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Congruence lattices of finite algebras and intervals in subgroup
lattices of finite groups

PETER PAL PALFY AND PAVEL PUDLAK

Introduction

It is well-known that every algebraic lattice is isomorphic to the congruence
lattice of an algebra. In this paper we are interested in the problem of characteriz-
ing the finite lattices, which are isomorphic to the congruence lattices of finite
algebras. We are not able to settle the problem if every finite lattice is isomorphic
to the congruence lattice of a finite algebra (cf. {1], Problem 13). Our main resuit
shows that this problem is related to the problem to characterize intervals in
subgroup lattices of finite groups. Namely, every finite lattice is isomorphic to the
congruence lattice of a finite algebra if and only if every finite lattice is isomorphic
to an interval in the subgroup lattice of a finite group.

Theorems

It is a trivial fact that, while representing lattices as congruence lattices of
algebras, we can confine ourselves to unary algebras. By a unary algebra we shall
mean a couple of = (A, F), where A is a set and F is a monoid of transformations
of A. The congruence lattice of &, i.e. the lattice of all congruence relations over
o, will be denoted by Con (sf). Assuming that F is a monoid is no loss of
generality, since, for any set F of transformations, Con{A, F)=Con (A, F¥),
where F* is the monoid generated by F.

THEOREM 1. Let L be a finite lattice and o4 = (A, F) a finite unary algebra of
minimal cardinality for which Con (sf)= L. Then we have
(i) if L satisfies (A) below, every idempotent mapping in F is either the identity
or a constant mapping;
(i) if L satisfies (A) and (B) below, every element of F is either a permutation
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or a constant mapping;
(iii) if L satisfies (A), (B) and (C) below, then s has no proper subalgebra.

The conditions are

(A) L is simple.

(B) For any nonzero element x € L there exist two elements y,, y,€ L such that
xvy,;=xvy,=1; and y;Ay,=0.

(C) |L|#2 and, for any x € L not an atom and not 0, there exist at least 4 atoms
less than x. ’

We do not claim that the conditions (A), (B), (C) are the weakest such that
Theorem 1 holds. The theorem serves us to prove our main result.

THEOREM 2. The following statements are equivalent:

(i) Any finite lattice is isomorphic to the congruence lattice of a finite algebra.
(ii) Any finite lattice is isomorphic to an interval of the subgroup lattice of a
finite group.

Most investigations were concentrated on lattices of length 2. We shall denote
by M, the lattice of length two with n atoms. If n = p* +1 for p prime, then M, is
isomorphic to the congruence lattice of the two dimensional vector space over the
finite field GF(p*). P. Goraltik pointed out that perhaps M, — the smallest among
them which cannot be represented in the previous way —will be crucial for the
problem of representability (see [1]).

If n=4, then M, satisfies the conditions (A), (B), (C), therefore, if it is
representable as the congruence lattice of a finite algebra, then it is isomorphic to
an interval [H, G] of the subgroup lattice of a finite group G. Moreover, we can
suppose that H contains no nontrivial normal subgroup of G, since otherwise we
can factorize G by this normal subgroup and get an interval isomorphic to [H, G]
in the subgroup lattice of the factor group. The following theorem gives us
important information about such representations.

THEOREM 3. Let G be a finite group and H < G such that the interval [H, G]
of the subgroup lattice of G is isomorphic to M,, n =3, and H contains no nontrivial
normal subgroup of G. If G has a nontrivial abelian normal subgroup, then n—1, is
a prime power.

Thus for example M, cannot be an interval of the subgroup lattice of a finite
solvable group. The case of non-solvable groups should be the topic of further
investigations.
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Proofs

LEMMA 1. Let A =(A,F) be a unary algebra where F is a monoid and let
e€ F be an idempotent operation. Let us define B =(B, G) in the following way:
B=¢(A), G={ef | g | f€F}. Finally let «: Con (sf) — Con (®) be the restriction of
congruences to the set B. Then « is a surjective homomorphism (even for arbitrary
meets and joins). ‘

Proof of the Lemma. By the definition of 98, a obviously maps Con (&) into
Con (%) and « is trivially A-preserving. Now let 8, ¥ € Con (&) and let a, b € B for
which a=0b(0v V). Then there exists a chain of elements c,=a, c;,..., Ciz1,
¢, =b € A such that ¢,; =¢,;,1(8) and ¢y, 1 =cy; »(¥) (i=0,1,2,...). Now e(cy),
e(cy), ..., e(c,) is a chain of elements in e(A) = B for which e(c,;) = e(cy.1)(a(8))
and e{cyi.1) =e(Chs)(a(WP)) (i=0,1,2,...). Since e is idempotent e(c,) =e(a) =
a and e(c,)=e(b)=b, so we have a=b(a(f)va(¥)) that is a(@v¥)=
a(0)va(¥). However, the reverse inclusion trivially holds, so a is really v-
preserving. Now let @ be a congruence on 3. Let us denote by @ the congruence
on & generated by ®. We shall show that a(®)=®. To do this let a, be B for
which a =b(P). By Mal’cev’s lemma there exists a chain of elements c¢,=a,
¢y...,c,=beA and exist operations fy,fi,...,f..1€F and elements cj,
ClsevesChot, €Y, Ch, ..., cn€ B satisfying ¢, = ¢, (D), filc)=c, fi(cl 1) =Cr1, i=
0, 1,...,n—1. Again applying ¢ we get a chain e(c))=a, e(cy),...,e(c,)=
beB for which e(¢)=ef(c))=ef(c".)=elc)(P), i=0, 1,...,n—1, there-
fore a(®)= @, indeed.

Proof of Theorem 1. (i) Let of =(A, F) be a finite unary algebra of minimal
cardinality with the congruence lattice & and let & be simple. If ecF is
idempotent, then Lemma 1 can be applied. Since & is simple we obtain that either
Con (@)=1 or Con(®)=L. In the first case |B|=1, so e is a constant. In the
second case, from the minimality of s, we infer that 8= o, so e is the identity.

(ii) Let us denote by F, the set of all non-permutations from F. Define the
congruence @ in the following way: for a,be A set a=b(d) iff for all feF,,
f(a)=f(b). Now @ is clearly a congruence. First suppose that & =0,-the
identity equivalence. This means that for any two different elements a,be A
there exists an f € F,, for which f(a) # f(b). Consider the set of all ordered pairs of
different elements of A, then, from the finiteness of A, we obtain a sequence of
pairs {a,, bo), (ay, by), - .., (a,, b,) and a sequence of operations fo, fi, ..., f. € Fq
for which fi(a;) = a1, fi(b)=b;y, i=0,1,...,n—1, and f.(a,) = ao, fu(b,) = b.
Let f=ff.1" - - fifo, then fe f, and f(ay) = ag, f(bo) = by, ao# b,. Because of the
finiteness of A, an appropriate power of f is idempotent. But f is a non-
permutation having more than one fixed point which contradicts (i). So we have
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obtained that ¢ =0, thus the condition (B) yields two congruences 6,, 6,€
Con (f) such that ®v O, =Pvh,=1,=A XA, 6,A0,=0,. Let a, bc A be arbit-
rary elements. Then there exist chains ¢y=a, ¢1,...,¢—1, ¢.=b and c¢cj=a,
ClLhevvsChoty, Chg=b in A for which ¢ =0 i(DP), Criv1=Cpi10(8,), 4=
Chiv1(D), chivy=¢5.2(0,),i=0,1,2,.... Let us choose an arbitrary f e F,. Then
we have f(cy) =f(Cair1), flCaur)=flC2i)(@), flch)=f(chivr), flchii)=
flchia2)(02), i=0,1,2,..., thus f(a)=f(co)=f(c.)=f(b)(6;), j=1,2. Since
6, 0,=0, this means that f(a) = f(b). This holds for any a, be A, fe F,, hence
any element of F, is a constant, so we are done.

(iif) If we omit the constant operations, the congruence lattice will not change,
SO we may suppose that F is a permutation group on A. If o=, Ust,,
A, NA, =, |A, 22, |,| =2, is a decomposition of A into subalgebras, then let 6,
be an atom in Con (&), j =1, 2. Now, if we denote by 0—, the smallest extension of
6, to A, there are only two atoms in Con (&), namely 6, and 6,, which are less
than 8, v 6, contradicting the condition (C). Therefore & cannot be decomposed
in the previous way. Since F is a permutation group, we can decompose & into a
disjoint union of its minimal subalgebras. By the previous remark we can have
only the following possibilities: I. =, U, Usls, |1=1, j=1,2,3; II. o=
AUy, |o|=1,j=1,2; lIl. & =of, U, |4,)>1, o, has no proper subalgebra,
|sf,| =1; IV. o has no proper subalgebra. In the cases I and II Con (&) is the
partition lattice on three and two point sets respectively, but these lattices do not
satisfy the condition (C). In the case III, 1, is a v-irreducible element, thus
Con (&) does not satisfy the condition (B). Therefore o has no proper subalgebra
as we claimed.

LEMMA 2. Any finite lattice & can be embedded into a finite lattice £' as an
interval [u, 1,,] such that &' satisfies the conditions (A), (B) and (C).

Proof. Given a lattice &£, the elements of ¥’ will be the ones of ¥, elements
t;(z), where ze ¥, i=1,2,3,4, and O,. For x,ye ¥’ let

x=y, or

. |x=0g, y arbitrary, or
x=y iff .
x=t(z), ye¥, z=y in &, or

x,yelL, x=y in £.

& is clearly a lattice satisfying the property (C). In order to prove (B) let x be an
arbitrary element, x # O,, and choose for y, and y, two elements from {t,(1,) | i =
1,2, 3} such that x,y,, y, will be different. Then obviously xvy,=xvy,=1lg,
y1Ay,=0g. The simplicity of ¥ (condition (A)) can be checked by routine
computations.
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LEMMA 3. Let #=(A, G) be a unary algebra, where G is a transitive group
of operations. The Con () is isomorphic to the interval [G,, G] of the subgroup
lattice of G, where G, denotes the subgroup of G consisting of all elements of G
which fix the arbitrarily chosen element a € A.

Proof. For ¥ eCon (), let G(¥)={geG|gla)=a(¥)}, and for H, G, =
H =G, let b=c(0(H)) mean that there exist g€ G and h € H such that gh(a)=b»b,
gla)=c If g,, g,€ G(¥), then g,g," " (a)=g,(a)=a(¥), thus G(¥) is a subgroup
of G and clearly G(¥)= G,. It is also easy to see that §(H) is a congruence on .
The equality G(0(H))=H trivially follows from the definitions. On the other
hand b =c(8(G(¥))) if and only if there exist g, h € G for which h(a)=a(¥) and
b =gh(a), c =g(a). Since G is transitive, it is equivalent to b =c(¥). Therefore
0(G(¥)=". Finally G(O)=G(W) iff 6=V, so ¥— G(V¥) is an isomorphism
between Con (#) and [G,, G].

Proof of Theorem 2. (i)= (ii). Let & be an arbitrary finite lattice. Let us
embed it into a finite lattice ¥’ as in Lemma 2. By (i} & is isomorphic to Con (<)
for a finite aigebra &. Choose s to be a finite algebra of minimal cardinality with
Con ()=L'. Con () will not change if we consider only the unary polynomials
of o as operations of a new algebra &' with the same universe as &f. Since (A),
(B) and (C) hold for &', Theorem 1 forces that in &' =(A, G) G is actually a
transitive permutation group on A. Now by Lemma 3 [G,, G]=Con ()=
Con ()= %' for an arbitrary a € A, and since £ is an interval of ¥’ we obtain that
in fact & is isomorphic to an interval of the subgroup lattice of a finite group.

(if) = (i). Let ¥ be a finite lattice and G a finite group, H a subgroup of G
such that [H, G]=%. We assume here that H contains no nontrivial normal
subgroup of G. Consider the operation of G from the left on the set of the left
cosets of G respective to H. Clearly it is a finite unary algebra with the transitive
group of operations G, and the subgroup which fixes the coset H is H itself. Thus
by Lemma 3 we are done.

Proof of Theorem 3. Let [H, G]l={H, K,,K,,...,K,, G} and let A be a
minimal nontrivial abelian normal subgroup of G. By the assumptions A£ H, so
either AH is a maximal subgroup in G or AH = G. In the latter case ANK, isa
nontrivial abelian subgroup of G, and it is normal in K, and also in A, therefore
in AK,=G. Since (A NK,)H =K, it contradicts to the minimality of A. There-
fore AH is maximal in G, say AH=K,.Forj=2,...,n we have K,K;=AHK; =
AK; =G, from which |G : K| =|K,: K, NK;|=|K;: H|=]A: ANH|, and |G : K| =
|A:ANK]|, hence ANH=ANK, Since n=3, ANH is normal in (K, K3) =G,
therefore by our assumptions ANH=ANK;=1, for j=2,...,n Thus any of
the subgroups K; contains exactly one element from each coset of G respective to
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A. Hence we have uniquely determined functions ¢;:K, — A such that K;=
{x¢;(x) | xe K}, j=2,...,n. Since (x;(x))(yd;(y))=(xy)(d;(xy)), we have the
following identity:

&i(xy) =y ' (x)yd;(y) forall x,yeK,, j=2,...,n (1)
Moreover, since H=K,, we have
$i(x)=1 forall xeH, j=2,...,n 2)

Conversely, if we are given a function ¢:K, — A satisfying (1) and (2), then
B ={x¢(x)| xeK,} is a subgroup of G such that Bz H, AB=G, ANB=1,
therefore B is one of the subgroups K, j=2, ..., n. Henceforth the number of
these subgroups, n—1, is equal to the number of functions ¢ : K, — A satisfying
(1) and (2). If ¢ and ¢ are such functions, then ¢¢ defined by Py(x) = d(x)P(x)
also satisfies (1) and (2), since A is abelian. Moreover, A, being a minimal normal
subgroup, is an elementary abelian p-group, therefore-as it can be easily
verified — the functions ¢;, j=2, ..., n also form an elementary abelian p-group.
Thus their number is a power of the prime p. So we are done.
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