contains no nontrivial normal  
subgroup of G. Consider the operat ion of G f rom the left on the set of the left 
cosets of G respective to H. Clearly it is a finite unary algebra with the transitive 
group of operat ions G, and the subgroup which fixes the coset H is H itself. Thus 
by Lemma  3 we are done.  

Proof of Theorem 3. Let  [H, G]  ={H,  K1, /(2 . . . . .  K, ,  G} and let A be a 
minimal nontrivial abelian normal  subgroup of G. By the assumptions A N  H, so 
either A H  is a maximal subgroup in G or A H  = G. In the lat ter  case A O K1 is a 
nontrivial abelian subgroup of G, and it is normal  in K1 and also in A, therefore  
in AKI  = G. Since ( A n  KI)H <-- K~, it contradicts to the minimality of A. There -  
fore A H  is maximal in G, say A H  = K1. For  j = 2 . . . .  , n we have K1Kj = AHKj  = 
A K  i = G, f rom which IG : Kil = tK~ :K~ n Kil = [K1 :HI  = 1A : A  n HI,  and {G : Kit = 
IA : A O K~[, hence A O H = A O K~. Since n _-> 3, A n H is normal  in (/<2, K3) = G, 
therefore by our  assumptions A n H = A O Kj = 1, for j = 2 . . . . .  n. Thus any of 
the subgroups K i contains exactly one  e lement  f rom each coset of G respective to 
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A.  H e n c e  we  have uniquely  de te rmined  functions ~bi:K2 ~ A such that  Kj = 

{x~bi(x) I x ~ K2}, ] = 2 . . . . .  n. Since (x&i(x))(y~bj(y)) = (xy)(~bi(xy)), we  have the 
fol lowing identity:  

~bi(xy)=y-ldpi(x)yd~i(y) fo r a l l  x ,y~K2,  ] = 2  . . . .  ,n .  (1) 

Moreover ,  since H_-__ K i, we have 

~b~(x)=l for  all x ~ H ,  ] = 2  . . . . .  n. (2) 

Conversely,  if we are given a funct ion ~b:Kz ~ A satisfying (1) and  (2), then 

B={x~b(x)[x~K2} is a subgroup  of  G such that  B>--H, A B = G ,  A f ) B = I ,  
therefore  B is one  of the subgroups  Kj, ] = 2 . . . . .  n. H e n c e f o r t h  the  n u m b e r  of  

these subgroups,  n - 1, is equal  to the number  of functions 4) : / (2  --~ A satisfying 
(1) and (2). If ~b and  qt are  such functions,  then ~btk defined by ~btk(x)= ~b(x)~b(x) 
also satisfies (1) and  (2), since A is abelian. Moreover ,  A ,  being a minimal  normal  

subgroup,  is an e l ementa ry  abelian p-group,  t h e r e f o r e - a s  it can  be  easily 

v e r i f i e d - t h e  functions &j, j = 2 . . . . .  n also form an e lementa ry  abelian p-group.  
Thus  their n u m b e r  is a p o w e r  of  the pr ime p. So we are done.  
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