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INTRODUCTION

By a finite algebra we mean a finite set of elements together with a (possibly infinite)
set of operations acting on this set of elements. This concept includes finite groups and
rings and many other algebraic systems of interest in mathematics. Excluded are finite
systems with infinitary operations, and those having “partial operations” (operations
defined for some, but not all, n-tuples of elements). By a locally finite variety we mean
a class of algebras of one type, closed under the formation of homomorphic images,
subalgebras, and direct products, whose finitely generated algebras are finite. The
class of groups satisfying z3 = 1 is an example of a locally finite variety.

The main discovery presented in this book is that the lattice of congruences of a
finite algebra determines very deeply the structure of that algebra. Our theory reveals
a sharp division of locally finite varieties of algebras into six interesting new families,
each of which is characterized by the behavior of congruences in the algebras. We use
the theory to derive many new results that will be of interest not only to universal
algebraists, but to other algebraists as well.

The utility of congruence lattices for revealing the structure of general algebras has
been recognized since Garrett Birkhoff’s pioneering work in the 1930’s and 1940’s.
Our theory, nevertheless, is of very recent origin; and its germ can be found in the
paper [27] of P.P. Pilfy and P. Pudldk. In 1981, McKenzie obtained two crucial
results for the theory (rudimentary versions of Theorem 2.8 and Theorem 2.11) and
applied them in [22]. Further impetus was given by results of Hobby in [18] (an early
version of Theorem 5.5) and of Pélfy in [26] (Theorem 4.7). The theory then rapidly
evolved through the joint efforts of the authors. Most of the results presented here
were discovered during the first ten months of 1983.

Basic tame congruence theory is presented in Chapters 1 through 5. We have
strived for a straightforward and complete development of this material, since we
believe that the theory offers great promise for a wide variety of investigations. In
Chapters 6 and 7, we move beyond the consideration of individual algebras, into a
study of locally finite varieties. Chapters 8 through 14 focus on various aspects of
locally finite varieties. A list of open problems finishes the work.

We now give a non-technical overview of the chief results contained in this book,
often summarizing the results in a weaker form than is proved in the text, in order
to avoid technicalities.
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The first noteworthy product of the theory is the result that every finite algebra
with three or more congruences, having a simple and complemented congruence lat-
tice, is a subreduct of a module over a finite simple ring with unit. If the congruence
lattice of such an algebra is not isomorphic to the congruence lattice of a finite vector
space, then the algebra is a subreduct of a matrix power of an algebra whose oper-
ations are trivial. These results are contained in Theorems 2.11, 5.7, 5.8, 13.3 and
13.5; and they are also valid locally, for interval sublattices of a congruence lattice.
They imply, indirectly, two theorems of [22]: A finite, simple, complemented lattice
of more than two elements cannot be isomorphic to the lattice of subvarieties of any
locally finite variety; and under certain further mild conditions, cannot be isomorphic
to the congruence lattice of a finite algebra with one basic operation.

In the underlying theory, “tight” intervals in a congruence lattice, including two-
element intervals or prime quotients, are divided into five types, or categories. Each
type has a particular kind of algebra associated with it. The correspondences are as
follows: 1 - a finite set with a group of permutations, 2 - a vector space over a finite
field, 3 - the two element Boolean algebra, 4 - the two element lattice, 5 — the two
element semilattice. To some extent, the properties of these algebras carry over to
the types that correspond to them.

We label each prime quotient with its type, thereby making the congruence lattice
of a finite algebra into a labeled graph. It soon appears that intervals in which
only a restricted set of types appear are special; for instance they must be modular
or semi-distributive lattices, depending on the types (Corollary 5.20, Corollary 6.8).
Furthermore, the type of a prime quotient is strongly influenced in various ways by
the shape of the congruence lattice in its local neighborhood (Lemmas 5.19, 6.2-6.6,
6.9-6.10).

There is a close connection between the set of Mal'cev conditions satisfied by a
locally finite variety, and its type set (the set of all types of prime quotients of the finite
algebras in the variety). The main tool for the development of this connection comes
out of the study of solvability in Chapter 7. Every locally finite algebra A admits
two natural congruences, the solvability congruences ~ and %, on its congruence
lattice. These are complete lattice congruences such that the quotient lattices are
algebraic and (Con A)/ ~ is a meet semi-distributive lattice. Every congruence
class of ~, modulo the smaller congruence ~, is a modular lattice. If A is finite and
ifa < Bin Con A, then & ~ S iff 3 is solvable over a. (Solvability is defined using a
generalization of the commutator for modular varieties.) With the same conditions,
a X g iff all the prime quotients in the interval I [a, B] are of type 1. Then if V is
any locally finite variety we find (Theorem 7.12) that these statements are equivalent:
1 ¢ typ{V}; a X Biff a = B in algebras of V; whenever a 2 8 in an algebra of V,
then a and B permute; V has a ternary term that satisfies Mal’cev’s equations when
restricted to an equivalence class of any solvable congruence.
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The equivalent conditions of Theorem 7.12 define what turns out to be, in a precise
sense, the largest proper Mal’cev class of locally finite varieties. The theorem itself is
the principal tool used in Chapter 9 to investigate the connection between type sets
and Mal’cev classes.

To simplify our discussion, it is convenient to define “Mal’cev class” in a slightly
unusual way. By a Mal’cev class we shall mean any class of locally finite varieties
consisting of all the varieties satisfying an ordinary Mal’cev condition defined by a
set of linear equations which implies that the operations appearing in the equations
are idempotent. (See Definition 9.1 for further explication. Nearly all of the Mal’cev
conditions in the literature have this property.) A Mal’cev class is proper if it does
not include every locally finite variety. In Chapter 9, we examine six Mal’cev classes,
ordered by inclusion as in this picture. The notation “omit (S)”, where S is a set of
types, denotes the class of all locally finite varieties that omit all the types in S.

M, = omit (1}

omit (1, 2) = M M, = omit {1, 5)

omit (1,2,5) = M My = omit (1,4, 5)

Mg = omit {1,2,4,5)

The six classes are defined by the omission of types, by variants of a congruence
equation (see Theorem 9.6 (3)), and by various other equivalent conditions. (See
Theorems 9.6, 9.8, 9.14, 9.10, 9.11, and 9.15 for the respective classes.)

M is the class of locally finite varieties satisfying the conditions of Theorem 7.12
and the equivalent conditions of Theorem 9.6. It is the largest proper Mal’cev class.
The condition 9.6 (3) makes it clear that M is a Mal’cev class; and it is interesting to
find that the largest proper Mal’cev class can be defined by relatively simple equations
involving joins, meets, and compositions of congruences.

My is the class of varieties having no nontrivial Abelian congruences (or prime
quotients of type 1 or 2). It is also the class of varieties whose congruence lattices are
meet semi-distributive; and it is the largest Mal’cev class not containing the variety of
all vector spaces over any finite field. M is the largest Mal'cev class not containing
the variety of semilattices; and we have M5 = M, N My, '

M, is defined by a very simple congruence equation (see 9.8 (3)), and it is quite
large. Every locally finite variety whose congruence lattices obey a nontrivial equation
in joins and meets belongs to M.
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M3 is the class of locally finite varieties V such that V has n-permuting congruences
for some n. It is the largest Mal’cev class not containing the variety of distributive
lattices. A surprising result is that for every V belonging to M3, there is a nontrivial
equation in joins and meets that holds in the congruence lattice of each algebra in V
(Theorem 9.19).

With the aid of tame congruence theory, we are able to extend all the results proved
in [10] for congruence-modular varieties to every variety in M,. Every residually
small variety in M is congruence-modular (Theorem 10.4). If V belongs to M3, then
every two finite simple algebras in V that obey the same equations are isomorphic;
and if A € V(B) C V and B is finite, then every block of a minimal congruence in A
has cardinality no greater than the cardinality of B (Theorem 14.6).

In Chapter 11, we extend the results proved in [5] for congruence-modular varieties
to every variety in M. Every variety in M that fails to be congruence-modular is
hereditarily undecidable.

In Chapter 12, we prove that if V is a variety in M which fails to have permuting
congruences, or contains a finite non-nilpotent algebra, then for some constant ¢ > 0
the free algebra Fy(n) has at least 22°" elements for all sufficiently large n.

In Chapters 13 and 14, we obtain a lot of new information about finite simple
algebras. The five types of simple algebras possess distinctively different personalities.
Simple algebras of the first two types are Abelian; a locally finite variety can contain
only finitely many such algebras. Simple algebras of the fourth and fifth types possess
connected partial orderings with respect to which all operations are monotone. A
simple algebra of the third or fourth type “splits” any locally finite variety that
contains it (Exercise 14.9 (1)).

Finally, we can mention Theorem 8.7. For every finite algebra A that generates a
congruence-modular variety, there exists a finite algebra B such that the two algebras
have isomorphic congruence lattices and the congruences of B permute; in fact, B is
a loop with operators.



0. BASIC CONCEPTS AND NOTATION

This chapter can be quickly passed over by anyone familiar with modern universal
algebra. The less familiar concepts and notations will be defined again in the text at
their first occurrence. Occasionally, one may need to consult the index at the back
of the book to find the place where a term has first been defined. For more complete
treatments of the material of this chapter, one can consult the books by Gratzer, [14]
and [15], for everything pertaining to algebras or lattices, and the book by Burris and
Sankapannavar [4] for varieties.

0.1 ALGEBRAS. An algebra consists of a nonvoid set and some finitary opera-
tions over that set. For example, a group is a set of elements and a binary operation
on those elements (or sometimes, a binary operation and a unary operation are used).
We shall deal with two kinds of algebras, the indexed and the non-indexed. An in-
dezed algebra, written usually as A = (A4, f;(i € I)), consists of a nonvoid set A of
elements (the base set or universe) and a function (f; : ¢ € I) whose values, f;, are
operations.on A. A non-indezed algebra is just a pair A = (A, F), consisting of a
nonvoid set A and a set F of operations on A. Both kinds of algebras are called,
simply “algebras”. The operations given, either the f;(i € I'), or the members of F,
are called the basic operations of the algebra. Indexed algebras are preferable to non-
indexed in many instances. For example, in speaking of a homomorphism between
two rings, one may need to refer to the “addition operations” of both rings. (In our
general framework, rings can be construed as algebras (4, f+, f-, f.), taking as index
set for the operations I = {+,—,-}.) On the other hand, non-indexed algebras arise
frequently in the theory we shall develop, in situations where it is both inconvenient
and unnecessary to make a list of the operations.

The n th Cartesian power of a set A, where n is a non-negative integer, is denoted
A™. Its elements are written as Z = (zo,...,Zn—1). By an n-ary operation on A,
we mean any function f : A® — A. The only restriction we impose on an algebra is
that its basic operations be finitary. This means that every basic operation f of an
algebra whose universe is A must be an n-ary operation on A for some non-negative
integer n. It is common practice to use the word “unary” instead of “l-ary”, and to
use “binary” to replace “2-ary”.
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By composition of operations we mean the construction of an n-ary operation, h,
from k given n-ary operations fo, ..., fr—1 and a k-ary operation g, through the defin-
ing formula h(Z) = g(fo(Z),. .., fk—1(Z)). (All of these operations must be defined on
the same set; while the non-negative integers k and n are arbitrary.) The projection
operations on a set A are the trivial operations p} satisfying p?*(zo,...,Zn-1) = ;.
A clone on a set A is a set of operations on A that is closed under all compositions
and contains the projections p? (for all n and ¢ satisfying 0 < i < n).

There are two important sets of derived operations in any algebra A. One is the
clone of polynomial operations of A denoted Pol A. It is the close on A generated
by the basic operations of A together with all of the constant 0-ary operations on
A (and the projection operations, of course). The set of n-ary operations in this
clone is denoted by Pol, A. The other is the clone of (so-called) term operations of
A, denoted Clo A. It is the clone on A generated by the basic operations of A. To
illustrate these definitions, let A = ({0,1}, +) be the 2-element group, with 1+1 = 0.
Here Clos A consists of the four operations

flz,y) =z, y, t+y, and 0 (=z+7).
Pol; A has eight operations, the term operations just listed, plus
flxy)=z+1, y+1, z+y+1 and 1.

If f is an m + n-ary term operation of A and a = (ag,...,am-1) € A™, then the
formula

g(i) = f(dv-i') (= f(QO»-“aam—l»an~-'1mn-l))

defines an n-ary polynomial operation of A. Conversely, every n-ary polynomial
operation of A arises in this way, through substitution of constants for some of the
variables in some term operation of A. By a polynomial clone on A, we mean a clone
on A containing all the constant operations. Thus Pol A is the polynomial clone
generated by Clo A.

Let A be any algebra, U be a nonvoid subset of the universe of A, and f be a
polynomial operation of A such that U is closed under f. Then the restriction of
ftoU, or flu, is obviously an operation on U. By (Pol A)|y we denote the set of
all those f|ly where f € Pol A and U is closed under f. The non-indexed algebra
(U, (Pol A)|y) will be called the algebra induced by A on U and we shall denote it by
A|y. These induced algebras play a cardinal role in this book. Notice that

Clo (Aly) =Pol(A|y) = (Pol A)|y ;

i.e., every polynomial operation of this algebra is already a basic operation.
Indexed algebras A = (A, fi(i € I)) and B = (B, gi(¢ € I)) are called similar iff
they have the same index set I, and f; and g; are of equal arity for all : € I. For
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indexed algebras, the basic notions of subalgebra of an algebra, of homomorphism or
isomorphism between two similar algebras, and of (Cartesian) product of a system of
similar algebras are so well known that we shall not bother to define them carefully.
We write A C B for “A is a subalgebra of B”, and f : A — B for “f is a homomor-
phism of A into B”. The expression [[{A; : t € T} denotes the algebra which is
the Cartesian product of a system (A; : t € T'). To denote that A is isomorphic to
B we write A = B. A subuniverse of A is a subset closed under all the operations
of A. We will sometimes confuse subalgebras with nonvoid subuniverses, when no
ambiguity is likely to result.

For non-indexed algebras A = (A, F) and B = (B, G), the nomenclature and no-
tation of homomorphism and isomorphism will be used with the following meanings.
Let f : A —» B. We call f a homomorphism (or isomorphism, respectively) iff the
basic operations can be indexed, F = {f; : ¢ € I} and G = {g; : 1 € I}, in such a
way that (A, fi(i € I)) and (B, g;(i € I)) are similar and f is a homomorphism (an
isomorphism) between these indexed algebras.

When X is a subset of an algebra A (i.e., a subset of the universe of A), then the
smallest set containing X and closed under the basic operations (i.e., the subuniverse
of A generated by X) is obtained by applying Clo A to X. It is the set

X = {f(zoy---+Tn-1): f € ClopA and {zg,...,Tn-1} CX.

and n is arbitrary} .

If B=][{A;:t € T} with A, = (A, fu(i € I)), and B = (B,gi(i € I)),
then the operation g; of B is the operation on B which “acts coordinate-wise” and
“acts like fi; in the t-th coordinate,” for all ¢. Of special interest is the case where
Ay = A = (A, fi(3 € I)) for all ¢t, i.e,, where B = AT is a Cartesian power of
the algebra A. The universe of AT is of course the set AT of all functions from
T into the universe of A. Suppose that the ¢ th operation of A is n-ary and that
ho,...,hn—1 € AT. Then the i th operation of AT, when applied to hq,...,hn—1,
gives the result

gi(hoy- .. hn_1) = h € AT

with h defined by
h(t) = fi(ho(t), .-, hn-1(t)) .

If, in the above, T = A™ then Clo,A is a subset of AT; and in fact it can easily
be shown that Clo, A is identical with the subuniverse of A4" generated by the n
projections. Similarly, Pol, A is identical with the subuniverse of A4" generated by
the projections and all the constant n-ary operations on A.

We adopt a convention used in logic and set theory, and identify each natural
number n with the set {0,...,n—1} of all smaller natural numbers. Then A™ denotes



8 DAVID HOBBY AND RALPH McKENZIE

a set of functions (n-tuples of elements of A), and A™ denotes the n th direct power
of the algebra A. We use the Greek letter w to denote the set of all natural numbers.

By an n-ary relation on a set A, we mean a subset of A™. For binary relations o
and p on A, the converse of o is the relation

o’ ={(y,z): (z,y) €0} .

and the relational product of o and p is

gop={(z,2): Jy((z,y) €0 and (y,z) €p)}.

The relation {(z,z) : z € A} is at once the identity function on A, denoted id4,
and the least equivalence relation on A (see below). When it plays the second role,
we denote it by 04. (The largest equivalence relation on A is 14 = A2.) A binary
relation o on A is called reflezive over A iff o D id4; symmetric iff o = o"; transitive
iff 0 D 0 00. The transitive closure of a binary relation o is the smallest transitive
relation including o; it is identical with the set U{o™ : n > 1}, where ¢! = & and,

k+1 =0’k o0.

inductively, o

By an n-ary admissible relation of an indexed algebra A we mean a subuniverse
of A™. Thus an n-ary relation p is admissible for A iff p C A™ and p is closed (or
admissible) under all the operations of A acting co-ordinatewise. (For “operation”
read either “basic operation” or “term operation”; it will not change the concept
defined.) Phrased in this way, the concept of admissible relation makes sense for
both kinds of algebra, indexed and non-indexed. Note that an admissible binary
relation of A is reflexive over A iff it is admissible for the polynomial operations, as
well as for the term operations, of A.

Two types of admissible relations play a large role in this book. A tolerance of A
is an admissible binary relation that is symmetric and reflexive over the universe of
A. A congruence of A is a transitive tolerance of A, i.e., an admissible equivalence
relation.

Notation for equivalence relations: IT4 denotes the set of all equivalence rela-
tions (reflexive, symmetric, transitive binary relations) on A. If ¢ € I, and z,y € A,
then £ = y (mod o) means that (z,y) € 0. We put z/o = {z : (z,z) € o}. Given
an equivalence relation o, the set A/o = {z/0 : £ € A} is a partition of A; that is,
A=U{z/o:z € A} and for all z and y we have /o Ny/o =0 or z/o0 = y/o. The
elements of A/c are called equivalence classes (sometimes, blocks) of o.

Quotient algebras: If an n-ary operation f on A preserves an equivalence relation
o €1l,, ie., if o is a congruence of the algebra (A, f), then an operation f, is defined
on A, by the formula

fo(zo/oy...,zn-1/0) = f(z0y...,Tn-1)/0 .
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Thus if A = (A, f; (¢ € I)) (or A = (A, F)) is an algebra and o is a congruence of A,
then we have an algebra A /o = (A/o, fis (i € I)) (or AJo = (A/o,{f,: f € F})).
The mapping 7, that takes z to z/o is a homomorphism of A onto A/o in either
case. A/o is called the quotient of A by the congruence . Whenever we have a
homomorphism 7 : A — B, then kerm = {(z,y) € A% : 7z = 7y} is a congruence of
A. This congruence is called the kernel of 7, and we have B = A/kerw if 7 is onto
B. The congruences of A are the same as the kernels of the homomorphisms from
A.

Two algebras, A = (4,...) and B = (B,...), are called polynomially equivalent iff
they have the same universe and precisely the same polynomial operations, i.e., A = B
and Pol A = Pol B. It is easy to show that the algebras A, (4,Clo A), (4,Pol A),
and (A, Pol;A), have the property that any 6 € II4 is a congruence of one of these
algebras iff it is a congruence of all of them. (This is true for every A.) Each of the
first three of these algebras is polynomially equivalent to A.

0.2 LATTICES. A po-set (partially ordered set) is a nonvoid set A together with
a binary relation p on A satisfying pop C p, pNp"” = id4. The binary relation (partial
ordering) of a po-set is usually denoted as <. We use the notationz < y (z < y
and z # y), and z < y (y covers z, which means that £ < y and for no z does
z < z < y hold). Finite po-sets can be pictured in Hasse diagrams, with the elements
depicted as points on a plane, larger elements corresponding to higher points, and
the covering relation represented by ascending straight line segments. Here are some
Hasse diagrams.

GOy

Su (3)

Figure 0

The rule for decoding Hasse diagrams is that z < y iff one can get from point z
to point y by following ascending line segments between points. Turns of direction
are allowed only at the points. Thus in the last diagram of the figure, u ¢ v. The
elements u and v in the diagram are incomparable, that is, neither u < v nor v < u
holds. In the second diagram of Figure 0, a < b < c and thus a < c.
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A lattice is an algebra (A,V,A) with two binary operations such that for some
partial ordering < of A, the formulas (zVy < 2) « (r < z and y < 2) and
(z<zAy) « (2 <z and z < y) are valid for all elements z, y, and 2. Each of the
operations of a lattice, V (called join) and A (called meet), determines < uniquely,
and thus each operation determines the other. A po-set (4, <) is correlated with a
lattice in this fashion if and only if every pair of elements of A have a least upper
bound and a greatest lower bound in A (with respect to <).

The final three diagrams in Figure 0 are Hasse diagrams of lattices, the first two
are not. Su(3) is our name for the lattice of subsets of a three-element set.

Lattices are algebras, and so we can speak of their subalgebras, homomorphisms
and congruences. The modular law is the equation zA ((zAy)Vz) = (zAy)V(zA2).
A lattice which satisfies this as an identity, i.e., for all choices of elements z, y, and
2, is called modular. A lattice L is modular iff in L, y < z implies z A (y V 2) =
y V (z A 2). The lattice N5 is nonmodular (Figure 0), and every lattice having a
sublattice isomorphic to Ny is nonmodular. Conversely, if L is nonmodular then it
has a sublattice isomorphic to N5. For suppose y <z and zA(yVz)#yV(zAz).
It is then easily verified that this is a sublattice of L isomorphic to Ns:

yvz

xA(yvz)

yv(xaz)

XAZ

The distributive law for lattices is the equation z A (y V2) = (z Ay) V (z A 2).
Lattices satisfying this as an identity are called distributive. (Exercise: A modular
lattice is distributive iff it has no sublattice isomorphic to the lattice M3 in Figure
0.)

Set inclusion is a lattice ordering of the set I14 of all equivalence relations on a set
A. In the lattice IT4 = (I14,V, A), called the full partition lattice over A, the join of
two equivalence relations is the transitive closure of their set union, and the meet of
two equivalence relations is simply their intersection.

Congruence lattices: For any algebra A, Con A denotes the set of all congruence
relations of A. It is closed under the join and meet in IT4, and so we have a lattice
Con A = (Con A4, V, A), called the congruence lattice of A. This lattice is complete,
in fact, it is a complete sublattice of I1 4. That is to say, for any set X of congruences
on A, the join or least upper bound of X, and the meet or greatest lower bound of
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X, exist in Con A, and these joins and meets are the same as in II4. The join and
meet of X are written as \/ X and A X.

We write ©(T) for the congruence generated by a set T C A% If T = {(a, b)}, we
write instead ©(a,b). ©(T) is the transitive closure of the relation

ida U {(f(a), f(b)) : f € Poly A and (a,b) € T or (b,a) € T}.

The finitely generated congruences of A are those of the form ©(T') where T is a finite
subset of A2. By a compact element of a complete lattice L is meant an element c for
which ¢ </ X always implies the existence of a finite set X' C X withe <V X'. It
is easy to see that the compact elements of Con A are precisely the finitely generated
congruences.

A lattice L is called algebraic if and only if L is complete and every element of
L is the join of a set of compact elements of L. The nomenclature is justified by
a classical theorem of G. Grétzer and E.T. Schmidt: A lattice L is algebraic iff for
some algebra A, L = Con A. Every finite lattice is algebraic. The Gratzer-Schmidt
proof produces in nearly every case an infinite algebra; and it is not known if every
finite lattice is isomorphic to Con A for some finite algebra A.

Simple and subdirectly irreducible algebras: An algebra A is called simple iff
Con A is a two-element lattice. This holds iff A has at least two elements and every
homomorphism f : A — B is one-to-one or constant. (Exercise: The lattice M3 of
Figure 0 is a simple algebra.) An algebra A is called subdirectly irreducible iff Con A
has an element 3 # 04 such that every congruence § satisfies § > 3 < § # 04. Thus
Ais subdifectly irreducible iff it has elements a # b such that every homomorphism
f : A — B is either one-to-one or has f(a) = f(b). The least non-zero congruence 8
of a subdirectly irreducible algebra A is called the monolith of A.

We say that A is a subdirect product of a system of algebras (B; : i € I), symbol-

ically A 2 [I{B; : i € I}, if A is a subalgebra of the product and the coordinate
homomorphism p; : A — B; is onto B; for each and every 3. It is not hard to see
that an algebra A is subdirectly irreducible iff for every one-to-one homomorphism
¢: A - [I{B;:i€ I} of A into a product, there exists ¢ for which p;¢ : A — B is
injective—in other words, iff A is not isomorphic in a non-trivial way to a subdirect
product.

For any two elements a < b in a lattice L, we have the interval

Ia,b)={z € L:a<z<b},

which is a sublattice of L. If ¢ : A — B is onto B, and 6 = ker ¢, then we have an
isomorphism ¢~! of Con B with the interval sublattice I[f,14] in Con A, defined
by ¢~} (a) = {(z,y) € A% : (p(z),p(y)) € a}. Thus, in fact, for any congruence § of
A, Con(A/6) = I[6,14]. This is a generalization of one of the isomorphism theorems
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of group theory. Using this fact, one may prove G. Birkhoff’s subdirect representation
theorem, which states that for any algebra A, there is a set {6, : i € I} C ConA
(with I empty if A has only one element) such that A/6; is subdirectly irreducible
for each 4, and z +— (z/6; : ¢ € I} is an isomorphism of A with a subdirect product
of (A/8;: i€ I). (Let I = A% —id4 and for each i = (a,b) € I, let 6; be a maximal
member of the set {§ € ConA : (a,b) ¢ 6}.)

0.3 VARIETIES. To come to terms with the wild diversity of form and character
exhibited by algebras, it is desirable to group them into classes according to some
scheme. One way to do this has proved so fruitful that it has no serious competitor.
That is to group algebras into classes defined by equations. The basic classes in this
scheme are called varieties. It is probably no accident that the first really broad
classes of algebras to be studied systematically were varieties such as the class of
groups, the class of rings, and the class of Lie algebras.

To give a completely adequate and precise introduction to the elementary theory
of varieties would require more space than we are willing to commit here. We shall
discuss varieties briefly and depend on the reader to supplement our remarks by a
reading of Chaper II, §9-§11 in [4], if this subject has not been met before.

By a language we shall mean an ordered triple L = (I, F,o) consisting of a set
I, a one-to-one function F = (f; : ¢ € I) (whose values, f;, will be called operation
symbols), and a function o = (g; : i € I) whose values are non-negative integers. A
model of L, or L-algebra, is any algebra A = (A, fA(i € I)) in which fA is a g;-ary
operation on A for each i. For any nonvoid set X, there is an L-algebra Fp(X),
generated by X, having the property that every mapping ¢ of X into any L-algebra
A has a unique extension ¢ which is a homomorphism of Fr(X) into A. Fp(X) is
called the free L-algebra, freely generated by X. It is determined up to isomorphism
by X; in fact, if F(X) and F(X) both satisfy the conditions laid down above, then
these algebras are isomorphic by an isomorphism which leaves fixed each element of
X.

A term in the language L, or L-term, is simply a member of F(X) for some finite
set X. Terms belonging to Fr(z,,...,zx) (where z,,...,zx are assumed distinct)
will be written as ¢(zy,...,zx). Let t = t(z1,...,zk) be such a term. Given elements
ai,...,a in an L-algebra A, we define t*(ai,...,ax) to be the element () where
¢ is the homomorphism of Fr(z1,...,zk) into A with ¢(z1) = ai,...,p(zk) = ak.
This defines a k-ary operation t* on the universe of A , corresponding to the term
t(z1,...,xk). (A fixed ordered list of the free generators zi,..., ) is required, in
order to determine t* precisely.) An operation in the algebra A that can be defined
in this way, from some L-term, is called a term operation of A. It is not hard to see
that the set of all term operations of A is identical with the clone Clo A which we
defined earlier.
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A formal equation in the language L, or L-equation, is an ordered pair of terms,
both of which are members of the same free algebra. Formal equations are written
in the form s(z1,...,zx) = t(z1,...,Zk). Such an equation is said to be an identity
of an L-algebra A iff s = tA. (Equivalent expressions: “A obeys s ~ " (Z1,...,Tk
are understood), “A satisfies s ~ t identically”, “s ~ t holds in A”, “A E s~ 1".)
When speaking of equations, the free generators zi, ...,z are called variables.

If ¥ is any set of L-equations (in various finite sets of variables), the class of all
algebras in which every member of ¥ is an identity will be denoted by Mod(Z) (the
class of models of ¥). Classes of the form Mod(X) are called varieties. Every variety
comes with a language attached; its members are similar algebras—all of them models
for that language.

It is quite clear that the class of all groups, construed as models of a language with
one binary operation symbol, -, and one unary operation symbol, ~?, is a variety. The
class of all lattices is a variety. We choose a language L with two binary operation
symbols, V and A, and write some equations using terms in F(z,y, 2):

rVz~z, rVy=yVzc

(xVy)Vz=zV(yV2)
[the equations obtained by replacing V by A in the above]
zV(zAy) =z, zA(zVy)=z.

It is not hard to see that these equations define the class of lattices; i.e., an algebra
(A, V, A) is a lattice if and only if it obeys the above equations. For any ring R with
unit, the class of left unitary R-modules can be construed as a variety in a rather
obvious fashion. The language should have a binary and a unary operation symbol,
+ and —, and one unary symbol fy for scalar multiplication, for each A € R.

For any class K of similar algebras (models of one language), HX, SX, and PK
denote the class of all algebras that are, respectively, homomorphic images of algebras
in K, isomorphic to a subalgebra of an algebra in K, or isomorphic to a product of
algebras in K. According to the HSP-theorem of G. Birkhoff, a class K of similar
algebras is a variety iff X = HSPK; and the smallest variety containing a class K of
similar algebras is V(K) = HSPK.

Free algebras in varieties: Let L be a language and let K be a nontrivial class of
L-algebras (one which contains an algebra with at least two elements). For any non-
void set X there exists an algebra, Fx (X), generated by X, such that Fx(X) € SPK
and every mapping of X into an algebra of K (or of SPKX) extends to a homomor-
phism of Fc(X) into that algebra. Where ¢ is the homomorphism of Fr(X) onto
Fx(X) extending the identity map on X, the kernel of ¢ is

O =(){kerf| f: FL(X) > A forsome A €K},
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and Fx(X) 2 F1(X)/0x. One proof of Birkhoff’s theorem proceeds by noting that if
A obeys all of the equations that hold in K, then for large X there is a homomorphism
fof Fr(X) onto A and ker f D 0x; thus A € H (Fx(X)) CHSPK.

Now let V be a nontrivial variety of L-algebras. For each nonvoid set X, Fy(X)
belongs to V; it is called the free algebra in V, freely generated by X. Elements of the
finitely generated free algebras in V are called V-terms. Every V-term t(z,...,5)
gives rise to a term operation ¢t in each algebra A of V. The kernel of the homomor-
phism Fr(zy,...,2,) — Fy(zy,...,2,) is equal to the set of equations in the vari-
ables r;,...,Z, that hold as identities in V. If C is an algebra such that V = V(C),
then the map #(xy,...,z,) — t€ is an isomorphism between Fy(z;,...,2,) and the
subalgebra of CC" whose universe is Clo,C.

We close this chapter by proving three simple but important theorems about vari-
eties. An algebra A is said to be locally finite iff every subalgebra of A generated by
finitely many elements is finite. We call a variety V locally finite iff every algebra in V
is locally finite, or equivalently, every finitely generated algebra in V is finite. We say
that V is finitely generated iff it has the form V(A,,...,A,) (=V(A; x -+ x Ay))
where n is some positive integer and each of A,,..., A, is a finite algebra. The free
algebra Fy(z1,...,zk) in V, freely generated by k distinct elements, will be denoted
simply by Fy(k).

THEOREM 0.1. Let V be any variety.
(1) V is locally finite iff Fy(k) is finite for all 1 <k < w.
(2) If V is finitely generated than it is locally finite. In fact, if V = V(A) for a
finite algebra A then, for each k < w, Fy(k) € S (A™) for some n < w.

PROOF. To prove (1) we simply note that Fy (k) is finitely generated (if k is finite)
and every finitely generated algebra in V is in H (Fy(k)) for some k < w.

To prove (2), let V = V(A) where |A| = m. Given any k, 1 < k < w, we recall
that t(zy,...,2k) — tA is an isomorphism of F (k) onto the subalgebra of A4* with
universe ClogA. Thus Fy (k) € S (A™), where n = mF. 0O

For any class K, Py, K denotes the class of algebras isomorphic to a product
Aj x -+ x A, for some finite n, where {A;,...,A,} C K.

THEOREM 0.2. If V = V(A,,...,Ap) and A,,...,A,, are finite, then every
finite algebra in V belongs to the class HSPgin(Ay,...,Ap).

PROOF. Let A = A; x --- X A,,. Let B be any finite algebra in V = V(A), say
|B| = k. By Theorem 0.1 (2), Fy(k) € SPfin(A) C SPfin(Ay,...,An). Since B €
H (Fy(k)), the proof is finished. O
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The third statement in the next theorem was proved by A. I. Mal’cev around 1954.
Two equivalence relations, o and 7, on a set A are said to be permutingiff coT = 100.

THEOREM 0.3.

(1) If o and 7 are permuting equivalence relations on a set A thenocoT =0V T
(the join in I14).

(2) If A is an algebra with permuting congruences (every two congruences per-
mute) then Con A is a modular lattice.

(3) A variety V has permuting congruences (every algebra in V has permuting
congruences) iff there is a ternary term t(z,y,z) in the language of V such
that the equations t(z,z,y) = y, t(z,y,y) =~ = are identities in V (Mal’cev’s
equations).

PROOF. To prove (1) we simply note that
aVT=U{(aU’r)":1§n<w} =U{oom)":1<n<w}

Thus if 0 o 7 = 7 0 0, we have

(coT))=0o0oT000T=0000T0T=00T,
and so (0 oT)" =0 o7 for all n.

To prove (2), suppose that the congruences of A permute, and let a, 3,6 € Con A
with 8 < a. It must be shown that a A (BV ) = BV (a A §), or equivalently, that
aA(BVE) < BV (aAb). Let (a,c) € aA(BV6). Since (a,c) € BV §, by (1) there is
b € A with (a,b) € 8, (b,c) €.

Since 8 < a = a o a, we have (b,c) € a. Thus (b,c) € a A §; consequently (a,c) €
Bo(aNAé)=pV (aAé) as desired.

The proof of (3) is a slightly more substantial enterprise. Suppose first that there is
a term t(z,y, z) for which Mal’cev’s equations hold in V. Let A€V, a, 8 € ConA,
(a,b) € a, (b,c) € . Now o and 3 are congruences and thus are preserved by all term
operations of A. Therefore t*(a,b,b) = t*(a, b, c) (mod B) and t2(a, b, c) = t2(b, b, c)
(mod a). Now t*(a,b,b) = a and tA (b, b, c) = c since A satisfies Mal’cev’s equations.
So we have the following picture, showing that a0 8 C Boa. ‘
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tA(a.b.c)

We can take converses, and conclude that Boa = 8%0a" = (aofB)Y C (Boa)" = aof;
thus ao 8 =foa.

Now suppose that V does have permuting congruences. On F = Fy(z,y, z) define
the congruences a = O(z,y), 8 = O(y,2). We have (z,y) € a, (y,z) € 8. Therefore
for some s = s¥(z,y,2) in F we have (z,s) € 8 and (s,z) € a. Let m, be the
endomorphism of F satisfying ma(z) = ma(y) = 2, ma(2) = y; and let 75 be the
endomorphism satisfying mg(z) = x, ma(y) = ms(z) = y. Since (z,y) € kerm,,
we have a C kerng,, similarly 3 C kermg. (Exercise: Show that kerm, = a and
kermg = f.) Therefore (z,s) € kermg, s = s¥(z,y, z), implying

z = mp(z) = mp(s) = s¥ (mpz, mpy, mpz) = s (z,y,9) .

Similarly, we have y = s¥(z,z,y). There is a term t(z,y,z) € Fi(z,y,z) with
@(t(z,y,2)) = s where ¢ : F(z,y,2) » Fy(z,y,2) with o(z) =z, o(y) =y, 9(z) =
z. Tt follows that tF(z,y,2) = s and then, arguing as above, tF(z,y,y) = z and
t¥(z,z,y) = y. Thus p(¢t(z,y,y)) = ¢(z), implying that ¢(z,y,y) = z is an identity
of V. Similarly, t(z,z,y) = y is an identity of V. This ends the proof. O



1. TIGHT LATTICES

In this chapter we give the slightly technical definition of the class of “tight” lattices
(Definition 1.6). Each lattice of this class, when isomorphic to an interval in the
congruence lattice of a finite algebra, produces an algebraic phenomenon we call
“tameness”.

DEFINITION 1.1. Let L = (L,V,A) be any lattice.

(1) By a meet endomorphism of L we mean a function p : L — L satisfying
u(z Ay) = p(z) A p(y) for all elements z and y in L.

(2) By a join endomorphism of L we mean a meet endomorphism of the dual
lattice L? = (L, A, V).

(3) A function p: L — L is increasing iff u(z) > z for all z in L; and p is strictly
increasing iff u(z) > « for all  in L except the largest element (if L has a
largest element). The concepts of decreasing and of strictly decreasing
function from L to L are defined in an analogous fashion.

(4) By a polarity of L we mean a pair (o, u) such that o is a decreasing join
endomorphism of L, and y is an increasing meet endomorphism of L, and
op(z) < z < po(z) for all z in L.

(5) By a tolerance of L, we mean a reflexive and symmetric subalgebra of L?, i.e.,
a binary relation p C L? such that for all z,y,u,v € L we have : (i) (z,z) € p;
(ii) (z,y) € p iff (y,z) € p; (iii) if (z,y), (u,v) € p then (xVu,yVv) € pand
(z Au,y Av) € p.

There is an extensive literature on tolerances of lattices. Our use of the concept
will be restricted to finite lattices, for which the basic facts we need can be easily
proved. In finite lattices, there are one-one correspondences: tolerances « polarities
+ increasing meet endomorphisms « decreasing join endomorphisms.

LEMMA 1.2. Let L be a finite lattice.
(1) A pair (f,g) of mappings from L into L is a polarity iff f is decreasing or g is
increasing, and for all z,y € L we have f(z) <y iff z < g(y).
(2) The relation {{o,p) : (o, p) is a polarity } is a one-to-one mapping of the set
of all decreasing join endomorphism of L onto the set of all increasing meet
endomorphisms of L.

17
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(3) If p is any tolerance of L, then the formulas o(z) = A{y : (z,y) € p} and
w(z) = V{y : (z,y) € p} define a polarity (o, ) such that p = {(z,y) :
a(zVy) <z Ay}

(4) If (o, ) is any polarity of L, then there is a unique tolerance p such that o, p,
and p are related as in (3).

PROOF. We begin with (1). Suppose that (f,g) is a polarity. Then f and g
are order preserving and fg(z) < z < gf(z) for all z. Thus if f(z) < y, then
gf(z) < g(y), ie.,z < gf(z) < g(y). That z < g(y) implies f(z) < y, is analogously
proved. Now suppose only that f is decreasing or g is increasing, and that f(z) <y
iff z < g(y) holds for all z and y. From f(z) < f(z), it follows that z < gf(z); and
fg(z) < z follows from g(z) < g(z). We have f(z) < z for all z iff z < g(z) for all z.
Thus, in fact, f is decreasing and g is increasing. Both functions are order preserving;
for example, if z < y then z < gf(y), implying f(z) < f(y). Finally, let us show
that f is a join endomorphism. (The proof that g is a meet endomorphism is entirely
analogous to the argument we now give.) We choose any z and y in L, and notice that
9(f(z)V f(y)) 2 gf(x)Vgf(y) (since g is order-preserving), and gf(z)Vgf(y) 2 zVy.
Thus g(f(z)V f(y)) > = Vy, implying that f(zVy) < f(z)V f(y). On the other hand,
f(zVy) > f(z)V f(y) since f is order-preserving. So we have f(zVy) = f(z)V f(y).

Statement (2) breaks down into two assertions: that polarity is a one-to-one cor-
respondence, and that every increasing meet endomorphism is one half of a polarity
(and dually, every decreasing join endomorphism is one half of a polarity). If (o, u)
is to be a polarity, then each of o and p determine the other; by (1), for example,
o(z) can be nothing but the least element y satisfying p(y) > . Now suppose that
u is any increasing meet endomorphism. Define o(z) = A{y : p(y) > z}. Since the
meet is a meet of finitely many elements, and p is a meet endomorphism, we have
z < po(z) for all z. So if o(z) < y then z < po(z) < u(y). If ¢ < p(y), then
o(z) < y by the definition. It now follows from (1) that (o, p) is a polarity. If we are
given any decreasing join endomorphism o, then we define u(z) = V{y : o(y) < z}
and, proceeding as above, prove that (o, u) is a polarity.

Let p be any tolerance of L, and define ¢ and p as in statement (3). Since
p is reflexive, o is decreasing and p is increasing. Obviously, for all z we have
(z,0(z)),{z, x(z)) € p; and o(z) is the least element y with (z,y) € p, while p(z) is
the largest such element. Now if o(z) < y, then from (z,0(z)) € p and (y,y) € p we
obtain (z Vy,0(z) Vy) = (z Vy,y) € p. Thus (y,zVy) € p, and p(y) 2zVy >z
Analogously, u(y) > « implies o(z) < y. By (1), it follows that (o, u) is a polarity.

Let us show that (0, 1) determines p in the manner asserted. Let =z and y be any
elements such that o(z Vy) < z Ay. We have ((zVy)Vyo(zVy)Vy) € p, ie.,
(z Vy,y) € p; and similarly, (z V y,z) € p, implying that (z,z V y) € p. Thus
(z,y) =((xVy)Az,y A(z Vy)) is in p. Conversely, if (z,y) € p, then (z V y,z) and
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(z Vy,y) are in p, and taking meets, we find that (z V y,z A y) € p. Thus, it follows
from the definition that o(z V y) < A y. This concludes the proof of (3).
Statement (4) has a straightforward proof. We leave it to the reader. 0

Any congruence relation of a lattice is a tolerance. If p is a tolerance of L, then the
transitive closure of p is a congruence relation of L. We call a tolerance p connected
iff its transitive closure is all of LZ.

LEMMA 1.3. Let p be a tolerance of a finite lattice L, and let (o, ) be the asso-
ciated polarity. The following are equivalent.

(1) p is connected.

(2) There exists a sequence 0 = g < 3 < :*+ < To = 1 of elements of L (for
some n > 0) with (z;,z;+1) € p for alli < n.

(3) o is strictly decreasing.

(4) p is strictly increasing.

PROOF. Suppose that p is connected. This implies that there exists a sequence
0 =yo,...,¥n = 1 with (yi,yi41) € p for i < n. Define z; = \/{y; : j < i} when
i < n. Then for i < n, we have (z;,Zi+1) = (zi V ¥i, Zi V Yi+1), and so (z;, Ti41) € p;
and obviously ; < z;41, and ¢ = 0, £, =1. By removing any repeated terms from
this sequence, we obtain a strictly increasing sequence. Thus (1) implies (2).

To prove that (2) implies (3), let the sequence 0 = 2o < --+ < z, = 1 be given as
in (2), and let £ > 0 in L. There is an ¢ < n such that z;4; > z and z; 2 z. For this
i, we have {r,z A z;) = (z A z;41,Z A z;) € p, and consequently, o(z) < zAzx; < z.
Thus o is strictly decreasing.

Now suppose that o is strictly decreasing. Let z be any element of L such that
z < 1. Choose 2z to be a minimal member of {y € L : y £ z}. We have z # 0,
consequently o(z) < z, implying o(z) < z. This last inclusion is equivalent to
z < p(z). Since z £ z, it follows that p(z) > x. Thus u is strictly increasing.

The proof that (4) implies (1) is a simple matter of considering the sequence 0 <

2(0) < pp(0) <---. a

For two elements = and y of a lattice (or of a partially ordered set) recall that y
covers z ( in symbols z < y) iff £ < y and whenever z < z < y, either 2 = z or

=y. If L has 0 (a smallest element) then an atom of L is simply any element u
such that 0 < u. A dual atom of L is an element u such that u < 1.

LEMMA 1.4. Let L be a finite lattice.

(1) The subalgebra of L? generated by {(z,z): z € L}U {(z,y) :x <y ory < z}
is a connected tolerance, and it is the smallest connected tolerance of L.

(2) A meet endomorphism p (or join endomorphism o) of L is strictly increasing
(or strictly decreasing) iff p(z) >y (or o(y) < =) whenever z <y in L.
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PROOF. The relation defined in (1) is certainly a connected tolerance. Let p be
any connected tolerance of L, and let 0 < z; < -+ < z, = 1 be a sequence with
(zi,zi+1) € p for all i. Let a < b be any covering in L. There exists an i such that
bAz; <aand bAziy; £ a. For this 1, we have (a,b) = (aV (bAx;), aV (bAzit1)),
which implies that (a, b) € p. Thus p contains the tolerance generated by the covering
relation. This proves (1); and (2) follows easily from (1), by Lemmas 1.2 and 1.3. O

DEFINITION 1.5. Let L be any lattice with 0 and 1. A homomorphism f : L —
L' is called 0, 1-separating iff f~!{f(0)} = {0} (f separates 0) and f~1{f(1)} = {1}
(f separates 1). To denote that f is a homomorphism with the property just defined,
we write f : L OL7SP 1/ We say that L is 0,1-simple iff |[L| > 1 and every non-
constant homomorphism f : L — L’ (L’ any lattice) is 0, 1-separating.

DEFINITION 1.6. A lattice L will be called tight iff L is finite, |L| > 1, and if
p is any tolerance of L such that p contains (0, a) for some a > 0 in L, or p contains
(b,1) for some b < 1 in L, then p = L2.

The whole purpose of this chapter is to define tight lattices and to collect the facts
about them that will be needed later on.

LEMMA 1.7. A finite lattice L is tight iff L is 0, 1-simple and every strictly in-
creasing meet endomorphism of L is constant (i.e., L? is the only connected tolerance
of L).

PROOF. Assume that L is tight. It follows from Lemma 1.4 and Definition 1.6 that
L has only the trivial connected tolerance. From Lemmas 1.2 and 1.3, every strictly
increasing meet endomorphism y of L satisfies u(0) = 1 (i.e., p is constant). Let f :
L — L' be a non-constant homomorphism, and let 6 = ker f = {(z,y) : f(z) = f(y)}.
Thus 6 is a tolerance of L, in fact a congruence. Since 6 # L2, it follows from the
definition of tight lattice, that (0,z) ¢ 6 for any £ > 0 in L. This means that f is
0O-separating. Similarly, we can prove that it is 1-separating. So we conclude that L
is 0, 1-simple.

Now let us assume that |[L| > 1 and L is not tight. Let p be a tolerance of L such
that p # L2, and say, (b,1) € p for some b < 1. If p is connected, then we have a
non-trivial connected tolerance of L. If p is not connected, and @ is the transitive
closure of p, then 6 is a congruence, 6 # L2, and (b,1) € §. The homomorphism
L — L/6 is not constant and not 1-separating. Thus L fails to be 0, 1-simple. m}

LEMMA 1.8. For any lattice L with 0 and 1, such that |L| > 1, the following are
equivalent.

(1) L is 0, 1-simple.

(2) L has a largest congruence 8 # L?, and this congruence satisfies 1/6 = {1},

0/6 = {0}.
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PROOF. Suppose that L is 0,1-simple. Define § = \/{¢y € ConL : ¢ # L?}.
We claim that @ # L?, in fact 1/ = {1} and 0/6 = {0}. To see it, suppose, for
example, that (z,1) € §. Now 6, the complete join in the lattice ConL of all proper
congruences of L, is just the transitive closure of the relation p = U{¢ : v # L?}.
Therefore there exists a sequence £ = zo,Z1,...,Z, = 1 such that for all ¢ < n,
(zi,Zi+1) € ¢; for some congruence ¥; of L with ; # L2. Since L is 0, 1-simple, the
map L —» L/v; is 1-separating, equivalently, 1/¢; = {1}. Therefore z,_; = 1, and
then z,-2 = 1, and so on, leading to £ = 1. We can conclude that 1/ = {1}. Thus
6 # L?, and it follows that @ is the largest congruence of L which is # L?. That
0/6 = {0} is proved as above. Thus (1) implies (2).

Suppose, now, that (2) holds. Let f : L — L’ be any non-constant homomorphism.
Then ker f C 0, implying that f is 0, 1-separating. Thus (1) holds. ]

Exercises 1.9

(1) Show that, among the lattices pictured below, M, (n > 3 ) and C; are tight,
while the others are not.

C. M; M, M3 3.3

Figure 1

(2) Show that if f: L OLEP Y i surjective and if L is 0, 1-simple, then so is L'.
Use the lattices M3 ; and M3 3 to show that L may fail to be 0, 1-simple even
if L’ is, in this situation.

LEMMA 1.10.

(1) Let f: L OLZ%P I/ be surjective, where L and L' are finite. Then L is tight
iff L' is tight.

(2) A finite lattice L is tight iff there exists a simple tight lattice L' and a sur-
jective 0,1-separating homomorphism of L onto L’. When they exist, L' is
determined up to isomorphism; and the kernel of f is the unique dual atom of
ConL.

PROOF. Suppose that f : L A surjective and L is finite. Assume that

L’ is tight, and let p be a tolerance of L such that, say, (0,a) € p for some element
a > 0 of L. We define p' = f(p) = {(f(z), f(¥)) : (z,y) € p}, and verify that p’ is
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a tolerance of L’ and (0',’) € p', where 0/ < b’ = f(a) and 0’ is the zero element
of L. Therefore p’ = (L')?; and from this we conclude that for some (u,v) € p,
(f(u), f(v)) = (0',1'). Since f is 0, 1-separating, we must have (u,v) = (0,1). The
tolerance p, containing (0,1), can be nothing other than L2. Thus L is tight if L’
is tight. Now assume that L is tight. Let p' be a tolerance of L' containing, say,
(0',¢’) for some ¢’ > 0'. We define p = f~1(p’) = {{z,y) € L? : (f(z), f(y)) € ¢'},
and verify that p is a tolerance and (0,c) € p for some ¢ > 0. Therefore p = L2, and
consequently p’ = (L/)2. Thus L’ is tight. This ends the proof of (1).

To prove (2), suppose first that L is tight. Let 6 be the largest proper congruence
of L (which exists by Lemma 1.8). The natural homomorphism f : L - L/6 is
0, 1-separating (since L is 0, 1-simple), and L/6 is a simple lattice, which is tight by
statement (1). Now assume, conversely that g : L - L’ is 0, 1-separating and L’ is
simple and tight. That L is tight follows from (1). The kernel of g can be nothing
other than the unique dual atom of ConL. (Since L’ is simple, ker g is a dual atom.)
Thus L’ 2 L/ker g is determined up to isomorphism by L. 0O

The class of tight lattices is quite diverse, as can be seen from these examples.

Example 1.11. A finite simple (or 0,1-simple) lattice, satisfying any one of the
following conditions, is tight. (i): L is complemented (i.e., for all £ € L there exists
z' € Lsuch that zVz' =1 and z Az’ =0). (ii): The atoms of L join to 1. (iii):
The dual atoms of L meet to 0. In fact, condition (i) implies (ii) and (iii); and each
of (ii) and (iii) implies that L cannot have a non-constant, strictly increasing, meet
endomorphism (by Lemma 1.4 (2)). A finite 0, 1-simple lattice satisfying one of these
conditions is tight (by Lemma 1.7).

Example 1.12. For each integer n > 2, the lattice I, of all equivalence relations
on an n-element set is tight. These lattices are simple and complemented.

Example 1.13. For each prime p and integers k,n > 1, the lattice S(p*,n) of all
subspaces of an n-dimensional vector space over a finite field of p* elements, is tight.
This lattice is simple and complemented. It is isomorphic to the lattice of congruence
relations of the vector space.

Any finite lattice that admits a 0, 1-separating homomorphism onto a lattice I,
or S(p*, n) is tight (by Lemma 1.10). According to Exercise 1.14 (1), such lattices are
0, 1-simple and complemented. Some tight lattices are pictured on the next page.



TIGHT LATTICES 23
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M,=8(2,1) My3=M;=8(2,2) Mg=8(5,2) Q
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n, Sub A,

Figure 2

Sub A, is the lattice of subgroups of the twelve-element alternating group. The
lattice Q admits an obvious 0, 1-separating homomorphism onto Mj.

The first- substantial result proved as an application of tame congruence theory
was that Sub A, (and many other tight lattices, in particular M, if n > 3) cannot
be isomorphic to the congruence lattice of any finite algebra with just one basic
operation, such as a semigroup. (This result will not be proved in this book. The
proof can be found in [22].)

We shall prove in Chapter 5 (Theorem 5.7 (4)) that, except in quite unusual situa-
tions, if an interval sublattice L of the congruence lattice of a finite algebra is tight,
then L admits a 0,1-separating homomorphism onto the lattice of subspaces of a
finite vector space. In the next exercises, all lattices mentioned are assumed to be
finite.

Exercises 1.14
(1) Let f : L O1ZPP 1/ be surjective. For each of conditions (i), (ii), (iii) of
Example 1.11, show that L satisfies the condition iff L’ satisfies it.

(2) The full partition lattice IT, of Example 1.12 is simple and complemented,
ifn > 2.
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(3) ConV is simple and complemented whenever V is a finite vector space of
more than one element. (It will be easier to work with the isomorphic lattices
S(p*,n) of Example 1.13.)

(4) Let L be modular. Show that the formula u(z) = \/{y : £ < y} defines a meet
endomorphism of L. [By Lemma 1.4, the associated tolerance is the smallest
connected tolerance of L. This exercise is harder than most. The key is to
prove that z < u(y) if y > A{z: 2 <z} =0(z).]

(5) If L is modular then L is tight iff L is simple and complemented.

(6) L is tight iff the dual lattice, L, is tight.

The next five exercises were contributed by Brian Davey and Emil Kiss. A sublat-
tice of L? containing the diagonal A = {(z,z) : = € L} will be called a diagonal sub-
lattice. L is called order polynomially complete iff every monotone mapping L™ — L
(for any n) is a polynomial operation of L. The diagonal sublattice generated by a
pair (a,b) € L? is denoted L(a, b).

(7) L is tight iff for every a # 0 and b # 1, (0,1) € L(0,a) N L(b, 1).
(8) L is tight iff every diagonal sublattice of L? is of the form K, < oK, > o K,
or L?, where K is a 0, 1-separating diagonal sublattice (i.e., (a,0) or (0,a) in
K implies a = 0, and (b, 1) or (1,b) in K implies b = 1).
(9) If L is simple then A is the only 0, 1-separating diagonal sublattice of L2.
(10) L is order polynomially complete iff A, <, >, L? are the only diagonal sub-
lattices of L2. .
(11) L is order polynomially complete iff L is tight and simple.



2. TAME QUOTIENTS

In this chapter we define the “tame quotients” of a finite algebra and their minimal
sets (Definitions 2.5 and 2.6) and prove two principal theorems about them (Theorems
2.8 and 2.11).

We recall from Chapter 0 that the congruence lattice of an algebra A, or Con A, is
a complete, 0, 1-sublattice of the full partition lattice II4 of all equivalence relations
on the base set of A. That is to say, the join and meet of any subset of Con A, com-
puted in IT4, belong to Con A, and Con A contains the least and largest elements,
04 and 14, of IT4. The members of Con A are precisely the equivalence relations
on A that are also subalgebras of A x A. The congruences on A, or members of
Con A, can also be defined as the equivalence relations a on A such that f(a) C a
for every unary polynomial f of A. (By f(a) C a we mean that whenever (z,y) € a,
then (f(z), f(y)) € @.) Thus Con A = Con (A, Pol; A); and in congruence theory it
is often convenient to work directly with unary algebras (whose basic operations are
1l-ary). _

The basic (or given) operations of an algebra A determine the set Pol; A, and
this monoid determines the congruence lattice of A. But often when examining an
algebra, its set of unary polynomials and its congruence lattice are unknown. In
this chapter, as we begin to present the basics of tame congruence theory, we will
consider the congruence lattice and the unary polynomials of any algebra to be known
entities. The principal thrust of our theory will be to reveal subtle ways in which
the congruence lattice of a finite algebra A, either considered as an abstract lattice
or as a specific set of equivalence relations, influences all of the operations (not just
the unary operations) which preserve these equivalence relations. In the beginning,
however, we shall be looking only at the interaction between Con A and Pol; A.

DEFINITION 2.1. The set of all e € Pol; A such that e = e (= eoe) will be
denoted by E(A). (This is the set of idempotents, or projections, in Pol; A.)

Our symbol for restriction is |. The several ways in which this symbol will be
used are defined below.

25
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DEFINITION 2.2. Suppose that A4 is a nonvoid set, § # U C A, 0 € 14, fisa
function with domain A, h is an n-ary operation on A, and UpU---UU,-; C A. We
define

def

(1) 8lv = 6n (U xU);
@) flv ¥ {(z, f(2)) : z € UY;
(3) hloox-xtns &

4) hlu % hlyn.

{{zoy .-+ Tn-1,M(z0,...,Zpn-1)) : i € U; for 0 < i < n};

If A = (A,---) is any algebra with base set A, then we define:

(5) (Pol A)|y is the set of all h|y such that h € Pol, A for some n, and
h(U™) CU;

(6) Aly def (U, (Pol A)|y), called the algebra induced on U by A (or an in-

duced algebra of A).

We can now state and prove an easy but very useful lemma discovered by P.P. Pilfy
and P. Pudlék [27].

LEMMA 2.3. Suppose that A is an algebra, e € E(A), and U = e(A). The
mapping |y is a lattice homomorphism of Con A onto ConA|y.

ConA =% ConAly .

PROOF. The restriction map of IT4 to Iy trivially preserves meets. It is also
obvious that 8|y € Con A|y whenever § € Con A. To see that |y preserves joins of
pairs of elements of Con A, and that it maps Con A onto Con A|y, we define for each
a € ConAly :

& = {{z,y) € A% : (ef(z),ef(y)) € a for all f € Pol;A} .
Now if @ € Con A|y and (z,y) € & and g € Pol; A, then for every f € Pol; A,

(ef(g(2)),ef(9(v))) = (e(fg)(x), e(f9)(¥)) € &

thus (g(z),9(y)) € &. Since & is obviously an equivalence relation on A, it follows
that & € Con A.

The equation &|y = « is easily demonstrated to be true. First, if z,y € U and
(z,y) € &, then (z,y) = (ee(z), ee(y)) € a by definition of &. Thus &|y C a. Second,
if (z,y) € a and f € Pol;A, then (ef)|y is a polynomial of A|y, and this gives
(ef(z),ef(y)) € a. Consequently, o C &. We have now shown that |y maps Con A
onto ConA|y.
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Just as easily, we see that for § € ConA and @ € ConA|y we have 6y < a
iff § < &. Finally, we show that |y preserves joins. Let 61,02 € Con A and put
a = 6|y VOs|y and B = 6, V 6;. We have to show that Bly = a. Clearly Blv > a.
Conversely, since 6;|y < a we have 6; < & (¢ = 1,2). From this, it follows that 8 < &,

and thus S|y < a. The proof is finished. m]

A useful extension of the last lemma is the following one. In this lemma, I{04, 6]
denotes the interval sublattice of Con A consisting of all congruences a such that
a<é.

LEMMA 2.4. Let A be an algebra, e € E(A), U = e(A), § € ConA, and N C
U be such that N is a union of 8|y-equivalence classes. Then A|y = (Aly)|n
and restriction is a lattice homomorphism of I[04,0] into the interval I[0n,0|n] in
Con A|y. If N2 C 6, this homomorphism is onto Con A|y.

1[04, 6) =" I{on, 8]n] -

ProoOF. Every operation of (A]y)|n is clearly an operation of A|y. On the other
hand, let g be an operation of A|y. Then g = f|n for some polynomial operation f
of A under which N is closed. U is closed under ef, and (ef|v)|n = f|n. Thus g is
an operation of (A|y)|n. So the two non-indexed algebras are equal.

Now the mapping a — a|y is the composition of the lattice homomorphism o —
ajy (Lemma 2.3) mapping I[04,0] € Con A onto I[0y,0|y] € ConAly, with the
restriction map from I[0y, 8|y] into IIy. Thus we may as well assume that U = A
and e = id. With these assumptions, it is clear that |y maps Con A into Con A|y,
preserves meets, and preserves joins of congruences in the interval I{04, ].

Now assume that N2 C 6, i.e., that N is a f-equivalence class. Let a € Con A|y,
and put

a={(z,y) €0: {f(x), f(x}NN#0 implies (f(z),f(y))€a,
for all f € Pol;A}.

It is easily seen that & € Con A, & < 6, and &|n < a. To see that a < &|n, let
(z,y) € a, f € Pol1A, f(z) € N (or f(y) € N). Then f(N) C f(x)/0 = N (since f
preserves 8), so f|n € PoliA|y, and it follows that (f(z), f(y)) = (fIn(z), fIn(¥)) €
a. Thus we see that (z,y) € d. ]

Exercises 2.5

(1) Prove that the lattice homomorphisms of Lemmas 2.3 and 2.4 preserve all
infinite joins and meets.

(2) Prove that if e € E(A) and @ # N C U = ¢(A), then A|x = (Aly)|~.

(3) Prove that for any algebra A and § # B C A, Pol(A|g) = (Pol A)|p.
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In the remainder of this chapter and throughout Chapters 3 and 4, all algebras
considered will be assumed to be finite. The concept of a minimal set relative to a
pair of congruences is fundamental for our work.

DEFINITION 2.5. Let A be a finite algebra and let & < 3 be two congruences of
A. We define Up (e, B) to be the set of all sets of the form f(A) where f € Pol; A and
f(B) € a. We define Ma (a, B) to be the set of all minimal members of Ua (e, 8);
i.e.,, U € Ma(e,B) iff U € Ua(a,B) and there does not exist V € Ux(a,B) with
V CU, V # U. The members of M4 (a, 8) are called (o, 3)-minimal sets of A.

Observe that in the framework of the definition, M4 (a, 8) is non-empty and for
each (a, 8)-minimal set U, we have a|y # O|v.

By a quotient in a lattice L, we shall mean simply a pair (z,y) of elements of
L with £ < y. A prime quotient is a quotient (z,y) where z < y. The interval
lattice I[x,y] associated with a quotient (z,y) is the sublattice of L consisting of all
elements z such that z < z < y. By a quotient (of congruences) in an algebra
A we mean any quotient (@, 3) in Con A.

The concept of a tame quotient is technical, but quite easy to define. Recall the
notion of 0, 1-separating homomorphism, from Chapter 1 (Definition 1.5).

DEFINITION 2.6. Let A be a finite algebra and let (a,3) be a quotient of
congruences in A. We call (a,3) tame iff there exists V € Ma(a,8) and e €
E(A) such that e(A) = V and I[e, 8] dv, Ilalv,Blv] is a 0,1-separating lattice
homomorphism. ‘

In a short time we shall see that a quotient (@, ) in a finite algebra is tame if the
interval lattice I[a, 8] is tight. (Thus, for instance, (o, 3) is tame whenever a < 3.)
But first, we shall prove some facts which explain why the concept of tameness is
natural and important. To do this, we need the concept of (internal) polynomial
isomorphism.

DEFINITION 2.7. Let A be any algebra and let B and C be nonvoid subsets of
A. We say that B and C are polynomially isomorphic in A, and we write B é C
or simply B ~ C for this, iff there exists f,g € Pol; A with

f(B)=¢C, ¢(C)=8B,
9flp =idp, fglc =idc .
We write f: B ~ C iff f € Pol; A and there exists g € Pol; A such that the above
equations hold.

It is important to observe that when B 2 C, the induced algebras A|p and A|c
are isomorphic non-indexed algebras. If f : B ~ C then, where 7 = f|p, we have
m(B) = C and 7((Pol A)|g) = (Pol A)|c. [This last equation is understood to mean
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that for any operation h on B (say h is n-ary), h is an operation of A|p iff there exists a
(unique) n-ary operation A’ of A|c such that wh(zo,...,Tn-1) = b (7zo,...,TTn-1)
for all zg,...,z,—1 € B.] Moreover, m(8|g) = 0|c for every congruence 6 of A.

The relation ~ is, of course, an equivalence relation on the set of non-void subsets of
A. We shall now see that when (a, 8) is tame, the set M (o, 8) defined in Definition
2.5 is an equivalence class under =~.

THEOREM 2.8. Let (o, 8) be a tame quotient of a finite algebra A. The following
hold.

(1) For al U,V € Ma(a,8), U~V.

(2) For all U € Ma(a, B) there is e € E(A) with e(A) = U; moreover, the map
lu : I[e, B) - Ila|u, Blu] is 0, 1-separating.

(3) For all U € Ma(o,B) and f € Pol; A, if f(Blu) € a then f(U) € Ma(e, B)
and f:U =~ f(U).

(4) If (z,y) € B— a and U € Ma(a, 8) then for some f € Pol; A, f(A) =U and
(£(z), () € Blv — elu.

(5) For each U € Ma(a, ), B is the transitive closure of

aU{(g(z),9(y)) : (z,y) € Blv and g € Pol; A}.

(6) For all f € Pol; A, if f(8) € a then for some U € Ma(a, ), f:U =~ f(U).

PROOF. From the definition (i.e., 2.6) we can choose Vo € Ma (a, 3) and eg € E(A)
such that Vo = eo(A) and |y, is 0, 1-separating on the interval sublattice I[a, 8]. We
first establish the truth of (4) and (5) just for this (@, 8)-minimal set. '

To prove (4) for Vp, we consider the congruence

6=alv,NB={(z,y) €B: (eaf(2),e0f(y)) € a for all f € PoA} .

Now 0 € I[a, 8] and 8|y, = aly,. This implies that § = «, since |y, is 0O-separating on
Ia, B]. Thus for each pair (z,y) € 8 — a we have that (zr,y) € 8 — 6; and so, by the
definition of 6, there must exist g € Pol; A with (eog(z), e0g(y)) ¢ a. The function
f = eog satisfies f(A) C Vp and (f(z), f(y)) € Blv, — alv,. It follows that f(A) =V,
by the (a, 8)-minimality of V5. We have proved that (4) holds for Vp.

To prove (5) for V,, we notice that the transitive closure of the relation

aU {(g(z),9(y)) : (z,y) € Blv,, g € Pol;A}

is the congruence o V ©(f|v,) of A. This congruence belongs to the interval lattice
I[e, B), and obviously (aV ©(B|v,))|lv, = Blv,- Since |y, is 1-separating on I[a, ], it
follows that 8 = a V ©(8|y,), as stated by (5).
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Now let U be any (a, 8)-minimal set. We shall prove that U =~ V. This will prove
(1), and in the process we shall prove (2), (4), and (5). We choose a u € Pol; A with
w(A) = U and p(B) € a. By (5) for Vp, there must exist a,b € V and g € Pol; A
such that (a,b) € B and {(ug(a), ug(b)) ¢ a. (We use that u~!(a) is an equivalence
relation and that o V ©(8ly,) = B € p~!(a).) The function u; = pgeo satisfies
u1(A) CU and p1(B) € « (since (ui(a), p1(b)) ¢ @). Thus py(A) = U by the (a, B)-
minimality of U. Since p; = pjeo, we actually have that py (V) = u1(A4) = U. Next,
to get a polynomial function mapping U onto Vy, we apply (4) for Vp with (z,y) =
(11(a), u1(b)). This produces a v € Pol; A with v(A) =V, and (vui(a), vu, (b)) ¢ a.
Thus vu1(A) = Vo = v(A) by the (o, B)-minimality of V;. Since p1(A4) = U, we
actually have v(U) = v(A) = V, as well as p1(Vp) = p1(A) = U. The argument can
now be completed easily. The function p;v|y is a member of the finite group of all
permutations on U, and so there exists an integer k > 1 such that (u,v)*|y = idy.
We write e = (pv)%, f = v, g = (uv)*"1y;. It is now trivial to check that
e=¢e% e(Ad) =U, f(U) =V, g(Vo) =U, gflv = idu, fglv, = idy,. Thus we
have established that U ~ Vy. In this situation, for all # € Con A we must have
fly = g(0)v,) and 8|y, = f(6ly). Statement (2) is an obvious corollary of these
equalities. Statements (4) and (5) must be true for U, since in proving their validity
for Vo, we used only that (2) holds for Vj.

The statements (3) and (6) still remain to be proved. Assume that U € Ma (e, 3),
f € PolA, and f(Blu) € a. Choose (a,b) € Bly with (f(a), f(b)) ¢ a and ap-
ply (4) with (z,y) = (f(a), f(8)). This gives a g € Pol;A satisfying g(4) = U,
(9f(a),gf(b)) ¢ a. We choose e € E(A) such that e(4) = U (by (2)). Thus
g9f(U) = gfe(A) = U, by the (e, 8)-minimality of U (since (gfe(a),gfe(b)) ¢ a).
From gf(U) = U it follows that |f(U)| = |U| and that f maps U one-to-one onto
f(U). The calculation that finished the proof of (1) (taking u; = g, v = f) will show
that the inverse function of f|y is the restriction to f(U) of some polynomial. Hence
f:U =~ f(U), and this fact certainly implies that f(U) € Ma(a,8). This finishes
the proof of (3).

To prove (6), let f be any unary polynomial of A such that f(3) € a. By (5) there
is a g € Pol; A and (z,y) € Blv, such that (fg(z), fg(y)) ¢ . Now this implies that
(9(z),9(y)) ¢ o, and so g(Blv,) € a. By (3), we have that g(Vp) is an (a, 8)-minimal
set U. Furthermore, (g9(z), g(y)) € Blu implies that f(Blv) € . Now (6) follows by
an application of (3). (]

Here is a brief history of the origins of tame congruence theory. In [27], P4lfy and
Pudlék observed that if Con A is a simple lattice and if e is an idempotent polynomial
function of A, then Con A must be isomorphic to Con A|.(4) under the restriction
map of Lemma 2.3, provided that |e(A)| > 1. They took e to be non-constant with a
minimal range (here it was necessary to assume that A is finite) and proved, under
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some further hypotheses on Con A, that A|.(4) must be permutational: every one
of its non-constant unary polynomials is a permutation of the set e(A4). From here,
their reasoning led to a proof of the equivalence of these statements: (i) every finite
lattice is isomorphic to the congruence lattice of some finite algebra; (ii) every finite
lattice is isomorphic to an interval sublattice of the lattice of subgroups of some finite
group. Whether these equivalent statements are actually true is still unknown.

Four years later, McKenzie found another way to exploit these ideas, and developed
the first rudimentary version of tame congruence theory (which was reported in [22]).
Involved was the discovery that under mild assumptions, all the “minimal sets” e(A)
are “polynomially isomorphic”, and the collection of these sets behaves somewhat
like a geometric structure on the base set of the algebra. Shortly later, during Spring
1982, P4lfy succeeded in writing down a complete list of all the finite permutational
algebras (reported in [26]). All of these developments paved the way for an evolution
of ideas that accelerated rapidly. Most of the theory presented in this book was
discovered during 1983.

Exercises 2.9

(1) Let {a,B) be a congruence quotient of a finite algebra. Show that if 2.8 (4)
and 2.8 (5) are both valid for one (c;, 8)-minimal set U then (a, 8) is tame.

(2) Let (a, ) be a tame quotient of a finite algebra A. Show that this modified
form of 2.8 (4) is valid.

(4") For each (z,y) € B — a there exist U € Ma(a,3) and e € E(A)

such that e(A) = U and (e(z),e(y)) € Blv — alu.
Show that (4’) cannot be strengthened to read “For each (z,y) € 8 — @ and
U € Ma(a, ) there exists e € E(A) such that ...” by constructing a three-
element unary algebra with tame quotient (04,14) for which the strengthened
form of (4') is false.

(3) Assertion (3) of Theorem 2.8 can be strengthened. Show that if (e, 8) is tame,
U € Ma(a,8), f € Pol;A then f(Blv) € a iff f(U) € Ma(a,3). Show that
if flu is one-to-one it need not follow that f(U) € Ma(a,3). (There is a
three-element unary algebra with exactly three congruences, 04 < @ < 14, in
which (a,14) is tame and the implication fails for this tame quotient.)

(4) Construct a three-element algebra with precisely three congruences such that
Ma(04,14) = (‘,:) (the set of two-element subsets of A) and (04,14) is not
tame. Which parts of Theorem 2.8 fail to be true in your example?

(5) Give a detailed proof of the following fact. If B and C are nonvoid subsets
of an algebra A and if f : B ~ C (implying that f € Pol;A) then f|p is
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an isomorphism between the structures (B, (Pol A)|p, 0|5 (§ € Con A)) and
{C, (PolA)|c, 0|c (6 € Con A)).

Let (S, ) be a finite semigroup (such as (Pol; A, o) for a finite algebra A—
where o denotes composition of functions). Show that if z € S then for some

2k = gk Moreover, there is an

integer £k > 0, e = z¥ is idempotent; i.e., =
integer k such that 22 = z* for all z € S.
Let (S, -) be a monoid (semigroup with identity element 1 satisfying 1-z =
z -1 = z for all elements z). An ideal in S is a nonvoid set I such that
S-I-8 =1 (zuy € I whenever z,y € S and u € I). A quasi-ordering and
an equivalence relation are defined on S by setting z < y iff Sz C SyS; and
z~yiff Sz§=S5yS. Wepwtz <y ifc <yand z » y.

Now let {a,3) be a tame quotient in the finite algebra A, and let (S, ) =
(PolyA,0). Set I={f€S: f(B) Ca}and

T={f€eS:f(A) €Ma(e,B)and f ¢I}.
Show that I is an ideal in S, that
T={feS:f¢I, but g < f implies g € I},

and that T={h € S:h~ f} for each f € T.

Let A be any algebra and let (S, :) = (Pol;A,o). A right ideal in S is a
nonvoid subset K of S such that K-S = K. For any right ideal K of S, define
a mapping px of Con A by ‘

px(0) = {(z,y) € A% (f(z), f(y)) € 8 for all f € K}.

Then prove:

(i) px(9) € ConA, pk(8) 2 6 for all # € Con A; and pg is a meet endo-
morphism of Con A.
(ii) For right ideals Ko, K; in S and # € Con A,

BKo(0) = psk,(0), pxok,(0) = pk, kK, (0),
BKoK, (0) 2 B, (0) V 1k, (8).

The following lemma will be the key for connecting the purely lattice theoretic

concept of Definition 1.6 to the concept of tame quotient. This lemma has a precursor
in [27].
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LEMMA 2.10. Let A be a finite algebra and let o < 3 be congruences of A such
that the lattice I[a, B] has no strictly increasing, non-constant, meet endomorphism.
Then every (a, 3)-minimal set is the range of some member of E(A).

PROOF. Suppose that U € Ma (e, 8). Let K = {f € Pol;A : f(A) C U}. We wish
to prove that for some e € E(A), e(A) = U. Define a mapping 4 of I[a, 8] by

w(O) =B A pk(0) = {{z,y) € B: (f(), f(y)) €6 forall feK}.

K is obviously a right ideal of the monoid Pol;A. From the last exercise (it is
an easy direct argument) we have that p is an increasing meet endomorphism of
the lattice I[a,B]. Since U € Ma(a, () there exists h € K such that h(4) = U
and h(B) € a. Consequently, u(a) < B and p is non-constant. Thus, from the
hypothesis about I[a, 8], there must exist § € I[a, 8], 6 < B8, with u(6) = 6. Then
pu(a) < pu() = 8 < B. Since pu(a) = B A pke(), we have that 8 ¢ px2(a); and
so there exist f,g € K and (z,y) € B such that (fg(z), fg(y)) ¢ a. This implies
that g(8) € a as well as fg(8) € a; and since f(A) C U, g(A) C U it follows that
fg(A) = U = g(A) by the (a, B)-minimality of U. We now define e = f* with the
integer k > 1 chosen so that e = e. Now f(U) = fg(A) = U so e(U) = U. Since
e € K as well, it follows that e(A) = U as desired. O

THEOREM 2.11. Ifa and 8 are congruences of a finite algebra A such that o < 8
and the lattice I[a, () is tight, then (a,3) is tame.

PRrROOF. We assume that I[a, ] is tight and we choose any (o, 3)-minimal set U.
By the previous lemma, there exists e € E(A) with e(A) = U. Then the restriction
|u, considered only as a map on I[a, 8], is a lattice homomorphism by Lemma 2.3.
We have a|y # B|u since U = f(A) for an f € Pol; A such that f(8) € . Thus |y
is a non-constant lattice homomorphism on I[a, 8]. It must be 0, 1-separating (by
Lemma 1.7). Thus (a, 8) is tame (by Definition 2.6). O

Tame congruence theory, based on Definition 2.6 and Theorems 2.8 and 2.11, fills
this book. On the other hand, the circle of ideas introduced in the Exercises 2.9 (7-8)
will play no further role in the book. Before passing on, let us remark that it might
be very worthwhile to attempt a systematic exploitation of those ideas. But that is
a path we have not explored.

Our next topic is to be a detailed study of the “(a, 3)-minimal algebras” spawned
by tame quotients. The operations of several variables in these algebras are quite
interesting, and the study will pay rich dividends. In the remainder of this chapter
and in Chapter 3, we introduce the necessary concepts to facilitate the study.
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DEFINITION 2.12. A finite algebra C will be called minimal relative to its con-
gruence quotient (4, 8), or simply (4, 8)-minimal, iff C € Mc(4,6).
LEMMA 2.13. Let (6,0) be a congruence quotient of a finite algebra A.
(1) A is (6,0)-minimal iff for all f € Pol, A, either f is a permutation of A or
f(e)cé.
(2) If A is (6,6)-minimal then (8,0) is tame.
(3) If (6,6) is tame and U € M4 (6,6) then the algebra A|y is (§|v,0|v)-minimal.

ProoF. This proof is quite easy, and is left as an exercise for the reader. In item
(3), “tameness” can be replaced by “there exists e € E(A) with U = e(A)”. O

DEFINITION 2.14. A finite algebra C is called minimal iff C is (O¢, 1¢ )-minimal,
equivalently, |C| > 1 and every non-constant f € Pol;C is a permutation of C. A
finite algebra C is called E-minimal iff |C| > 1 and every non-constant e € E(C) is
equal to id¢.

Minimal algebras were termed “permutational” by P.P. Pélfy. E-minimal algebras
will not enter our work until somewhat later. Here are a few examples of minimal
algebras. A set of permutations acting on a finite set constitutes a minimal algebra.
Any finite vector space of more than one element is minimal. Every two-element
algebra is minimal. Pélfy proved that there are (up to polynomial equivalence) no
other minimal algebras than these. This result will be proved in Chapter 4, as
Theorem 4.7. '

DEFINITION 2.15. Let C be (4, 6)-minimal, and let (@, 3) be tame in A. By a
(6,0)-trace in C we mean any set N C C of the form z /0 such that /0 # = /6. By an
{a, B)-trace of A we mean any set N C A such that for some U € Ma(a,8), N CU
and N is an (a|y, B|u)-trace of the (a|y, B|y)-minimal algebra A|y (i.e., N = z/8NU
for some z € U such that /BNU € z/a). The body and the tail of C (with respect
to (6,6)) are defined in this way:

body = U{(&, 0)-traces} ,
tail = C — body .

The body and tail of an (e, 3)-minimal set U (with respect to (|, 8|v)) are defined
the same way.

In Figure 3, we depict an (a, 3)-minimal set with four traces. The vertical strips
represent 3|y-classes; while the a|y-classes are represented by ellipses.
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Figure 3
Picture of an (a, )-minimal set

Here is a lemma relating the concepts introduced in Definitions 2.12, 2.14, and 2.15.
For any congruences a <  in an algebra A, by 3/a we understand the congruence
0 on A/a such that (z/a,y/a) € 6 iff (z,y) € B. For any f € Pol A, (say f
is n-ary) by f, we mean the operation on A/a satisfying fa(Zo/c,...,Zn—1/a) =
f(Zoy. ..y ZTn-1)/. .

LEMMA 2.16. Let a < § < 8 be congruences of a finite algebra C.

(1) PolC/a = {fa: f € PolC}.

(2) If C is (6,0)-minimal, then C/a is (6/c, 0/a)-minimal.

(3) If C is (6,0)-minimal and N is a (6, 0)-trace, then C|y is (6|n,1n)-minimal

and (C|n)/(6|n) is a minimal algebra isomorphic to (C/6)|(nys) -

PROOF. The set of all operations f on C such that f preserves a and f, € Pol C/a
is easily seen to be closed under compositions, and to contain the constant operations,
the trivial projection operations, and the basic operations of C. Thus this set contains
Pol C; and it follows that f, € Pol C/a whenever f € Pol C. By an analogous
argument, Pol C/a C {f4 : f € Pol C}. The two sets are equal, and (1) is proved.

To prove (2), suppose that C is (6, §)-minimal and that f € Pol;C/a and f(8/a) €
(6/a). By (1), we have that f = g, for a certain g € Pol;C. There are z/a,y/a €
C/a such that (z/a,y/a) € 0/a and (go(z/a),ga(y/a)) ¢ 6/a. These facts are
equivalent to (z,y) € 0, (g(z),9(y)) ¢ 6. Since C is (f,6)-minimal, g must be a
permutation of C. From this it follows that f maps C/a onto itself; since C/a is
finite, f is a permutation. This proves that C/a is (6/a, 6/a)-minimal.

Now suppose that C is (6, §)-minimal, and let N be a (8, 6)-trace. Let f € P011C| N
and suppose that f(N2)  6|n. There exists g € Pol;C with g(N) C N and g|ny = f
(see Exercise 2.5 (2)). Since N is a (6,0)-trace, N2 C 6; and so g(f) € §, implying
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that g is a permutation of C. Thus f is one-to-one on the finite set N, and is itself
a permutation of N. ‘This argument shows that C|n is (6n,1n)-minimal. Using
statement (2) we conclude that (C|y)/(6|n) is a minimal algebra. It is easy to see
that (C|n)/(6]n) 2 (C/6)|nys since 6§ C 0 and N is a f-equivalence class. (]

Here is a simplified picture of an algebra A with a tame quotient (04,8). We
assume that a (04, 3)-minimal set U has exactly three traces and a tail composed of
two elements. The vertical lines in the picture accomplish the division of A into the
blocks of the equivalence relation 3. The (04, B3)-traces and tail elements constituting
one (04, 3)-minimal set are connected by a line in the picture. A number of traces
are pictured as white rectangles independently of the (04, 3)-minimal set (or sets)
which contain them.

TN

Noxsp

~ —

Figure 4

Theorem 2.8 tells us, among other things, that every pair of (04, 8)-minimal sets
Uy and U; are isomorphic. The isomorphism, induced by a pair of polynomials of
A, maps the relation S|y, onto the relation B|y,; and thus the traces in Up are
isomorphic (one for one) with those in U;. It follows that each (04, )-minimal set
U contains a full representative set of traces with respect to the equivalence relation
~. Every trace sits inside one block of 3. Each block of 3 is actually connected by
the traces it contains. That is—in the (04, 3) case—every two elements z and y that
are (-equivalent can be connected by a sequence of overlapping traces. (We try to
suggest this in Figure 4.) The next lemma formulates this connectivity property more
precisely.



TAME QUOTIENTS 37
LEMMA 2.17. Let (a, 8) be a tame quotient in a finite algebra A. Define
p=aU U{N2 : N is an (a, §)-trace} .

Then S is the transitive closure of p.

PROOF. Choose any U € Ma(a,3). By 2.8(5), B is the transitive closure of
o =aU{(gz,9y) : (z,y) € Blu, g € Pol;A}. Suppose that (z,y) € Blu, g € Pol; A,
and (9(z),9(y)) ¢ . Then (z,y) ¢ a, and £/BNU = N is a trace with z,y € N.
Also g : U ~ g(U) by 2.8(3), and g(U) € Ma(a, B). In this situation, g(N) = M is a
trace. Thus (g(z),g(y)) € p. We conclude that p' C p, so the transitive closure of p
contains that of p’, which is 8. Since obviously p C 3, then f is the transitive closure
of p. ]

Our strategy for discovering what the algebras A|y (U € Ma(a,3)) determined
by a tame quotient (c, 3) may be like, will be to first study a special case. That will
be when a = 04 and U is equal to its only trace, so A|y is a minimal algebra. From
this we can build toward an understanding of the general case, using Lemma 2.16
and the following lemma.

LEMMA 2.18. Let § < a < 8 be congruences of a finite algebra A. Then (o, B) is
a tame quotient of A iff (a/6,/6) is a tame quotient of A/§. If (a,B) is tame, we
have :

Ma/s(e/6,8/6) = {U/6 : U € Ma(, B)} -

Moreover, for an (a, 8)-minimal set U, the (a/6,3/8) traces in U/é are just the sets
N/§ where N is an (a, ) trace in U.

PROOF. Throughout the argument we use the easily proved fact that for any
f € Pol1A, f(B) € a iff fs(B8/6) € a/s; and we also use the fact that Pol; A/ =
{fs: f € PoLA}.

Let us assume that {(a, 8) is tame and choose any U € M4 (e, 8). By 2.8 (2), there
is e € E(A) with U = e(A). We must show that U/é € Mas(/6,8/6). First, note
that es € E(A/6) and es(A/8) = U/6 and es(8/6) € /6. Second, let fs (f € Pol;A)
be any unary polynomial of A /6§ such that fs(A/6) C U/6 and fs(8/6) € o /6. Notice
that fs = eso fs = (ef)s, and so ef(8) € a. Thus ef(A) = U, and this implies that
fs(A/6) = (ef)s(A/8) = U/6. We can now conclude that U/§ € M /s(a/8,8/5).

In order to see that (a/6,3/6) is tame, we consider the restriction mapping of
I[a/6,B8/6] in ConA/é into Con((A/6)|uss)). It will be sufficient to show that it
is 0, 1-separating, since we already know that U/§ € Ma(a/6,3/6) and U/§ is the
range of an idempotent polynomial of A/§. Every congruence of A/§ has the form
u/6 for a p > 6 in Con A. Suppose that o < u < B in Con A. Since (a, 3) is tame,
there exists (z,y) € Bl — ply. We have (x/6,y/6) € (8/6 — pn/6) N (U/6)2. This
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shows that the restriction map is 1-separating on I[a/é,3/6], and the proof that it
is O-separating is essentially the same. We have now proved that (a/é, 3/6) is tame
and (since U was arbitrary) that U/§ € Ma /s(/6,8/6) whenever U € Ma (a, 8).

To get the other inclusion, let W be any member of Mas(/6,3/8). Choose
any U € Ma(a,3). Applying 2.8 (1) to the tame quotient (a/8, 3/6), we get that
there is f5s (f € Pol;A) with fs : U/6 ~ W. In this situation, f5(8/6) € a/é, so
f(B) € a; and by 2.8(3) f(U) € Ma(«, ). Furthermore, W = fs(U/6) = f(U)/6.
This concludes our proof that Ma /s(a/6,8/6) = Ma(a, 8)/6.

We now change our assumptions. Let us suppose that (a/8, 3/6) is a tame quotient
of A/§. We choose an arbitrary U € Ma(a,3) and f € Pol; A such that f(A) =
U, f(B) € a. Then fs5(B/6) € /6, so by 2.8(6) applied to (a/é,3/6) there is
W € Ma,s(a/6,8/6) with fs : W =~ fs(W). Thus there exists gs (g € Pol; A) such
that fs : W — fs(W), gs : fo(W) — W are inverse bijections. Let e = (fg)" be an
idempotent power of fg. Now es equals the identity on fs(W), hence e(8) € a. We
conclude that e(A) = f(A) = U since U is (@, 3)-minimal. To finish the proof that
{a, B) is tame, we show that U/4 is an {a/§, B/6)-minimal set, and using the fact that
|u7s must then be 0,1-separating on I[a /6, 3/6], we show that |y is 0, 1-separating
on I[a, B]. These details are left to the reader. O

Exercises 2.19

(1) Suppose that U is an (a, 3)-minimal set for a congruence quotient (a, ) in
a finite algebra A, and that U = e(A) for some e € E(A). For every ajy <
§ < v < Blu (6,7 € ConAly), there exists at least one pair (6,7) of
congruences of A such that 6|y = &', vl =7/, a < § < v <, and the lattice
homomorphism |y is 0, 1-separating on I[6,~]. Show that each such quotient
(6,7) is tame, and that U € Ma(6,v) € Ma(a,B). (Moreover, Ma (6,7) =
Ma(a, B) if (@, B) is tame.)

Suppose that a < § < 8 where a, 8, 3 are congruences of a finite algebra A.
Thus (6, ) is tame, according to Theorem 2.11. Show that if (a, 8) is tame
then Ma (a, 8) = Ma(4,8).

Suppose that (a;, ;) (i = 0,1) are congruence quotients of a finite algebra A
and a9 = fo A ay, f1 = Po V a1. Prove that Ma (ao, Bo) = Ma(ai, 1), and
Ma (@0, 81) € Ma(ao, Bo) UMa(ao, @1). Conclude that if Con A = M3 then
(all seven congruence quotients are tame and) Ma (a, 8) is independent of the
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quotient (e, 3).

(4) Prove that when (a, ) is tame and U € Ma (e, B), then a < 8 iff aly < Blu.
Thus a < B if |U] = 2. Show that if A is a finite lattice and @ < 8 in Con A
then every (o, 8)-minimal set has only two elements—thus (a, 8) is tame iff
a < pB.
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(5) Let M be a finite module over a finite ring R with 1, and suppose that M is
unitary, i.e., 1 -z = z for z € M. We regard M as an algebra

(M,z+y,0,7-z(r €R)).

Let @ < B be congruences of M, and let M, = 0/a, Mg = 0/8 be the
associated submodules of M. Put ann(M, |Mg) = {r € R: 7 - Mg C M,}.
Then show that (a, 8) is tame iff ann(M, | Mp) is a maximal ideal in R.

(6) Suppose that (a, 3) is a tame quotient of a finite algebra A, that N is an (a, 8)-
trace (see Definition 2.15), and that f € Pol; A. Prove that either f(N?) C a,
or f(N) is an {a,3)-trace N’ and f: N ~ N’. (See Theorem 2.8 (3).)



3. ABELIAN AND SOLVABLE ALGEBRAS

Our concept of solvability (of algebras and of congruences) is central in tame con-
gruence theory. This concept is a generalization of the one employed in group theory.
In otherwords, a group is solvable iff it is solvable in our sense.

This chapter contains only definitions and their trivial consequences. It can be
skimmed, or skipped over and revisited when these concepts next appear. Our the-
orems on solvability are proved in Chapter 7, but the concept will be needed in
Chapter 4. The concepts defined here may seem a little strange, but since they have
many applications, it is worth an effort to master them.

DEFINITION 3.1. An algebra A will be called Abelian iff for every n > 1, and
for every n-ary polynomial operation f of A, and for all u,v,zy,...,Zp-1,¥1,...,
Yn—1 in A, this equivalence holds:

(311) f(“vxlw"'vzn—l)=f(uvyls'--vyn—1)

— f(vvxl»---szn—l) =f(vvyl»--'vyn—1) .

Exercises 3.2

(1) Prove that a group is Abelian in our sense iff it is commutative. Prove that a
ring is Abelian in our sense iff it satisfies « - y = 0 (i.e., has a trivial multipli-
cation).

(2) Prove that every module over a ring is Abelian.

—
)
~

Suppose that A is Abelian and has a polynomial operation p(z,y, 2) such that
p(z,z,y) = p(y,z,z) = y identically for all z,y € A. Prove that A is polyno-
mially equivalent to a module, i.e., that there exists a module M = (4, +,...)
over some ring satisfying Pol A = PolM. [Proof outline: Choose any ele-
ment in A, call it 0. Define z +y = p(z,0,y). Letting f(z,y,2) = p(y,z, 2)
and using that f(y,y,z) = f(y,z,y), and the Abelian property, conclude that
f(z,y,z) = f(z,z,y) for all z,y,2. In particular, z + y = y + z. Obviously
z+0=0+z = z. Show next that z + p(0,z,0) = 0 and that + satisfies
the associative law. Thus we have an Abelian group (A, +,0). To find the
ring, observe that if what is to be proved is in fact true, then the h € Pol; A
satisfying h(0) = 0 must be precisely the operations expressible in the module
in the form h(z) = r - z for some ring element r.)

40
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(4) Let A be a module and p(z,y, z) be a ternary polynomial of A satisfying the
equations p(z,z,y) = p(y,z,z) = y identically. Show that p(z,y, z) can be
none other than z —y + 2.

(5) Let A be any algebra and define the center of A, or Z(A), to be the set of all
pairs (u,v) € A? such that formula (3.1.1) holds for this u,v and for all f €

Pol A and all elements z,...,%1,... in A. Prove that Z(A) is a congruence
of A, and that A is Abelian iff Z(A) = A% Show that if A = (4,-,7!) is a
group then

Z(A) = {(u,v):u-v ! -z=z-u-v"! forall z € A}.

DEFINITION 3.3. Let a, 3,6 be congruences of an algebra A. We use the for-
mula C(a, $;6) (in words, o centralizes 8 modulo §) as an abbreviation for the
following property. For every n > 1, for every f € Pol, A, and for all (u,v) € a and
(z1,91) -+ (Tn-1,Yn—1) € B, this equivalence holds:

)
(331) f(uvzla'”vzn—l)Ef(uxyll"'ayn—l)
8
— f(vvzly" . vzn—l) = f(vﬁylv-"vyn—l)'

PROPOSITION 3.4. For any algebra A and congruences a,a; (i € I), ..., 6 on
A, the following hold. :

(1) IfC(e, B;6) and o’ < a, B' < 3 then C(d/, §';6).
(2) If C(as, B; 6) for all i € I, then C(\ as, B; 6).
i€l
(3) If C(a, B;8;) for all j € J, then C(a, B; N\ 6;).
jeJ
4) IfaAB<é6<aor(aVsAB<Sé, then C(a,B;6).
(5) If 6 < a A B A6 then C(a, B;6) is equivalent to C(c/8,3/6;6/6) (holding in
A/9).

PROPOSITION 3.5. (Let a,3,6 € ConA.) C(a, 3;86) is equivalent to the follow-
ing property. For all positive integers k,m and for all f € PolgymA and all %,7 € A¥

and z,j € A™ such that u; = v; (for i < k) and z; 2 y; (for j < m) we have:
F(@,2) 2 f(a,9) iff (3,5) 2 f(5,§). Pictorially
fla,g)

implies

3 f(0,9)
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DEFINITION 3.6. Let a and 8 be congruences of an algebra A with a < 3.

(1) B is Abelian over a iff C(8, 5;a).
(2) Bis Abelian iff C(8,5;04).
(3) B is solvable over a iff there exists a finite chain of congruences ap < a3 <

-+« < a, such that ag = a, a, = B and a;4 is Abelian over o; for each i < n.

(4) B is solvable iff 3 is solvable over 04.
(5) A is solvable iff 14 is a solvable congruence of A.
(6) A quotient (6,7) is called Abelian (or solvable) iff v is Abelian (or solvable)

over 4.

PROPOSITION 3.7. For congruences over any algebra A, these statements are

valid

(1) If {a, B) and (B, 8) are solvable quotients, then so is (a, 6).
(2) Ifa < 6 < B and (3 is solvable (Abelian) over a, then § is solvable (Abelian)

over a and 3 A+ is solvable (Abelian) over a A v for every congruence 7.

(3) If 6§ < a < 3 then B is solvable (Abelian) over a iff 8/6 is solvable (Abelian)

over a/é.

(4) A/é is solvable (or Abelian) iff 14 is solvable (or Abelian) over 6.

Exercises 3.8

(1) Prove all the assertions in Propositions 3.4, 3.5 and 3.7.

(2) Show that 3.4 (2) implies that for any congruences 8 and é of an algebra A,

Nt

there is a largest congruence a, which we might denote by ann(é | 3), satisfying
C(a, B;6). Notice that ann(04 |14) = Z(A), the central congruence defined
in Exercise 3.2(5). Find a definition of the statement “(u,v) € ann(§|g),”
which parallels the definition of “(u,v) € Z(A)” .

Show that 3.4 (3) implies that for any congruences a and 3 of an algebra A,
there is a smallest congruence § satisfying C(a, 3;6). Denote this congruence
by [e, 8] and call it the commutator of o and 3. There is an extensive and
rather deep theory of this operation [, ] for congruences of algebras that
belong to congruence modular varieties. (As a first reference, consult [11] or
[16].) If A belongs to such a variety then [, ], as a binary operation on
Con A, is monotone, commutative, and completely join preserving in each of
its variables. But for algebras not belonging to congruence modular varieties,
this commutator operation cannot be expected to be particularly well-behaved.
The exercise is to show that for any group A = (4,-,!) and for any two
congruences a, 8 of A with associated normal subgroups No, Nj (i.e., a =
{{u,v) : u-v™! € N,}, etc.), the commutator [a, ] has for its associated
normal subgroup the subgroup generated by {u=!v~luv:u € N,, v € Ng}.



ABELIAN AND SOLVABLE ALGEBRAS 43

(4) Let A be an algebra with a polynomial p(z,y, z) satisfying p(z,z,y) =y =
p(y, z, z) identically. Show that for any congruences a, 8,6 of A, C(a, 3;6) is
equivalent to C(8,a;8). Thus [a, 8] = [8, o).

(5) Show that an absolutely free algebra of the type of groups, with infinitely many
free generators, has the following properties: F is Abelian; F has non-solvable
homomorphic images. (In Chapter 7, we prove that an algebra with these
properties cannot be finite.)

(6) Any group whose lattice of normal subgroups is M3 must be Abelian; in fact,
must be a four-element group isomorphic to Zs x Z;. There exists a non-
Abelian algebra A satisfying Con A 2 Mj3. (In Corollary 5.8, we shall find
that every such algebra is infinite.) Prove that if Con A = Mj then each of
the prime quotients (04, @) of A is Abelian.

DEFINITION 3.9. Let a and 8 be congruences of an algebra A such that a < .
We say that 3 is strongly Abelian over a (or if a < f, we say that (a,p) is
strongly Abelian) iff the following property holds. For every n > 1, for every

B
f € Pol A, and for all zo = yo, =1 é "N é 21y oeey Tn—1 £ Yn—1 é

Zn—1y this
implication is valid:

(3.9.1) F(@oy- -y Tuz1) £ f®Wo, .-, Yn1)

o
- f(z()»zla"wzﬂ—l) = .f(y01zla'~-1zn—l) .

DEFINITION 3.10.

(1) A congruence 8 € ConA is strongly Abelian iff § is strongly Abelian over
04.

(2) An algebra A is strongly Abelian iff 1, is a strongly Abelian congruence.

(3) If a < B we say that (3 is strongly solvable over « iff there is a finite chain
of congruences a = ap < a3 < :+- < ay = [ with a;4; strongly Abelian over
a; for all i < n.

The notions of strongly solvable congruence and of strongly solvable algebra are
defined in the obvious fashion.

PROPOSITION 3.11. For congruences over any. algebra A, these statements are
valid.

(1) If B is strongly Abelian over a, then (3 is Abelian over a.
(2) If B is strongly Abelian over o, and over each of a; (i € I), and ifa < ' < 3,
then ' is strongly Abelian over a and f3 is strongly Abelian over \ a;.
i€l
(3) If§ < a < B, then B is strongly Abelian over a iff 3/6 is strongly Abelian over
afs.
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Strongly Abelian congruence quotients {a,3), a < (3, do not occur in most “nor-

mal” algebras. For example, they do not occur in groups, rings, modules, or lattices.

They do occur, however, in semigroups (see Exercise 9.20(7)). Every congruence
quotient of a unary algebra is strongly Abelian. The strongly Abelian prime quo-
tients lie at one extreme end of the discrete spectrum of quotient types depicted by

tame congruence theory. The concept is important in our theory, but primarily in the

negative sense of a bad example we wish to exclude. The non-appearance of strongly
Abelian prime quotients in the finite algebras of a locally finite variety V is equivalent
to a rather weak condition on the set of equations that hold in V (see Theorem 9.6).

Exercises 3.12

(1) Prove Proposition 3.11.
(2) Prove that no congruence quotient {(a,), a < B, of a group, ring, or lattice

can be strongly Abelian.

(3) Construct a five-element algebra E = (E, o) with one binary operation, such

(4

)

=

that E is strongly Abelian and has a four-element homomorphic image which
is not Abelian.

Let A be an algebra, k be a positive integer. Construct an algebra AlFl =
(A¥,...) in such a way that the basic operations of Al are those of the
algebra A¥ (Cartesian power) together with two new operations d (k-ary) and

p (unary) defined as follows (where z* = (z},... ,zi_,)):
d(z°,...,25 ") = (2f,21,...,2§21)
p({zo, ..., Tk-1)) = (21, ., Th~1,To) -

Prove that if Q is a unitary module over a ring R, and if Q' is Q“‘ construed
in the natural fashion as a module over the k-by-k matrix ring Mg(R), then
Clo Q! = CloQ’, and hence Pol Q¥ = Pol Q'. (For any algebra A, we call
Al the k-th matrix power of A.)

(Notation as in the last exercise.) For any algebra A, characterize Clo A* (the
clone of term operations) and Pol A¥l (the clone of polynomial operations),
and show that A is Abelian or strongly Abelian iff A!*¥] has the same property.



4. THE STRUCTURE OF MINIMAL ALGEBRAS

In this chapter, we delineate the five basic types of relative minimal algebras
(i.e., {6,6)-minimal algebras). Our five-fold classification will extend to a five-fold
classification of tame congruence quotients. The first task is to classify minimal alge-
bras, and show that the minimal algebras derived from the traces of a (6, #)-minimal
algebra must all have the same type. The detailed information about the structure
of (6, 0)-minimal algebras compiled in this chapter is a basic and essential component
of tame congruence theory. (All concepts mentioned in this paragraph were defined
near the end of Chapter 2.)

We begin with three basic lemmas which will be needed in this chapter. To state
and prove the first one, we require some special notation. Let Ag,..., An_1, A be sets
and I C {0,1,...,n—1}, g: [I[{A: : i € I} —» A. The variables of g are z; ranging
over A;, for i € I. Suppose that J C I and @ € [[{4; : « € J}. Then by g[a, J] we
mean the function ¢’ : [[{A; : ¢ € I —J} — A such that ¢'(b) = g(@Ub) where aUb is
a; for j € J and b; for i € I — J. In case J = {j} and a € A; we simply write g[a, j]
for g[{(a), {j}]- The variables of g[a, J] are z;, ¢ € I — J. We say that g depends on
z;, where i € I, iff there exists @ € [][{Ax : k € I, k # i} such that g[a, I — {i}] is not
constant. The first lemma is due to A. Salomaa [31].

LEMMA 4.1. Let f : AgX---X An~1 — A depend on all its variables, where n > 2.
There exist i < j <n and a € A;, b € Aj, such that f(a,i] and f[b, j] each depend
on all their variables.

PROOF. For any i < n and a € A;, let D(a,?) be the set of all j < n, j # i such
that f[a,i] depends on z;. If |{io,%1,72}| = 3 and a € A;, b € A;, are such that
i1 ¢ D(a,ip), i2 € D(a,1p), then it is easy to see that i3 € D(b,4;). In other words,
i1 ¢ D(a, o), %1 # 1o imply D(a,io) C D(b,%1). We shall use this observation several
times. A second observation is that for all i # j there is a € A; such that j € D(a,1)
(since f depends on ;).

For any j < n, choose i < n and a € A; such that j € D(a,:) and |D(a,)| >
|D(b, k)| whenever k < n, b € A, and j € D(b,k). (In other words, |D(a,)| is
maximal for j € D(a,i).) We claim that k € D(a,i) for all k < n,k # i. Suppose
that this fails, say k # i,k ¢ D(a,i). Then we can choose b € A with i € D(b, k).
Now {i} U D(a,i) C D(b,k), which contradicts the choice of a and i. The claim is
valid, and so f[a,i] depends on all n — 1 of its variables, including z;.

45
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From the above considerations, there must exist ip < n, b € A4;, for which f[b, i)
depends on all n — 1 variables. Taking j = 4, there must exist ¢; # i9, a € A4;, for
which f[a,%1) depends on all its variables. O

COROLLARY 4.2. Let A be an algebra and n be a positive integer, and suppose
that A has a polynomial operation that depends on at least n variables. For each
k, 1 <k <n, A has a k-ary polynomial operation that depends on all k variables.

If f is any n-ary operation on a set A, i < n, and @ = (ag,...,i—1,Qi+1, -+, 8n—1)
€ A™1, we can form the unary operation g = fa,{j < n : j # ¢}] by substituting
a; for the j-th variable of f, for all j # i (see the preliminaries to Lemma 4.1). In
otherwords, g(z) = f(ao,...,qi-1,Z,ai+1,...,an—1). We will be dealing with iterates
of this operation.

DEFINITION 4.3. Let f be an n-ary operation and ¢ < n. We define an oper-
ation f(’j.)(zo,...,x,._l) by induction on k > 0. We putf(‘})(zo,...,z,,_l) = r;, and
j(li)(zo,...,z,,_l) = f(zo,...,Tn—1), and for each k,

f(’:.;-l(zo, e ,.’L‘n._.l) = f(.'l}o, ey Ti—1, f(k:)(xo, e ,.Z'n_l)‘l‘,'.},l, “ee ,.’L‘n_l).

LEMMA 4.4. Let f be an n-ary operation on a finite set A and let i < n. There
exists an integer k > 0 such that
f(ki)(zOV e 1xn—1) = f(Z,’;(zo, e v-’tn—l)
= f’i (.’L‘o, e ,zi-l,fki (.’L‘(), .as ,zn_l),z.'.,.], e ,.‘L‘n_l)
(i) (1)
for all zg,...,Tn—1 in A.

PROOF. We can suppose that A has cardinality m. Let ¢ € A4 be any func-
tion mapping A into A. For each a € A there is a repetition in the sequence
a,9(a),g%(a),...,g™(a). Thus for some u < m and 1 < v < m we have g*(a) =
g**?(a). This implies that where k = m! we have g¥(a) = g?*(a) for all @ € A. Thus
the equation g¥ = g2* holds for all g € A4.

Now let zo,...,Z;—1,Zi+1,---,Zn—-1 € A and put

g(z) = f($01 oy Tim 14 Ty Tige 1y 0 e 1zn—l)
for all z. By an obvious induction, we have
g (z) = f{i)(103~-~vzi—lsxaxi+la sy Tn-1)

for all r. The assertion of this lemma is now obvious. O
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DEFINITION 4.5. A ternary operation ¢(z,y, 2) on a set A is said to be a Mal’cev
operation if the equations ¢(z,z,y) = y = ¢(y,z,z) are valid for all z,y € A. An
algebra A is called Mal’cev iff A has a Mal’cev term operation; i.e., there exists a
Mal’cev operation g € ClogA. An algebra (A, f) with one binary operation is called
a quasigroup iff every equation f(z,c) = a with a,c € A has one and only one
solution z in A, and likewise every equation f(c,z) = a has a unique solution.

LEMMA 4.6. Every finite quasigroup is Mal’cev.

PROOF. Let (A, f) be a finite quasigroup. Choose, by 4.4, a k > 0 such that
f&y(@y) = F&) (&) (2,),y). Regarded as functions of z, with y held fixed, f(z,y)
and its iterate f('ﬁ,)(x,y) = f(--- f(f(z,9),9),...,y) are both permutations of A.
Thus f(’i)) = f(zok) implies that f('i))(x,y) = z. We can obviously suppose that k > 1.
Define do(z,y) = &;l(x,y). Then f(do(z,y),y) = f(ko)(z,y) =g for all z,y.

Repeating this argument with the focus on the second variable, we obtain a term
operation d;(z,y) which satisfies f(z,d;(z,y)) = y. We now define

q(z, Y, z) = f(do(xv dl(yy y))vdl(:% Z))

Since f(y,d1(y,y)) = y and f(do(y,d1(y,)),d1(y,y)) = y, it follows that y =
do(y,d1(y,y)). Thus q(y,y,2) = f(y,d1(y,2)) = z. It is also easy to show that
q(y, 2,2) = y. Thus the operation ¢(z,y, z) is Mal’cev O

Minimal (or permutational) algebras were defined in Definition 2.14. Here is the
theorem of Palfy which serves to characterize them. Recall that two algebras are
called polynomially equivalent iff they have the same set of elements and precisely
the same clone of polynomial operations.

THEOREM 4.7. (P.P. Pilfy [26]) Every minimal algebra of at least three elements,
that has a polynomial operation which depends on more than one variable, is poly-
nomially equivalent with a vector space over a finite field.

PROOF. Let M be minimal, |[M| > 3, and assume that M does have a polynomial
operation depending on more than one variable. By Corollary 4.2, M has a binary
polynomial operation that depends on both its variables. We denote the group of all
permutations of the set M by Sym M, and remark that every non-constant unary
polynomial of M belongs to Sym M. The proof proceeds through a series of asser-
tions.

Claim 1. If f € Pol;M and a, b, ¢, d € M and f(a,c) = f(a,d), then f(b,c) =
f(b,d).

To prove the claim we suppose otherwise, that f(a,c) = f(a,d) and f(b,c) #
f(b,d). We iterate f in the second variable. By Lemma 4.4, choose k > 0 so that
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g(z,y) = f(kl)(z', y) satisfies g(z, g(z,y)) = g(z,y). Since f(b,c) # f(b,d) and M is
a minimal algebra, the polynomial h(z) = f(b,z) is a permutation of M. We have
g(b,y) = h*(y), and so h*(y) = h?*(y), implying that y = h*(y) = g(b,y). This holds
for all elements y in M. By the same token, g(a,c) = g(a,d) = g(a,y) for all elements
y € M. (The unary function g(a,y) is not a permutation, so it must be constant.)
We denote g(a,c) by e.

Each column of the multiplication table of g has either just one element appearing,
or has different elements appearing on every two different places. (Each column
describes a unary polynomial of M.) Each row of the table either has only one
element appearing, or describes the identity function on M. (We proved this above
for the “a” and “b” rows, and it’s true in general, since g(z,y) = g(z,g(z,y)).)
Choosing elements w,u of M such that w # e and u ¢ {a,b} (which we can do
because |M| > 3), we see that the table of g contains the fragment below.

e
e
e
4

. 9(z,y)

Figure 5
Since g(a,e) = e = g(b,e) it follows that only e’s appear in the “e” column. Now
the “u” row is constant or identical with the “b” row. Therefore the unfilled box in
the table contains either w or e. Either way, the “w” column cannot be constant
and cannot be a permutation. This amounts to a contradiction, and Claim 1 is now

proved.

Claim 2. If f belongs to Pol;M and depends on both variables, then (M, f) is a
quasigroup.

This claim follows immediately from the previous claim and the fact that M is
minimal. (Note that if f(a,c) # f(b,c), then by applying Claim 1 to f’ where
f'(z,y) = f(y,x), we get that f(a,d) # f(b,d) holds for all d, and then f(z,d) as a
function of z must be a permutation, for each d.)

Since M does have a binary polynomial which depends on both variables, it follows
by Claim 2 and Lemma 4.6 that we can choose a Mal'cev operation § in PolzM.
§(z,y, z) will turn out to be the same as £ — y + 2 in the vector space we are going
to construct. From Claim 1 we also deduce the next claim.

Claim 8. If f € Pol,41 M and a,b € M™ while ¢, d € M, then f(a,c) = f(a,d)
implies f(b,c) = f(b,d).
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This follows by applying Claim 1 in an obvious fashion to n binary polynomials
derived from f. Thus we obtain, from the assumption

f(aoy---,an-1,¢) = f(ag,-..,an-1,d),

that
f(ao,--@n-2,bn—1,¢) = f(ao,-.,an-2,bn-1,d),
and we can next replace a,—2 by b,—2 and so on, up the line. Notice that the property
asserted in this claim is not the same as the “Abelian” property of an algebra defined
in Chapter 3. “Abelian” is in general a stronger property. (But since our algebra is,
in fact, a vector space, it will turn out to be Abelian.)
We now choose one element of M, call it 0, and define for z,y € M :

z+y=6(0,y), —z=2560,z0)

where 6 is our Mal’cev operation.
Claim 4. (M, +,—,0) is an Abelian group.

To prove it, we define three auxiliary operations.

61(3:7 Y, 2, u) = 6(6(-77’ Oy‘u): 0» 6(:’/1 u, Z))
b2(z,u) = 6(z,u, 6(u, z,0))
63(1'» Y, u) = 6(“’7 01 6(-731 u, y))

We notice that 6;(0,b,0,b) = 6;(0,b,0,0) and then by Claim 3, (a +b) + ¢ =
61(a,b,c,b) = 61(a,b,c,0) = a+ (b+ c). Similarly, 62(0,a) = 62(0,0), implying
a + (—a) = 62(a,0) = 82(a,a) = 0. And again, 63(0,0,b) = b+ (-b) = 0 and
63(0,0,0) = 0, implying b + a = 63(a, b,b) = 63(a, b,0) = a + b. We have established
the associative and commutative laws for + and that —b is an inverse element for b.
It is obvious that b + 0 = b. Thus Claim 4 is established.

Claim 5. If f € Pol,M and zy,...,Zn—1 belong to M, then
n—1
f(@o,. s Tno1) =Y filmi) — (n—1)- £(0,...,0)
=0
where f;(z;) = f(0,...,0,z;,0,...,0) (z; occuring in the expected place).
This claim is obvious for n = 1. And if n = 2, it follows from the true equation
£(0,9) — £(0,y) = £(0,0) — £(0,0) by applying Claim 3 to the operation g(z,y,2) =

f(z,2) — f(y,2). The claim can now be proved for all n > 2 by induction. (Assume
that it holds for all n < k, let f € PolxM, and consider one of the k—1-ary operations
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that one obtains by holding the first variable fixed in f. The induction assumption

gives
f(z,z1,. . Tp-1) =
f(z,21,0,...,0) + -+ f(z,0,...,0,z-1) — (k — 2)f(,0,...,0) .
The desired conclusion will then follow by re-writing each of f(z,z1,0,...,0),...,
f(z,0,...,0,z_1), using the binary case of the claim, which we proved alrcady.)

To uncover the field over which M is a vector space, define F to be the set of
all @ € Pol;M such that a(0) = 0. For each a € F, we see immediately that
« is an endomorphism of the group (M, +), by applying Claim 5 to the operation
f(z,y) = a(z + y). This gives

a(z +y) = a(z +0) + a(0 + y) — (0 +0),

or a(z +y) = a(z) + a(y).

Since F is closed under composition, o, and pointwise addition, +, it is a subring
of the ring of all endomorphisms of (M, +). Since M is minimal, if @ € F and « is
not identically zero, then o* = id for some k. Thus F = (F, +,0) is a finite division
ring, and so a field. By defining a -z = a(z) for a € F, © € M, we clearly have a
vector space V = (M,z +y,—z,a - z(a € F)).

The operations of this vector space. belong to Pol M, hence PolV C Pol M. On
the other hand, Claim 5 shows that for each f € Pol,M, we have

n—1
f(@oye ooy Tno1) = zai'xi +c
i=0
where o;(z) = fi(z) — fi(0) (note that a; € F) and ¢ = f(0,...,0). We conclude
that Pol M = Pol V; and our proof is now complete. O

The minimal algebras in which each operation depends on at most one variable
are easily determined, up to polynomial equivalence. If M is such an algebra, then
I1 = Pol; M N Sym M is a group of permutations on M (a subgroup of Sym M); and
any n-ary operation, f, on M belongs to Pol M iff either f is constant or for some
it < nand a € II we have f(Z) = a(z;) for all T = (zq,...,Zn-1) € M™. In other
words, M is polynomially equivalent to the algebra (M, II).

One of the principal insights of tame congruence theory is that a number of prop-
erties of any finite algebra are directly correlated with the “types” of the minimal
algebras induced by the prime congruence quotients of the algebra. A minimal alge-
bra of the kind described above, essentially unary, will be said to be of “unary type”.
A minimal algebra polynomially equivalent to a vector space will be said to have
“affine type”. The other types of minimal algebras are two-element algebras. We
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shall now show that up to polynomial equivalence, precisely seven distinct algebras
can be built on the universe {0,1}. We remark that E.L. Post [29] proved in 1941 that
the set of all clones of operations on {0,1} is a denumerably infinite set. What we
will prove is that there are precisely seven distinct clones on {0,1} that contain the
constant operations. We can also observe that the situation changes radically when
one more element is added to the universe. I. Agoston, J. Demetrovic and L. Hannak
prove in [1] that the set of clones on {0,1,2} containing the constant operations has
cardinality equal to that of the set of real numbers.

A two-element algebra with the largest possible set of polynomial operations is, of
course, the Boolean algebra,

E3 = ({07 1}1 V, Aa ! )1

where we have zVy = max{z,y}, zAy = min{z, y}, and 2’ = 1 —z. Let z+y denote
the sum of z and y modulo 2.

LEMMA 4.8. Every algebra M = ({0,1},...) is polynomially equivalent to one of
the following, no two of which are polynomially equivalent:

EO = ({051})7 El = ({071}7 ! ): E2 = ({071}1+> ) E3 = ({Oi 1}’Vs/\1 ! )1

E4 = ({0»1}’\/’ A)a ES = ({0»1} ’ V) ) E6 = <{071}7A) .

Remark. The algebras Ey,...,Eg can be ordered by the inclusion relations among
their polynomial clones. The result is the lattice pictured below.

Figure 6

ProoF. If M is essentially unary, then it is polynomially equivalent to Eq or E;
because Sym {0,1} has only two subgroups. We assume that M is not essentially
unary. By Corollary 4.2 it has a binary polynomial operation f that depends on both
variables.

Consider first the case where all binary polynomial operations of M satisfy Claim
1 in the proof of Theorem 4.7. The table of f can then only be one of the following.
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-
(=R N~
- -

If the second table describes f, then 2’ = f(0,z) and £ + y = f(z,y)’. Thus in
either case, addition modulo 2 is a polynomial of M. Now the proof of Theorem 4.7
can be followed through to show that Pol M = Pol E,. (A simpler direct argument
may be found.)

Consider now the case contrary to the one just considered. We can assume that
the table of f has a constant row and a non-constant row. If f fails to be order
preserving, then ’ is a polynomial of M (a row or a column of f) and the two rows
of the table of f can be switched to get a new polynomial operation f(z’,y). The
entries in the table can be permuted, resulting in f(z,y)’. Through a series of such
changes, one can produce both V and A. Thus Pol M D Pol E3; and we must have
equality of polynomial sets, since every operation on {0,1} is a polynomial of E3 (see
Exercise 4.9 (2)).

If Pol M contains some operation that is not order preserving, then it contains ’
(see Exercise 4.9(1)), and we can complete the proof just as above. Therefore we
now assume that all operations of M are order preserving. There are just two order
preserving binary operations on {0,1} that depend on both variables, namely V and
A. Therefore, one or the other, let us say A, is in Pol,M.

Assume that Pol M > Pol Eg (proper inclusion). Let h be an n-ary polynomial
of M which is not a polynomial of E¢. Then {0,1} C range h. For any subset I of
{0,1,...,n — 1}, let z; € 2" be its characteristic function; z; = (zy,...,Zn—1) with
z; = 1iffi € I, and z; = 0 otherwise. Since we are now assuming that all polynomials
of M are order-preserving, I C J C {0,...,n — 1} implies h(z;) < h(z;). Since 1 €
range h, there is at least one minimal member of {I : h(z;) = 1}. If there is only one
such minimal set Iy, then clearly h(zy) = 1 iff I D Iy. In this case,

h(.’L‘o, [RK szn—l) = A Tiy
i€l

which contradicts our assumption that h ¢ PolEg. Thus there exist two distinct
sets Ip, I, C {0,...,n — 1} such that h(z;,) = h(z;,) = 1 and h(x;) = 0 whenever
J is a proper subset of Iy or of I;. We can derive a binary operation b(z,y) from
h(zo,...,Tpn—1) by substituting z for z; whenever i € Iy — I}, y for z; when i €
I —Iy, O for z; when i ¢ IoUI4, and 1 for z; when ¢ € IoNI;. Now b(1,0) = h(zy,) =1
and b(0,1) = h(zxy,) = 1 while (0,0) = h(zsynr,) = 0. Thus b(z,y) = z V y; and
so V and A are in Pol M. We now have that PolE; C Pol M. We ask the reader
to complete the proof of this lemma by showing that Pol E, is identical with the
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set of all order preserving operations on {0,1}, and that Ey, ..., Eg are polynomially
inequivalent. m}

Exercises 4.9

(1) Show that if A = (A,...) is an algebra and < a partial order on A and Pol A
is not contained in the set of operations on A that preserve < (equivalently,
< is not a subalgebra of A?), then there exists f € Pol; A which does not
preserve <.

(2) Show that every operation on {0,1} is a polynomial of the Boolean algebra
E3.

(3) Show that Pol Ey4 is the set of all order preserving operations on {0, 1}.

(4) Show that Pol E, is the set of all operations f on {0,1} such that f and all its
variants obtained by permuting variables satisfy the formula (3.1.1).

The algebras Es and Eg are isomorphic, and any algebra isomorphic to one of them
is called a two-element semilattice. An algebra is a two-element lattice (or Boolean
algebra) iff it is isomorphic to E4 (or to Ej, respectively).

DEFINITION 4.10. Let M be a minimal algebra.

(1) M is of type 1, or unary type, iff PolM = Pol (M, II) for a subgroup II C
Sym M.

(2) M is of type 2, or affine type, iff M is polynomially equivalent to a vector
space.

(3) M is of type 3, or Boolean type, iff M is polynomially equivalent to a two-
element Boolean algebra.

(4) M is of type 4, or lattice type, iff M is polynomially equivalent to a two-
element lattice.

(5) M is of type 5, or semilattice type, iff M is polynomially equivalent to a
two-element semilattice.

COROLLARY 4.11. A finite algebra is minimal iff it is of one of the types 1-5.

PROOF. This is an immediately corollary of Theorem 4.7 and Lemma 4.8. O

The minimal algebras were easy to classify, given Pélfy’s theorem. The algebras
minimal relative to a congruence quotient also divide naturally into five types. To
see this, a somewhat more elaborate argument seems necessary. It is contained in-the
next six lemmas.
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Suppose that C is minimal relative to (4,0). By 2.12-2.13, this means that § and
0 are congruences of C, that § < 8, and that every f € Pol;C — Sym C satisfies
f(8) C é; ie, (f(z), f(y)) € 6 whenever (z,y) € 8. The traces, body, and tail of C
(with respect to (6,0)) were defined in Definition 2.15. (See Figure 3.) By a trace
(i.e., a (6,6)-trace) is meant any 6-equivalence class which contains at least two é-
equivalence classes. For each trace N, (C|y)/(6|y) is a minimal algebra. By the
type of N (with respect to (6,6)) we shall mean, of course, the type of this minimal
algebra, which, according to our definition, is an integer between one and five.

Let us examine for a moment what it means for N to be of type 3, 4 or 5. Notice
that the polynomial operations of C|, are the same as its basic operations, and this
must remain true of (C|y)/(6|y). [We defined C|y to be (N, (Pol C)|y), and the set
(Pol C)|, which consists of all g|, such that g is an n-ary polynomial of C for some
n and g(N™) C N, is obviously closed under composition and contains the constant
operations.] Now a minimal algebra has its type among 3, 4, 5 (see Definition 4.10)
iff it is a two-element algebra and has a semilattice operation among its polynomials.
[Incidentally, it follows easily from Lemma 4.8 that an algebra M is a minimal algebra
of type 3, 4 or 5 if and only if M is a two-element non-Abelian algebra.] Thus the
trace N has type 3, 4 or 5 iff IV is the union of two disjoint §-equivalence classes,
O and I, such that for some g € Pol,C, we have g(O x O) C 0,¢9(0 x I) C O,
g(I x0)C O,and g(I xI)CI.

LEMMA 4.12. Let C be (6,0)-minimal. If C contains two distinct (8, 0)-traces,
then all of its (6, 0)-traces are of type 1 or 2.

PROOF. We assume that C has a trace N of type either 3, 4 or 5. By 2.16 (2),
C/é is (0,60/6)-minimal, and its (0,6/6)-traces are obviously just the sets K/ where
K is a (6,0)-trace. Moreover, K and K/§ have the same type, namely that of the
minimal algebra (C|x)/(6|x). Thus it suffices to prove the lemma for C/§ in place
of C. Simpler, we change notation and assume that § = O¢.

Now N is a two-element set, and we denote its elements by 0 and 1, with the
notation chosen so that C has a binary polynomial g(z,y) such that g(z,y) = zAy for
z,y € N = {0,1}. Letting d(z) = g(z,z), we have that d € Sym C since d(0) # d(1)
and (0,1) € 8. (C is (0c,6)-minimal.) Choose a k > 1 such that d*(x) = z for
all z € C, and define h(z,y) = d*~'g(z,y). Now h(z,z) = z for all z € C, and
hlioay = 9lioy = A . We iterate h in its first variable, and choose an ! > 0
such that h‘(o)(h‘m)(z,y),y) = hio)(z, y) for all z,y € C (by Lemma 4.4). Writing
flz,y) = h’(o)(m,y), we have

flz,z) =z, f(f(z,9),9)=f(z,y)
forall z,y € C; and
f(z,y)=zAy for z,ye{0,1}.
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Now suppose, to obtain a contradiction, that C has a (0c,0)-trace K distinct
from N. Since f(0,1) = 0 and f(1,1) = 1, it follows that f(z,1) is a permutation
of C. Thus f(z,1) = z for all z, since f(f(z,1),1) = f(z,1). Similarly, since
£(0,0) = £(1,0), we must have f(z,0) = f(y,0) whenever (z,y) € 6.

Since K and N are equivalence classes of § and f(z,z) =z = f(z,1) and 1 € N, it
follows that f(K x K)Uf(K xN) = K. Since f(z,0) = f(y,0) whenever z,y € K, we
can choose an element u € K with u # f(u,0). Thus f(u,0) # f(u,1) and from this
it follows that a(z) = f(u,z) defines a permutation of C. We have a(K UN) C K
since u € K. This is absurd, because |[K U N| = |K| + 2. O

The preceding lemma is part of our proof (which will be completed with Lemma,
4.20) that all traces of any (d,0)-minimal algebra possess the same type. The next
two lemmas deal with the situations in which the traces are of types 1 or 2. Recall the
definitions of Abelian algebra, Abelian congruence, and Abelian congruence quotient,
in Definitions 3.1, 3.3, and 3.6.

LEMMA 4.13. Let C be (0,6)-minimal. Then 6 is an Abelian congruence iff for
every (0,0)-trace N, C|y is an Abelian algebra, i.e., N has type 1 or 2.

PRrROOF. The congruence 6 is, by definition, Abelian iff formula (3.1.1) holds for
every f € Pol,C (and for all n) whenever u = v,2; = y1,...,Zn—1 = Yn—1 (mod 6).
If 0 is Abelian, N is a trace, and f(N™) C N where f € Pol,,C, then (3.1.1) holds
for this f and for all u,v,z1,...,Yn—1 in N. Thus if § is Abelian, then the induced
algebras C|y, for N a trace, are Abelian. It is easy to check that minimal algebras
of type 1 and of type 2 are Abelian, and those of other types are not.

Conversely, let us suppose that 6 fails to be Abelian. Thus we have f € Pol,,C, and
elements u = v,Z; = Y1,...,Zn—1 = Yn—1 (mod 6), such that f(u,z) = f(u,y) and
f(v, &) # f(v,§). We can assume that n is the least integer for which such a situation
exists. Thenn > 1 and u # v, z; # y; for each i < n. We put Ng = u/0,N; =
z1/0,...,Npn—1 = n—1/0, and K = f(u,z1,...,Zp-1)/6. Thus, No, Ny,...,Np_1,
and K are traces, and f(Ng X -+ x Np—1) € K. Writing N for the product set
No X +++ X Np—1, flz must depend on each of its variables, or else we could replace
one of the variables by a constant and contradict the minimality of n. Thus there
exists € = (Co,...,Cn—2) € No X +++ X Ny_3 such that an—1(z) = f(co,... ,Cn-2,%)
defines a unary polynomial a,—; which is not constant on N,_;. Since C is (0, 8)-
minimal, ap—; € Sym C. Similarly, there exist a; € Pol; CNSym C with o;(V;) C K,
fori=0,...,n—1. Now a,-'l € Pol;C, and so we have o;(NV;) = K, since a; must
permute the equivalence classes of 6.

Let us define another polynomial operation of C as follows:

g(z()y srey zn—-l) = .f(a(]_l(zo)y s 70;-1-1(zn—1)) .
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Now g(K™) = K; and where v’ = ag(u), v' = ag(v),...,¥,_; = @n—1(yn-1), we have
v v',...,yh_y € K and g(v', ') = g(u,¥) (= f(u,Z)) while g(v',Z') # g(v', 7).
Thus the induced algebra A|y is not Abelian, and the type of the trace K cannot
be 1 or 2. 0

LEMMA 4.14. Let C be (6,0)-minimal. Then (6,6) is an Abelian congruence
quotient iff for every (6,0)-trace N, (C|y)/(6|y) is an Abelian minimal algebra, i.e.,
N has type 1 or 2.

PROOF. By Proposition 3.7 (3), (4, 8) is Abelian iff 6/8 is an Abelian congruence of
C/6. By Lemma 2.16 (2), C/6 is (0,6/6)-minimal. A subset K of C/é is a (0,60/6)-
trace iff it has the form N/§ for a (6, 0)-trace N. If N is a (6, 6)-trace, then the type
of N equals the type of the (0,0/6)-trace N/6, and equals the type of the minimal
algebra (C|y)/(6|y)- Given all this, Lemma 4.14 follows directly from Lemma 4.13.
O

Our study of algebras minimal relative to Abelian quotients covers many pages.
Before beginning it, we shall deduce some further useful information about the non-
Abelian case. In any two-element semilattice ({a, b}, f) there is an absorbing element
a, and a neutral element b. The correspondence of a with 0, and b with 1, is an
isomorphism between ({a,b}, f) and ({0,1},A). (In the semilattice ({0,1},V), 0
is the neutral element, and 1 the absorbing element.) We prefer to think of our
semilattices as meet semilattices, and to use the symbols 0 and 1 for the absorbing
and neutral elements, respectively. Thus the symbols for the first two natural numbers
will do multiple duty, often denoting the two elements constituting the unique trace of
a (0, #)-minimal algebra in which 6 is non-Abelian. We shall say that a (6, #)-minimal
algebra has type 3 (or 4 or 5, respectively) iff (,6) is non-Abelian and the unique
(6, 8)-trace has type 3 (or 4 or 5). (This definition will later be incorporated into the
general definition of the type of a (6, 8)-minimal algebra.)

LEMMA 4.15. Let C be minimal of type 5 relative to (§,0). Let N be the unique
(6,8)-trace of C (equally, the body of C). There is an element 1 € N and an
operation p € PolyC satisfying the following:

(1) N = I'U O (disjoint union), where I and O are é-equivalence classes and
I={1}.

(2) N is closed under p and (N, p)/(6|y) is a semilattice with neutral element {1},
polynomially equivalent to (C|y)/(6]x)-

(3) For all z € C — {1}, ({z,1},p) is a semilattice with neutral element 1; i.e.,
p(z,1) =p(l,z) =p(z,z) =z for allz € C.

(4) For all z € C such that z # 1 and for all u € O, p(z,u) ép(u,z) L,
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(5) For all z,y € C, p(z,p(z,y)) = p(z,y).

Remark. Here is a picture of the situation. T denotes the tail (= C — N), and the
6-classes are represented as boxes. Where 8 = /6§, C/§ is a typical (0, 3)-minimal
algebra of type 5. The f-classes in C/§ are again represented as boxes.

C Crs
( . 1 1 r 1
LN ) L] L] I o o o o
L]
T eee--0 [ O o0
Figure 7

PROOF. We repeat part of the proof of Lemma 4.12. There is an operation g €
Pol;C such that g(N2) C N and (N, g|)/6 is a two-element semilattice. Let O and
I be the two §-classes contained in N, with I the neutral element of the semilattice.
Thus

gIxI)CTI, gIx0)Ug(OxI)Ug(Ox0)CO.

Letting d(z) = g(z, z), we have that d € Sym C. The operation h(z,y) = d~*(g(z,y))
belongs to Pol;C, h(z,z) = z for all z, and h has the same properties as g regard-
ing I and O. Letting ! > 0 be such that the operation f(z,y) = hl(o)(z, y) satisfies
f(f(z,y),y) = f(z,y), we have that f(z,z) = z for all z and f behaves with re-
spect to O and I just in the same way as g and h. For z € I,u € O, we have
(f(z,2), f(u,2)) ¢ 8, and so the function a(z) = f(z, z) must be a permutation of C.
Then a? = o implies o = id. Thus f(z,z) = z for all z € C,z € I. Now we choose an
m > 0 such that the operation p(z,y) = f(’;‘)(x,y) satisfies p(z,p(z,y)) = p(z,y).
It is easy to check that p(z,z) = p(z,z) = = for = € C, z € I using that
f(z,2) = ¢ = f(z,z). And just as above, we can prove that p(z,z) = z also (for
z €C, z€I). Now if 21,29 € I, then 23 = p(21,22) = 21. Thus I has just a single
element, which we denote by 1.

The truth of the statements (1), (3), (5) now falls out of the construction of p. State-
ment (2) is true, because (N,p)/(6|y) is a semilattice, and (N, (PolC)|y)/(6]y) is
a two-element semilattice with its full clone of polynomials, and a two-element semi-
lattice has only one polynomial operation under which it is a semilattice.

To prove (4),let z € C—1, u € O. If z € O then p(z,u), p(u,z) € O (a §-class) and
there is nothing to prove. If £ ¢ N then p(z,u) = p(z,1) (mod 8) and p(z,1) = z.
The sets /6 and /6 are equal in this case, else z/6 would be a trace distinct from
N. Thus p(z,u) = z (mod §). and similarly, p(u,z) = = (mod §). This ends the
proof. O
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DEFINITION 4.16. Any polynomial operation, p, in an algebra C minimal of type
5 relative to a quotient (6, ), which satisfies 4.15 (2-5), will be called a pseudo-meet
operation of C (with respect to (4,6)).

LEMMA 4.17. Let C be minimal of type 3 or 4 relative to (6,8). Let N be
the unique trace of C (with respect to (6,0)). There exist operations p,q € Pol,C
satisfying the following

(1) N ={0,1} for two elements 0 and 1 that are §-inequivalent.
(2) N is closed under p and q and (N, g|y , p|y) is a two-element lattice.
(3) Forallz € C, p(z,1) = p(1,z) = p(z,z) = z = q(z,z) = q(z,0) = q(0, ).
(4) For allz € C — N, p(z,0) = p(0,z) = x = q(x,1) = q(1,z) (mod §).
(8) For all z,y € C, p(z,p(z,y)) = p(z,y) and g(z,q(z,y)) = q(z,y).
Remark. Here is a picture of a (6, 8)-minimal algebra of type 3 or 4. The trace is

the set {0,1} and T denotes the tail.

C/8

0

Figure 8

PROOF. The proof is the same as for Lemma 4.15. There are polynomials g; and
g2 of C under which N/é = {O, I} is a two-element lattice. The argument for Lemma
4.15 can be applied to each of g; and g2, producing p and gq. Now O is forced to be
a one-element set, as well as I, for the same reason as before. O

DEFINITION 4.18. Let p and ¢ be polynomial operations of a (6, 8)-minimal
algebra C of type 3 or 4, which satisfy 4.17(2-5). Then p and ¢ will respectively be
called pseudo-meet and pseudo-join operations of C (with respect to (6,6)).

The preceding pictures of (6, #)-minimal algebras of the non-Abelian types 3, 4 and
5 will be quite useful when we consider the (a, 3)-minimal sets U for a prime quotient
(o, B) in a finite algebra A. The quotient (a, 8) will be of type 3 (the Boolean type)
iff an (o, 8)-minimal set U has a single trace N = {0,1} and the (a|; , 8|, )-minimal
algebra A|; has not only pseudo-meet and pseudo-join operations with respect to
(aly, Bly), but has also a unary polynomial f satisfying f(0) = 1 and f(1) = 0.
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Exercises 4.19

(1) Let C be a finite set and Ny,..., Nx be pairwise disjoint subsets of C, each
possessing at least two elements. Let II be a group of permutations of C
such that whenever a € Il and 1 < ¢ < k, there exists j, 1 < j < k, with
a(N;) = Nj. Show that the algebra C = (C,II) has a congruence 6 such that
C is (0,0)-minimal and Ny, ..., Ny are precisely the (0, 8)-traces in C. The
traces are all of type 1.

(2) Let C be a finite vector space. Show that C is minimal, and consequently is
(6, 6)-minimal for each pair of its congruences § < 6. Show that the (6, 6)-traces
are of type 2.

(3) Suppose that C is (6,0)-minimal. Prove that € is strongly Abelian over § iff
all (6, 8)-traces have type 1. (See Definition 3.9 and copy the proof of Lemma
4.14.)

(4) Show that if C is (6, 6)-minimal of type 3, 4 or 5, then § < 8 (i.e., 8 covers §
in the lattice Con C).

(5) Construct three-element (6,8)-minimal algebras Cs, C4,Cs of types 3, 4, 5
respectively, such that Cs is equal to its trace.

The most interesting case of an algebra minimal relative to a quotient is the one
dealt with in the next lemma.

LEMMA 4.20. Let C be an algebra minimal relative to a quotient (6,0) and having
at least one (6, 0)-trace of type 2, and let B be the body of C (i.e., the union of the
(6, 0)-traces). Then all of the (6, 0) traces are of type 2, and C has a 3-ary polynomial
d satisfying:

(1) d(z,z,z) =z, forallz € C.

(2) d(z,z,y) =y =d(y,z,z), forallz € Bandy€C.

(3) for every a,b € B, the unary polynomials d(z,a,b), d(a,z,b), d(a,b,z) are

permutations of C.

(4) B is closed under d.

(5) any two (8,0)-traces N and N’ are isomorphic in C, i.e., N ~ N'.
Every 3-ary polynomial of C satisfying (1) and (2) also satisfies (3) and (4).

Remark: Here is a picture of the situation. As usual, T' denotes the tail, and the
§-equivalence classes are represented by boxes. The traces in C/§ are represented as
tall boxes.
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C C/é
Figure 9

PROOF. Let N be a trace of type 2, so that (C|y)/(8]y) is a vector space. There
exists a 3-ary polynomial f of C such that N is closed under f and fs(z/6,y/6,2/6) =
z/6—y/6+2/6 (for z, y, z € N) in this vector space. We denote by ® the set of all
f € Pol3C which possess this property.

Claim 1. If f € ® then for all a,b € N the functions f(z,a,b), f(a,z,b) and
f(a,b, z) are permutations of C.

This follows immediately from the (6, 6)-minimality of C, since these functions,
restricted to IV, become permutations of the vector space when § is factored out.
We define

o ={fe® :flz,z,z) =z forall z}
®,={f€® :f(zr,z,y)=yforallze B, yeC}
O3={fe®:f(y,z,x)=yforallze B,yeC).

Our immediate concern is to prove that ®3 is non-empty. It is easy to see that &, is
non-empty. For if f € ®, the function d(z) = f(z,z,z) must be a permutation of C
(since d(N) is not included in a é-class). Thus d=!(z) = d"(z) for some n > 0; and
f'(z,y,2) =d~1f(z,y, 2) defines an operation f' € ®;.

Claim 2. If f € ®, and a € B (the body) then the functions f(z,a,a) and f(a,a,r)
are permutations of C.

To prove it, let f € ®; and a € B. We shall only prove that f(z,a, a) is one-to-one,
the other claim being symmetric to this. The assertion falls under Claim 1 if a € N;
so assume that a € N’ where N’ is a trace different (and therefore disjoint) from N.
Choose n > 1 so that g(z,y,z) = f(oy(z,y, 2) satisfies g(g9(z,y, 2), y, 2) = g(z,y, 2) for
all z,y, 2. (See Lemma 4.4.) Then for b,c € N we have that g(z,b,c) is a one-to-one
function of z, since f(z,b,c) is; and this implies that g(z,b,¢) = z (for b,c € N and
z € C). We also have g(z, z, z) = z, obviously. Thus g(N'xNxN)Ug(N'xN’'xN') C
N’, since N and N’ are congruence classes of §. Therefore, for any a’ € N’, the
function G(z) = g(d’,z,z) satisfies G(N U N’) C N’. This function cannot be a
permutation; hence G(f) C §; consequently g(a’,v,v) L g(d',d',a’) = a' for all
v € N’ (and for all a’ € N’). Choosing a’ € N’ with (a’,a) ¢ 6§, we now have that
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P 1)
g(d',a,a) = d’ # a = g(a,a,a). Therefore g(z,a,a) must be a permutation of C, and
this implies that f(z,a,a) is also a permutation.

Claim 3. ®, is non-empty.

To prove it, choose any f € ®;. Define u(z,y) = f(z,z,y) and choose n > 1
so that u'(z,y) = ufy(z,y) satisfies v'(z,v'(z,y)) = v'(z,y). Define f'(z,y,2) =
u?l‘)l(z,f(:c,y,z)). By working in the vector space (C|y)/(6]y), it is easy to see
that for z,y,z € N,

y = u(z,y) = ufy)(z,9) = - = uy) ' (,y)

and f'(z,y,2) = f(z,y,2) (mod §). Thus f' € ®. It is also obvious that f'(z,z,z) =
z for all z. Notice that f'(z,z,y) = u/(x,y) for all z and y. Now let a € B. By
Claim 2, u(a,y) is a permutation of C, consequently u'(a,y) = y for all y. Thus
f'(a,a,y) = u'(a,y) =y for all y. We have proved that f' € ®,.

Claim 4. ®3 is non-empty.

To prove it, choose any f € ®,. Define v(z,y) = f(z,¥,y), and choose k > 1 such
that v'(z,y) = v(‘o)(z, y) satisfies v'(v'(z,y),y) = v'(z,y), and define f'(z,y,2) =
vfo')l(f(z,y,z),z). Arguing as in the proof of Claim 3, we see that f' € ®; and
f'(y,z,x) = y whenever y € C,z € B. Also, for y € C, = € B, we have f'(z,z,y) =
vfo')l(y,y) = y since f(z,z,y) =y. Thus f' € ®3.

The more difficult half of the proof is now behind us. Let d be a 3-ary polynomial
of C satisfying (1) and (2). (There is at least one, since any member of ®3 satisfies (1)
and (2).) In the next paragraphs, we shall use the fact that (6,6) is Abelian (which
follows from Lemma 4.12 and Lemma 4.14).

We wish to prove (3). So let a,b € B and define fo(z) = d(z, a,b), fi(z) = d(a, z,b),
f2(z) = d(a,b,z). Assume that a € Ny and b € Ny, where Ny and N, are traces. We
do not rule out the possibility that No = Nj.

Claim 5. Either f; € SymC for all ¢ € {0,1,2}, or f;() C 6 for all i € {0,1,2}.

To prove the claim, we assume first that fo is a permutation. Then (z,y) € § iff
(fo(z), fo(y)) € 6 (for all z,y in C). Choose u € Ny such that (u,a) ¢ §. Then
(fo(a), fo(u)) ¢ 6; ie., b = d(a,a,b) # d(u,a,b) (mod §). Written another way,
d(u,u,b) = b # d(u,a,b) (mod §); and since (§,6) is Abelian, we can replace the first
and third occurrence of u in this formula by a, obtaining that fi(u) Z fi(a) (mod
6). therefore f1(f) € 6 and f; must be a permutation. All steps of this argument are
reversible. Hence we can conclude that fo € Sym C iff f; € Sym C. That f; € Sym C
iff fo € Sym C is proved in exactly the same way.
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Continuing with the proof of statement (3), suppose that one of the f; fails to be
a permutation, so that they all fail to be. Define 8(z) = d(a,d(a,z,b),z). If z € Ny
then d(a,z,b) = fi(z) L fi(a) = b, and so B(z) $ d(a,b,z) = fa(z). Therefore
(B(No))? C 6, implying that 8 ¢ SymC and (B(N;))? C 6. On the other hand, for
z € Ny, we have d(a,z,b) = fi(z) L f1(b) = a, and so B(z) i d(a,a,z) = z. Thus,
for z,y € Ny, we have z = (z) = (y) = y (mod §), contradicting that N, is a trace.
This contradiction concludes our proof of (3).

Statement (4) is an immediately corollary of (3). If a and b belong to the body
then fa(z) = f(a,b, z) defines a permutation f2 € Pol; CNSym C. This f, must map
traces onto traces and must map B onto itself, and consequently d(a,b,c) = f2(c) is
in B whenever c € B.

Statement (5) also follows immediately from (3). For any two traces No and Ny, we
can choose a € Ny and b € N; and consider the polynomial f2 of the last paragraph.
Since fa(b) = a and f;! is a polynomial, it is obvious that fo(N;) = Np and that
f371: Ny =~ Ny (in the sense of Definition 2.7).

The above defined isomorphism leaves § invariant, consequently (f;1)s is an iso-
morphism between the two minimal algebras (C|y,)/(6]y,). Thus we can conclude
that all the traces are of type 2. The operation d, restricted to any trace K, must
define the ternary difference operation z — y + 2z in the vector space (C|g)/(6]x),
since this is the only Mal’cev polynomial in a vector space. O

DEFINITION 4.21. Let C be any algebra minimal relative to a congruence quo-
tient (6,6). Let i be any of 1, 2, 3, 4 or 5. We say that C has type i relative to (4, 6)
iff for each (6, 6)-trace N, (C|y)/(6]y) is a minimal algebra of type i. (Equivalent
phrases are: “The type of (§,0) in C is i.” “C is (6, #)-minimal of type i.")

DEFINITION 4.22. Suppose that C is a (6, #)-minimal algebra of type 2 and that
d € Pol3C. Then d is a pseudo-Mal’cev operation of C (with respect to (6, 6))
iff it satisfies 4.20 (1-4).

THEOREM 4.23. Every finite algebra C that is minimal with respect to a con-
gruence quotient (6,0) is of one of the types 1, 2, ...,5 relative to (6,6). Moreover, if
the type is 3, 4 or 5 then 6 covers §. The type is 1 or 2 iff 8 is Abelian over §; and
the type is 1 iff § is strongly Abelian over §.

PROOF. The first statement follows from Lemmas 4.12 and 4.20, the others from
Lemma 4.14 and Exercises 4.19 (3 and 4). ]

The undry type (i.e., type 1) is in several respects an anomaly. We have seen
that when C is (, 8)-minimal of type other than 1, a very “tight” internal structure
prevails, relative to (6,6). In type 1, all we can say is that the correlated minimal
algebras are in a sense trivial (no operations depending on more than one variable),
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and that (6, 6) is strongly Abelian. However, we shall see that the following is true
when (a, ) is a tame quotient of A and U € Ma(a, 3): The algebra A|; has type 1
relative to (a|y , B|y) iff B is strongly Abelian over a. What this means, in practice, is
that type 1 never enters the picture if A satisfies any “non-trivial Mal’cev condition”
(to be defined in Chapter 9). We think of type 1 as the black sheep of the family,
and hope to exclude it whenever possible.

In the remainder of this chapter, we study E-minimal algebras, and probe deeper
into the structure of (6, #)-minimal algebras of type 2. Most of the information to be
obtained will not be needed until much later, so the reader may sensibly skip directly
to Chapter 5 and return to these pages when the need arises.

LEMMA 4.24. Let C be minimal of type 2 relative to its quotient (6,0), and let
N be any (6,6)-trace. The interval lattice I{6, 6] contained in Con C is isomorphic
to the congruence lattice of the vector space (C|y)/(6|y)-

ProoF. The congruence lattice of the vector space is isomorphic to the interval
I[6|y5,1n] in ConC|y. By Lemma 2.4 (taking A = U = C and e = id), restriction
is a homomorphism of I[0¢,6] onto ConC|y. Therefore, restriction maps I[6, 6]
homomorphically onto I[6|y ,1n]. We have only to see that this homomorphism is
one-to-one, i.e., that when § < a < 8 <6 (a,8 € ConC) then a|y < B|y. To do
this, choose any pair (c,d) € 8 — a. Since {c,d) € § — § too, there exists a (5, 6)-
trace N’ with ¢, d € N'. By Lemma 4.20 (5), there exists f € Pol;C N SymC such
that f(N') = N. All congruences of C are invariant under f; hence (f(c), f(d)) €
By — a|y. This ends the proof. O

LEMMA 4.25. Let C be minimal of type 2 relative to (6,0). Let B be the body,
T be the tail, and d be a pseudo-Mal’cev operation, with respect to (6,60). There do
not exist elements b € B and t € T such that d(t,t,b) = b (mod 6) (or d(b,t,t) = b
(mod 0)).

PROOF. Suppose otherwise, say t is in the tail, while b and d(t,¢,b) = c lie in the
same trace N. Define a unary polynomial, h, by setting

h(z) = d(z,d(t, d(t, z,b),b),c).

The properties assumed of d are, by Definition 4.22, enumerated in Lemma 4.20.
Notice that for any u,v € N we have t = d(t,u,u) = d(t,u,v) (mod 6), which implies
that ¢t = d(t,u,v) (mod §) since ¢ is in the tail. For any z € N, we calculate that
d(t,z,b) =t (mod §), then

d(t, d(t, z,b),b) £ d(t,t,b) = c,

and therefore
h(z) £ d(z,c,c) = .
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This fact implies that h(6) € 6 and so h is a permutation. Therefore h(t) ¢ B. But
h(t) = d(t,d(t,c,b),¢) £ d(t, d(t,b,b),b) = c,

implying that h(t) € B. This contradiction proves the lemma. ]

LEMMA 4.26. Let C be minimal of type 2 relative to (6,0). There do not exist
elements t, a, b and a 3-ary polynomial f of C satisfying: t is in the tail, {a,b) €
6 -6, and

f(t,t,a) = f(a,a,a) =@, f(t,a,a)=t, f(ba,a)=0b.

PROOF. Assuming that these elements and polynomial exist, we define

h(z) = f(z, f(t, f(t, z,a),a),a),

calculate that h(t) = h(a) = a while h(b) = b (mod §), and reach the same contra-
diction as in the last proof. O

LEMMA 4.27. Let C be minimal of type 2 relative to (6,0), and let B be the body
and T be the tail of C with respect to (6,0).
(1) The formula: (a,b) € 8 « “for all f € Pol,C, f(a,z) € Sym C iff f(b,z) €
Sym C,” defines a congruence 3 of C satisfying 8 C B2 U T?.

(2) For all f € Pol;C, if f ¢ Sym C then f(B) x f(B) C 3.

(8) The relation B2 U B is a congruence having B as an equivalence class. Thus,
if f € Pol,C (for any n) then either f(B") C B or f(B") C T.

(4) The largest congruence, §, included in B® U T? satisfies:
(i) For all A € Con C, either A< S or 6§V A > 6.
(ii) For every quotient (v,A) of C, ify < 8 and A £ B then (v, ) is non-
Abelian.

PROOF. It is easy to check that 8 is a congruence. Let d be the pseudo-Mal’cev
operation. If b € B and t € T, and we put f(z,y) = d(z,b,y), then f(b,z) € SymC
and f(t,z) ¢ SymC. Therefore 8 C B2U T2

To prove (2), let f € Pol,C, f ¢ SymC. Let a,b € B and choose a’,b' € B
such that (a,a’) €  — 6, (b,b') € 6 — 6. We are to show that (f(a), f(b)) € B. Let
h € Pol,C be such that h(f(a),z) is a permutation. Defining h'(z) = h(f(z),z), we
have

h'(a') = h(f(a'),a') = h(f(a),a’) # h(f(a),a) = }'(a) (mod é).
Therefore h’ € Sym C, and

h(£(b),b) # h(£(b),b') = h(f(b),) (mod 6);
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consequently, h(f(b),z) is a permutation. This proves that (f(a), f(b)) € G.

To prove (3), note that U B? is an equivalence relation having B as an equivalence
class, since BN (T x B) = 0. If f € (Pol;C) N (SymC), then clearly f leaves this
equivalence relation invariant. If f € Pol;C — Sym C then, again, f preserves the
equivalence, by (2). Thus U B? is a congruence.

To prove (4i), assume that A € ConC and A ¢ B2UT?. Let (b,t) € AN (B x T).
For any a = b (mod ) we have a = d(b,b,a) 2 d(t,b,a) £ {. Thus N? C 6V A, where
N =b/6. By Lemma 4.20 (5), we have § < §V A.

To prove (4ii), assume that v < AAB, A £ B, and (v, A) is Abelian. We shall derive
a contradiction. We choose a pair (b,u) € AN(B xT). Since d(u,u,u) = d(b,b,u) and
(¥, A) is Abelian, it follows that d(u,u,b) = d(b,b,b) = b (mod ~). Since v < 3, the
element ¢ = d(u,u,b) belongs to the body. We consider, once again, the polynomial
h(z) = d(z, d(u, d(u, z,b),b),b). Choose a so that (a,b) € § — §. Notice that

h(b) = d(b,c,b), and
h(a) = d(a,c,b)(mod §) .

By Lemma 4.20, it follows that (h(a), (b)) € § — 6. Thus h is a permutation. But
since (b, c) € v, modulo v we have

h(u) = d(u,u,b) =c.

Since v < B, it follows that h(u) € B, which is impossible. This contradiction finishes
the proof. O

Recall that E(C) denotes the set of ail f € Pol, C satisfying f2 = f. The algebra C
is called E-minimal iff C has at least two elements and E(C) contains only constants
and the identity function (Definition 2.14).

LEMMA 4.28. Let C be a finite algebra of at least two elements. Then C is
E-minimal iff C is minimal relative to every one of its prime congruence quotients.

PROOF. Suppose that C is E-minimal, and let § and @ be congruences of C such
that § < 6. Then (6, 0) is tame (by Theorem 2.11), hence there exists e € E(C) such
that e(C) is a (6, 6)-minimal set. Obviously, e cannot be constant, so e = id¢ and
C = ¢(C) is (6, 0)-minimal—i.e., the algebra C is minimal relative to (6, 8).

Second, suppose that C is not E-minimal, and pick e € E(C) satisfying 1 < |e(C)| <
|C|. Let é be the largest congruence p of C satisfying | e(c) = Oe(c)- Wehave § < 1¢
since e(C) has more than one element. Choose for # any congruence that covers- 4.
There exists (z,y) € 6|,y with z # y. We have (e(z),e(y)) = (z,y) € 6 - §;
consequently e(f) € 6, and it follows that C is not (6,6)-minimal, since e is not a
permutation. O
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LEMMA 4.29. If an E-minimal algebra C has a prime quotient of type 3, 4 or 5,
then |C| = 2.

PROOF. Let C be E-minimal and (6,0) be a non-Abelian prime quotient of C.
(This means a quotient of type 3, 4 or 5.) The structure of C with respect to (4, 8)
is described in Lemma 4.15 or Lemma 4.17.

We assume first that Lemma 4.17 applies ({(§,6) has type 3 or 4), and we use the
notation of that lemma. Let e(z) = p(0,z) and note that by Lemma 4.17 (3 and 5),
e € E(C) and e(1) = e(0) = 0, while e(z) = z (mod §) for all z € C — N. Since C is
E-minimal, these facts imply that e is constant and C = N = {0,1}.

Now we assume that Lemma 4.15 applies ({6,0) has type 5). Choose u € O and
put e(z) = p(u,z). From the E-minimality of C and the facts expressed in Lemina
4.15, it follows that e is constant, e(z) = u for all z, and C = N = OU{1}. Since this
holds for all u € O, we have that p(z,y) = z for all z,y € O. But now the operation
f(z) = p(z,u), where u € O is fixed, satisfies: f(1) =u, f(z) =z for all z # 1. Thus
f € E(C) and f is constant, implying that C = N = {1,u}. m]

LEMMA 4.30. Let C be minimal of type 2 relative to (6,60), and let B be the
(6,60)-body of C. Ife € E(C) and e # idc, then [e(C)N B| < 1.

PROOF. Suppose that e € E(C), e # id, and e has a fixed point b (i.e., e(b) = b)
belonging to B. We show that there are no other fixed points of e in B. Let d
be a pseudo-Mal’cev operation relative to (6,60). Define a polynomial h by setting
h(z) = d(b,e(z),z). Then letting N denote the trace which contains b, we have
e(N) € N. In fact, e(N) C b/6, since otherwise e would have to be a permutation
(implying e = id). Therefore for z € N, we have h(z) = z (mod §); and it follows
that h is a permutation. Now if & is any fixed point of e lying inside B, then
h(b') = b = h(b), consequently b’ = b. a

THEOREM 4.31. Let C be minimal of type 2 relative to (6,0), and let B be
the (6,0)-body of C. Then C|g is an E-minimal algebra, and it is minimal of type
2 relative to (8|, 8|g). Moreover, these statements are equivalent: (1) C = B;
(2) C is E-minimal; (3) Cl|g is Mal'cev.

PROOF. Lemma 4.30 easily implies that C|g is E-minimal. To see it, let e €
E(C|p). We can find f € Pol;C with f|g =e. Choose n > 0 such that f* € E(C).
We have e = f"|g since e = e2. Now apply Lemma 4.30 to f™.

By a similar calculation, C|g is minimal relative to (6|5, 8|g). It is easily seen
that the type must still be 2.

Now (3) implies (1) by Lemma 4.26 (Mal'cev algebras are defined in Definition
4.5); and we have seen in the first paragraph of this proof that (1) implies (2). Also,
(1) implies (3) by Lemma 4.20; i.e., C|p is Mal’cev. All that remains is to prove that
(2) implies (1).
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We assume that (2) holds and (1) fails, and derive a contradiction. Let 3 be the
largest congruence of C included in B2 UT? where T is the tail. (See Lemma 4.27.)
Obviously, < 3 < 1¢. Let X be any congruence covering 3. By Lemma 4.28, C is
minimal relative to (8, \). What is the type relative to (3, \)? Since B # C, we have
|C| > 3; hence Lemma 4.28 implies that this type can only be 1 or 2. By Theorem
4.23, (B, )) is Abelian. We have a contradiction to Lemma 4.27 (4(ii)). O

THEOREM 4.32. Every E-minimal algebra possesses one of the types defined
below:

(1) C has type 1 iff all of its prime congruence quotients have type 1.

(2) C has type 2 iff all of its prime congruence quotients have type 2. Any finite
algebra with more than one element is E-minimal of type 2 iff it has a Mal’cev
3-ary polynomial and is minimal of type 2 relative to one of its congruence
quotients.

(3) C has type 3 (or 4 or 5) iff it is a two-element minimal algebra of type 3 (or
4 or 5, respectively).

PROOF. Let C be E-minimal. By Lemma 4.28, relative to each of its prime
congruence quotients, C is minimal and the quotient has a type. It is immediate
from Lemma 4.29 that if C has a quotient of type 3, 4 or 5, then it is a two-element
minimal algebra of the same type, and therefore C has one of the types defined in
part (3) of this theorem. An algebra of one of these types has, of course, no quotients
of type 1 or 2.

Suppose that C has a prime quotient of type 2. Since (2) implies (3) in Theorem
4.31, C has a Mal’cev polynomial d. Then every induced algebra (C|y)/(6]y),
where N is a congruence class and § a congruence in C, has a Mal’cev polynomial.
Therefore C certainly cannot be minimal of type 1 relative to any quotient; and it
follows that all prime quotients of C are of type 2.

The only remaining possibility is that all prime quotients have type 1.

The assertion in part (2) of the theorem is an easy consequence of Theorem 4.31
and the considerations just concluded. ]

LEMMA 4.33. Any E-minimal algebra of type 2 is solvable. Any E-minimal alge-
bra of type 1 is strongly solvable.

PROOF. Let C be E-minimal of type 2. Let 0c =0y < 6; <--- <6, = 1¢ be any
maximal chain in the congruence lattice of C. For each ¢ < n, C is minimal of type
2 relative to (6;, 0;+1). Therefore 6;, is Abelian over 6;, by Theorem 4.23. Now C is
solvable, by Definition 3.6. The proof of strong solvability when the type is 1 follows
the same pattern. (Use Definition 3.10.) O
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COROLLARY 4.34. Let C be minimal of type 2 relative to (6,6), with body B.
Let 8 be the congruence of C defined in Lemma 4.27. Then B is an equivalence class
of 8.

PROOF. By Lemma 4.27, B is a union of f-equivalence classes. Suppose that
(u,v) € B2 — B. This means that there exists f € Pol,C such that f(u,z) € SymC
and f(v,z) ¢ SymC (or the same condition with u and v interchanged). Let A be the
congruence of C|p generated by (u,v), and 7 be a subcover of A in Con C|g. Note
that (u,v) ¢ 7. By Theorems 4.31 and 4.32, C|p is minimal of type 2 relative to its
prime quotient (7, A); and therefore (7, A) is Abelian. Since f(u,z) € Sym C, we have
f(u,u) € B. Therefore, by Lemma 4.27(3), f(B%) C B, and f| is a polynomial of
C|p. Letting h(z) = f(v,z), we have that h ¢ Sym C, implying that h(6) C 8, which
implies that h|g ¢ Sym B, and that h(A) C 7. Therefore f(v,u) = h(u) Z h(v) =
f(v,v). Now since {7, A) is Abelian, we have f(u, u) = f(u,v). But this is impossible;
the function h'(x) = f(u, ), restricted to B, belongs to Sym BN Pol;C|z and must
satisfy h'~1(7) = 7. The contradiction proves the corollary. O

The next result asserts that E-minimal algebras of type 2 are nilpotent. These
algebras are very interesting to us, due to the role that they play in our subdi-
rect representation theorem for congruence lattices of finite algebras in congruence
modular varieties (Theorem 8.7). In Chapter 13, we shall finish the work begun in
Lemma 4.20 by showing how every E-minimal algebra of type 2 can be constructed
from a vector space (Theorem 13.9); the cardinality of such an algebra is always a
prime power. In Exercise 4.37 (6), we outline a proof that every finite group of order
p*, p a prime and k > 0, is an E-minimal algebra of type 2.

DEFINITION 4.35. Let A be any algebra. For congruences a, 8 we define [a, (3]
to be the smallest congruence § such that C(a, 3;6). (See Exercises 3.8 (2-4).) In-
ductively, we define (1]! = [1)! = 14, (1]**! = [1,,(1]"], )™ = [[1)",14]. We
say that A is left (right) nilpotent iff for some n, (1]® =04 (or [1)® =0).

If A has a Mal’cev polynomial then, by the result of Exercise 3.8 (4), [a, 8] = [3, ]
and the two concepts of nilpotency coincide.
LEMMA 4.36. Every E-minimal algebra of type 2 is nilpotent.

PROOF. Let C be E-minimal of type 2. We begin the proof by defining a special
congruence of C.

/\=ﬂ{ann(6|0) : 6 <0 andé,6€ConC}.
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A pair (u,v) in C? belongs to A iff for all prime quotients (6, 6) and for all f € Pol,C
(for any n) and for all Z1,¥1,...,Zn—1,¥n—1 in C such that {(z;,3:) : 1 <i<n} CH,
we have

(4.36.1) f(u,7) = f(u,7) (mod 6) « f(v,7) = f(v,§) (mod ).

We claim that A = 1¢. To prove it, assume to the contrary that we have a pair
(u,v) € C% — X. Choose a Mal’cev 3-ary polynomial d(z,y, z) of C. (By Theorem
4.32, such a polynomial exists.) Choose a prime quotient (6,6), a polynomial f, and
pairs {a;,b1), . . ., (an, by) in , witnessing a failure of (4.36.1); say (f(u,a), f(u,b)) € §
and (f(v,a), f(v,b)) ¢ 6.
Now define

f'(z,2) = d(f(z, 2), f(z,]), f(v,])).
Notice that

f0,5) = £ (0,5) = £ (D) £ £ (w,3)

and f(v,a) = f'(v,a). Therefore (f'(u,a), f'(v,a)) ¢ 6 while f'(u,b) = f'(v,b). One
can transform the pair (f’(u,b), f'(v,b)) into the pair (f'(u,a), f'(v,@)) by changing
b, to a;, then by to as, and so on. At some i*h step in this process, the pair moves
from inside § to outside §. Then with g(z,y) = f'(y,a1,...,8i-1,2,bi41,...,bs), and
{a,b) = (ai,b;), we have: g(b,u) = g(b,v) (mod §), and g(a,u) # g(a,v) (mod §),
and (a,b) €6. '

Using.the binary polynomial g just constructed, we define another:

(4.36.2) h(z,y) = d(g(z,y),9(z,v), 9(a,v))-

Notice that h(a,u) = g(a,u) and

h(b,u) £ d(g(b, v), 9(b,v), 9(a,v)) = g(a,v).

Thus (h(a,u), h(b,u)) € 8 — 6, and we conclude that h¥(z) = h(z,u) is a permutation
of C, since C is (§,0)-minimal. On the other hand, h¥(z) = h(z,v) is constant
(= g(a,v)). This contradicts Corollary 4.34, since C is its own body with respect to
(6,0). Therefore A = 1¢, and it follows by Definition 4.35 that C is nilpotent. m]

Exercises 4.37

(1) Let C be minimal of type 1 relative to its quotient (§,6). Let Np, ..., Nx_1 be
(6,8)-traces of C such that N; % Nj for 0 < ¢ < j < k, and every (4, 6)-trace
N satisfies N =~ N; for some i. Prove that the interval I[4, 6] is isomorphic to
[T{Con ((Cly,)/(8]x,)) : 0<i<k}. (See the proof of Lemma 4.24 for how
to proceed.)
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Construct an algebra minimal of type 2 relative to a quotient (0,6), and pos-
sessing a non-empty tail. Here is a recipe. Let B = (B, +,—,0) be a finite
Abelian group satisfying pz = 0 for a certain prime p. Let T be a finite set
disjoint from B, having an element ¢o € T. Define an operation on C = BUT
by

z—-y+z if {z,y,2} C B;

d(z,y,2) =< u if {z,y,2}NT = {u};
to otherwise .

Define § = 0c U B2, Prove that C = (C,d) is minimal of type 2 relative
to (0¢,0) with body B and tail T. (The exercise involves proving some easy
facts about all the polynomial operations of C.) Note that if B is a two-
element group and |T'| = 1 then C is polynomially equivalent to a three-element
semigroup formed by adjoining a zero element to B.

Suppose that C is minimal of type 3 relative to (6,8). (See Lemma 4.17.)
Prove that C has a pseudo-Mal'cev operation with respect to {(6,8). Show
that Lemmas 4.25, 4.26 and 4.27 are valid in this situation. (So is Lemma
4.30, but this lemma is now trivial.)

Let C be an algebra minimal with respect to quotients (4;,6;) (¢ = 0,1) and
of type 2 or 3 relative to each. Let B; be the (6;,6;)-body. Prove that either
By = B, or BoN B, = 0. (Use Lemma 4.26 and the previous exercise.)

Prove the result of statement 4(i) in Lemma 4.27 under the assumption that
C is minimal of type 3 or 4 relative to (6, 6); and prove the result of statement
4(ii) under the assumption that C is minimal of type 3, 4 or 5 relative to
(6,0).

Let p be a prime integer and G be a group of order p¥. Prove that G is
E-minimal of type 2. [Letting h € E(G) be nonconstant, it must be shown
that h(z) = z. Choose ¢ € h(G) and define e(z) = h(zc)c™!. Then e =
€2, e(1) = 1, and e is non-constant. Show that there exist a;,...,a, € G with
e(z) = a7 'zara; 'zay - - a; za,. Let G® =G,...,G™) = {1} be the upper
central series of G, so that [G,G®)] = G+1), Now show that p | n(n—1) and,
inducting on %, show that e(x) = z (mod G®) if p | n — 1, and that e(z) = 1
(mod G®) if p | n.]



5. THE TYPES OF TAME QUOTIENTS

We are now ready to define and study the five types of tame congruence quotients.
In this chapter, we will delineate the distinct characters of these types, primarily in
relation to the “polynomial structure” of an algebra. In the next two chapters, we
shall consider the congruence lattice of an algebra as a labeled graph, where all of
the prime quotients are labeled with their respective types. We shall be concerned
with the ways in which this labeling is influenced by the unlabeled congruence lattice,
construed purely as an abstract lattice.

DEFINITION 5.1.

(1) Let (@, B) be a tame quotient of congruences in a finite algebra A. Let U be
any element of M (a, 3). We define the type of (a, 3), written typ(a, 3), to
be the type of A|y relative to (a|u, Blu)-

(2) Let (,A) be any quotient of congruences in a finite algebra A. By typ{y, A}
we denote the set {typ(a,B): ¥ <a<B <A}

(3) Let A be any finite algebra. We call A tame iff the quotient (04,14) is tame
(implying that |A] > 1). If A is tame, we put typ(A) = typ(04,14).

(4) Let A be any finite algebra. By typ{A} we denote the set typ{04,14} of
types.

The type of a tame quotient {a,3) in a finite algebra A is well-defined by the
above. To verify this, let Uy and U; be (a,)-minimal sets. According to Theo-
rem 2.8 (1) and Exercise 2.9 (5), there exists an isomorphism between the structures
(U, Pol Ay, , @|uy, Blu,) and (Uy,Pol Aly,, elu,, Blu,). Therefore the type of Aly,
relative to (a|u,,Blu;) is the same for i =0 and i = 1.

A first corollary of this definition and of our earlier work is worth noting. Recall
that for a tame quotient (a,8) in A, an (o, 8)-trace is simply any set N such that
for some U € Mj (e, ) and z € U, we have N = (z/B8)NU # (z/a)NU.

COROLLARY 5.2. Let (a,f) be a tame quotient in a finite algebra A..

(1) For every (a,)-trace N, the algebra M = (A|n)/(a|n) is a minimal (and
therefore tame) algebra, and typ(a, 8) = typ(M).

(2) If typ(a,B) # 1 or if a < f3, then for every pair of (o, 3)-traces Ny and M,
we have No =~ N; and M = M;, where M; = (A|n,)/(a|n;)-

71
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PROOF. Let U be any (a,8)-minimal set and let N be an (a|y, Blu)-trace. Put
C = A|y and (6,6) = (a|v,Blu). Note that C|y = A|n, since U is the range of
some unary polynomial e of A with e = e2. Thus M = (A|n)/(a|n) = (C|n)/(6]|n)-
The type of C relative to (6,8) (equal to typ(a,8) by Definition 5.1) was defined in
Definition 4.21 to be the type of the minimal algebra M. (Recall from Chapter 4
that this is independent of N.) Since M is the only (O, 1as) trace in M, this type
is the same as typ(M). This concludes the proof of (1).

For ¢ € {0,1}, let N; be an (a|y,, Blu,)-trace, where U; € Ma(a,3). We have
Up ~ Uy in A, so Ny ~ N’ in A for some {a|y,, Blu,)-trace N’. Suppose that
typ(a, ) # 1. Then by Lemmas 4.12 and 4.20 (5) all {ao, Bo)-traces are ~ in A|y,.
This implies that Ny ~ N’ ~ N; in A. (For the definition of polynomial isomorphism,
~, see Definition 2.7 and the remarks following it.) If @ < 3, then Lemma 2.3
implies that a|y, < Blv,. Thus aly, V ©(N2) = Blu,, and this implies that there is
f € PoljA|y, such that f(No) NN’ # 0 and f(No)? € a. By 2.8(3), f € Sym Uy,
and it follows that f(Ng) = N’ and Ny ~ N’ as before. O

To avoid monotony, we shall sometimes refer to the types by their names, intro-
duced in Definition 4.10. These are, in the order 1,...,5 : unary, affine, Boolean,
lattice, and semilattice type. The lattice of types is pictured below:

3
4
5 2
1
Figure 10

This lattice is obtained from the lattice pictured below Lemma 4.8 by identifying
two-element algebras which have the same type, namely E; and Eg, E¢ and E;.
(This identification is not a lattice homomorphism.) The ordering of types pictured
in Figure 10 is in terms of the richness of the set of binary operations depending on
both variables, in the polynomial clone of a two-element algebra of the type. For
each of the six proper order ideals in the lattice of types, we shall prove in Chapter
9 an omitting types theorem. These theorems will characterize locally finite varieties
which have no prime quotients of a type belonging to a given ideal, in terms of several
equivalent conditions not involving tame congruence theory. For example, a locally
finite variety omits the types 1, 2, 5 if and only if the congruence lattices of its finite
algebras are semi-distributive.
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Here is an important corollary of our earlier work.

COROLLARY 5.3. Let 6 £ v < a < 8 < )\ be congruences of a finite algebra A
and assume that (a, 8) is tame. Then typ(e, 8) = typ(a/é,8/6) (computed in A/5)
and typ{y, A} = typ{7/6, A/6}.

ProoF. This is an easy consequence of Lemma 2.18, Definition 4.21, Theorem
4.23, and Definition 5.1. O

Remark 5.4. The structure of an (a, 3)-minimal set, when (o, 8) is tame of type
5 in A, is largely defined in Lemma 4.15. When the type is 3 or 4, Lemma 4.17
defines the situation. When the type is 2, Lemma 4.20 applies, and Lemmas 4.24-
4.27, 4.30, 4.31, 4.34, and 4.36 provide supplementary information for this case. We
shall make frequent use of these Lemmas. Notice that when typ(a, 3) = 3 or 4, all
the (a, B)-traces are two-element sets (by Lemma 4.17). When typ(a,8) = 2, the
induced algebras on the traces are Mal’cev (by Lemma 4.20).

The first substantial theorem of this chapter characterizes tame quotients of affine
type. It was first proved by the authors, but the argument used here is due to
P.P. Palfy.

THEOREM 5.5. A tame quotient has affine type if and only if it is Abelian and
not strongly Abelian.

PROOF. Let (a, 8) be a tame quotient in a finite algebra A. If typ(a, B) € {3,4, 5}
then, choosing any pair of elements u and v in an (a, B)-trace N, such that (u,v) €
B — e, it follows from Lemma 4.15 or Lemma 4.17 that A, .} is a non-Abelian
algebra. (In fact, A has a binary polynomial f such that f(u,u) = u = f(u,v) and
f(v,u) = u, while f(v,v) = v, or the same equations with u and v interchanged.)

If typ(a, B) = 2, then (e, 8) cannot be strongly Abelian because for every (a, 3)-
trace N, the algebra A|y is Mal'cev. (See Definition 3.9 and Lemma 4.20.)

In the next theorem, we will prove that (a, 8) is strongly Abelian if typ(e, 8) = 1.
Assuming this fact, it follows that if (@, 8) is Abelian and not strongly Abelian, then
typ(a, B) = 2 (as all other possibilities are ruled out). To prove Theorem 5.5, all we
have to do is prove that typ(e, 8) = 2 implies (a, 8) is Abelian. Since both properties
are invariant under factoring out a, we can assume that @ = 04. (See Proposition
3.7 and Corollary 5.3.)

Now assume that (04, 8) is tame in A of affine type, i.e., typ(04,3) = 2. It must
be shown that (3 is an Abelian congruence, i.e., C(3,8;04) holds (in the notation
of Definition 3.3). Letting f € Pol,41A for some n, and (c;,d;),...,{(cn,ds) €
B, our task is to prove that for all (a,b) € B, if f(a,c1,...,¢n) = f(a,dy,...,dn)
then f(b,c1,...,¢q) = f(b,dy,...,ds) (or more briefly, f(a,&) = f(a,d) = f(b,é) =
f(b,d)). Note that if the implication f(bo,&) = f(bo,d) — f(b1,&) = f(b1,d) holds
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whenever {bg, b1 } is contained in a (04, 8)-trace, then it must hold whenever (b, b1) €
B. (See Lemma 2.17 and the remarks proceeding it.)

Thus, we can assume that N is a (Oy, Bly)-trace for a certain U € Ma (04, 8),
that {a,b} C N, and that f(a,é) = f(a,d) while f(b,&) # f(b,d). We shall derive a
contradiction from these assumptions, and that will finish the proof.

By Theorem 2.8 (4), there exists h € Pol; A such that h(A) = U and h(f(b,c)) #
h(f(b,d)). Replacing f by ho f, we now have that f(A"*!) C U and the other
assumptions are unaltered. The elements f(a,¢), f(b,¢), f(b,d) all belong to a
(Oy, Blu)-trace N’. Note that Lemma 4.20 applies to the algebra A|y relative to
(6,0) = (Oy, Blu). By 4.20(5), there is a unary polynomial g of A such that g(U) C U
(i.e., glv € Pol;A|y) and g maps N’ bijectively onto N. Replacing f by go f, we
now have that

{a,b, f(a,2), f(b,€), f(b,d)} S N
and the other assumptions are unaltered. Palfy’s argument begins at this point.
We define T; = ¢;/f (1 < ¢ < n), and observe that
FIN XTy x - x Ta) CUN f(a,8)/8 = N.

Using Lemma 2.17 again, we choose, for each ¢ € {1,...,n} a sequence N(3,0),...,
N(i, k;) of (04, 0)-traces such that

(5.5.1) ¢ € N(i,0) and d; € N(i, k;), and N(i,j) "\ N(i,j +1) #0

for all j < k;. Obviously, we can arrange that all of the k; have the same value k.
Notice that J{N(:,7) : j < k} C T; for each i.
We choose, by Corollary 5.2 (2), for each ¢ and j a function a;; in Pol; A such that

(5.5.2) a;j(N) =N(i,j) and a;j|y is one-to-one .
We now define some polynomials of the algebra A|y by setting
(5.5.3) fi(x,x1,...,z0) = f(z,015(1), ..., anj(zn)) for 0<j<k.

Notice that for j < k and z,z1,...,7, € N, we have a;;(z;) € N;; C T; for all 4, and
hence f;(z,z1,...,2,) € N. Each operation f;|n is therefore a polynomial operation
of A| N-

The algebra A|y = (Alvy)|n is a minimal algebra of type 2; it is polynomially
equivalent to a vector space over a finite field F. Thus there exist elements e, ...,ex €
N, and elements p;; € F (i < n, j < k) such that, expressed in terms of the vector
space operations of A|y, we have

(5.5.4) for 0<j<k andforall z¢z,...,2, €N,

[i(Zo, &1, Tn) = poj - To+ + fhnj - Tn + €5 .
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Claim. For all j <k, poj = to j+1-

To prove this claim, choose elements uj,v1,...,Un,vs in N such that ay;(u;) =
a; j41(v;) for 1 < i < n (which can be done, by (5.5.1) and (5.5.2)). For all z € N,
we have

fi(z,uy .o tun) = fjp1(z,v1,...,00)

by (5.5.3), and so
Boj T+ prj UL+ F fnjUn + €5 = fo j+1° T+ f1 41 V1t F fn j41 0 Un F €541

by (5.5.4). Thus (goj — Ho j+1) - T is constant, independent of z € N, implying that
Koj = Mo j+1, as claimed.

We can now bring this proof to a conclusion. Let u = pgo = pok. Choose, by (5.5.1)
and (5.5.2), elements c},d),...,c,,d], in N such that aio(c}) = ¢; and ax(d}) = d;
for 1 < i < n. By (5.5.3), fola,c},...,ch) = f(a,8) = f(a,d) = fr(a,di,...,d,).
Written another way,

u~a+u10-c'1+-'~+uno-c;‘+eg=u-a+u1k'd'1+'~'+u,.k'd£,+ek.

Obviously, this equation must remain valid when we replace a by b. But that means
that f(b,&) = f(b,d). This contradicts our starting assumption, and ends the proof
of this theorem. O

THEOREM 5.6. A tame quotient has unary type if and only if it is strongly
Abelian.

PROOF. In the first two paragraphs of the preceding proof, we noted that (o, 8)
tame and strongly Abelian implies typ(a, 3) = 1. We shall now prove the converse.
As in the last proof, it suffices to derive the result in the case a = 04. We now
assume that (04, 3) is tame in A, of unary type.

Claim 1. If N, Ny, Ny are (04,0)-traces and f € PolA and f(No x N;) C N,
then f|n,xn~, depends on at most one variable.

To prove it, suppose, to the contrary, that for some zg, z;,u € Ny and yg,y1,v € Ny
we have f(zo,v) # f(z1,v) and f(u,y0) # f(u,y1). Then by Exercise 2.19 (6), we
have that a; : N; ~ N (i = 0,1), where ag(z) = f(z,v) and a;(z) = f(u,z). There
are unary polynomials §; such that a;5;|ny = idy and B;e;|n, =idn, (i =0,1). The
polynomial h(z,y) = f(Bo(z), F1(y)), restricted to N, is a polynomial of A|y. Since
A|y is a minimal algebra and typ(A|x) = typ(04,8) = 1, the operation h|y can
depend on only one variable. But, clearly, like f|n,xn, it depends on both, so we
have a contradiction, establishing the claim.

Claim 2. If N is a (04, 8)-trace, Tp and T; are (-equivalence classes, f € Pol;A,
and f(To x Ty) C N, then f|7,x7, depends on at most one variable.
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To prove it, suppose, to the contrary, that for some v € Tp and v € Ti, the
functions ag(z) = f(z,v) and ai(z) = f(u,z) are non-constant on Ty and on T,
respectively. By an obvious application of Lemma 2.17, there must exist (04, 3)-
traces N; C T; such that a;|y, is non-constant (¢ = 0,1). We claim that for any
v' € Ty, f(z,v') = ap(z) on Ny. Use Lemma 2.17 to get (04, 8)-traces My,..., My
such that v € My, v' € My and M; N M;1; # 0 for all i < k. Let v; € My N M;. By
Claim 1, ap(z) = f(z,v) = f(z,v1) for £ € Np. An easy induction along these lines
yields f(z,v') = ao(z).

A similar argument implies that for any v’ € Ty, f(v/,y) = ai1(y) for all y in Nj.
But now if (z,y) € Ny x Nj, then

ao(z) = f(z,y) = a1(y);

and so aog|n, is constant, a contradiction.

Claim 3. If N is an (04, 3)-trace, f € Pol, A (for any integer n), T = Tox--- X Ty
where T, ..., T,—1 are 3-equivalence classes, and f(T') C N, then f|r depends on at
most one variable.

This claim reduces to Claim 2 through obvious applications of Lemma 4.1. If f|p
depends on two or more variables, then at most n — 2 applications of the lemma will
produce a binary polynomial f' (which is f with constants substituted for n — 2 of
its variables) that contradicts Claim 2.

We can now finish the proof of this theorem. By Definitions 3.9 and 3.10, our
task is to prove the following. Letting f € Pol,A (for any n) and co,dp,c1,d;,
€ly---3Cn—1,dn—1, €n—1 € A, and assuming that co = dp (mod B) and ¢; = d; = e;
(mod B) for 1 < i < n, and that

f(C(),é) = f(001e1’~ . -aeﬂ—-l) # f(dOsela" '1en—l) = f(do,é),

then we must have that

f(@) = fleo,- . en-1) # f(do,. .., dn-1) = f(d) .

To prove this (under the stated assumptions), let T; = ¢;/8 (for 0 < i < n). No-
tice that f(co,€) = f(do,€) (mod B). We apply Theorem 2.8 (4) and obtain a set
U € Ma(04,0) and a polynomial h € Pol; A such that h(A) = U and hf(co,€) #
hf(do,€). Let N be the (Oy, 8|v)-trace containing hf(co,€). Let f'(zo,...,Tn-1) =
hf(zo,...,Zn-1), and observe that, since f'(A™) C U and f'(co,€) € N, we have
fl(Tox - xTh1) SN,

By Claim 3, f'|r,x..xT,_, depends on at most one variable. Since f'(co,&) #
f(do, €), it must depend on the first variable, and no other. Therefore f/(¢) = f'(co, €)
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and f'(d) = f'(do, €), implying that f'(€) # f'(d); a fortiori, f() # f(d), as desired.
This ends the proof that 3 is strongly Abelian. m}

The two theorems above generalize Lemma 4.14 and Exercise 4.19 (3) (which treated
the special case where A € M (a, 8)). These results can be neatly reformulated as a
local reduction principle for the Abelian property—a tame quotient (a, 8) is Abelian
(or strongly Abelian) iff the corresponding minimal algebras, obtained by factoring
the trace algebras, are Abelian (or strongly Abelian). We shall see a similar principle
later in this chapter, concerning prime quotients of lattice or semilattice type, which
involves an orderability property in place of the Abelian properties.

The Abelian types are 1 and 2; the non-Abelian types are 3, 4 and 5. The next
theorem summarizes what we have learned thus far about the types, and contains a
new result that has some interesting corollaries. After looking at these corollaries, we
shall begin a study of the non-Abelian types. Recall that a quotient (, 3) is called
prime iff a < B, i.e., B covers a.

THEOREM 5.7. Let A be a finite algebra.

(1) Every prime congruence quotient of A is tame.
(2) For any quotient (a, ) of A, the following are equivalent:
(i) (a,B) is prime and non-Abelian.
(ii) (o, B) is tame and typ(c, B) € {3,4,5}.
(3) A tame quotient (a, 8) has type 1 iff it is strongly Abelian, and has type 2 iff
it is Abelian but not strongly Abelian.
(4) For any quotient (@, 8) of A that is not strongly Abelian, the following are
equivalent:
(i) {a,B) is tame.
(ii) The interval lattice I[a, B8] is tight.
(iii) I[a, B) is 0, 1-simple and complemented.
(iv) I[e, B) admits a 0, 1-separating homomorphism onto the congruence lat-
tice of a vector space. (This homomorphism is essentially unique.)

PROOF. Statement (1) follows from Theorem 2.11 and Definition 1.6. Any two-
element lattice is tight.

Statement (3) reiterates Theorems 5.5 and 5.6. The implication “(i) implies (ii)”
in statement (2) follows from this and from (1). The implication “(ii) implies (i)” in
statement (2) is proved in this way. Let (a, 8) be tame and of non-Abelian type, i.e., 3,
4or5. Let U € Ma (e, 8). The {a|v, Bly)-minimal algebra A|y of type 3, 4 or 5 has,
by examination of Lemma 4.15 or 4.17, the property that a|y < B|y in the congruence
lattice Con A|y. By Definition 2.6 and Theorem 2.8 (2), the restriction map |y is
a 0,1-separating lattice homomorphism of I[a, 3] onto the interval I[a|y,B|u] in
Con A|y. Only a two-element lattice can have a 0,1-separating homomorphism



78 DAVID HOBBY AND RALPH McKENZIE

onto a two-element lattice. Therefore a < 8 in Con A. We know that (a, () is
non-Abelian, from (3).

To prove (4), observe that if @ < 8 then statements (ii), (iii) and (iv) are trivially
true (take a vector space of dimension 1 over a two-element field to prove (iv)) and (i)
is true by (1). Thus, we assume that |I[a, 8]| > 3. Now (iv) implies (iii) by Exercises
1.14 (1, 3); and (iii) implies (ii) by Example 1.11. By Theorem 2.11, we have that (ii)
implies (i).

To show (i) implies (iv), let us now assume that (@, () is not strongly Abelian
(and is not prime) and that (i) holds. Thus typ(a,3) = 2; the other possibilities
are ruled out by (2) and (3). We choose U € My (a, 3), and we put C = A|y and
(6,0) = (a|v,Blv). Thus C is minimal of type 2 relative to (6,6). Let N be any
(6,0)-trace (i.e., a (a|y,B|v)-trace). By Lemma 4.24, I[6,6] is isomorphic to the
congruence lattice of the vector space (C|n)/(6|n) = (A|n)/(a|n). By Theorem
2.8(2), the restriction |y is a 0,1-separating homomorphism of I[a, 3] onto I[é,6)].
This completes the proof that 4(i) implies 4(iv) when (a, 8) is not strongly Abelian.
The essential uniqueness comes from Lemma 1.10(2). ]

Here is a very easy and noteworthy corollary of Theorem 5.7.

COROLLARY 5.8. Let A be any finite algebra having at least three congruences.
If Con A is a tight lattice, then A is Abelian. If Con A is tight, and does not
admit a 0, 1-separating homomorphism onto the congruence lattice of a vector space,
then A is strongly Abelian.

Remark 5.9. The simplest lattices for which Corollary 5.8 is interesting are the
height two lattices M, (n > 3) with n atoms, pictured in Figure 1. M,, is tight, and
has a 0, 1-separating homomorphism “onto a vector space” iff n — 1 is a power of a
prime.

Here is another, not so immediate, corollary of Theorem 5.7. The result is obtained
by applying Corollary 5.8 to a finitely generated free algebra of a locally finite variety,
augmented by a substitution operation. We omit the proof, since it would take us
somewhat out of our way to develop the required concepts at this point. The proof
can be found in [22].

COROLLARY 5.10. IfV is a locally finite variety that possesses more than two
subvarieties, its lattice of subvarieties is not a finite tight lattice.

Exercises 5.11

(1) Let (@, B) be a tame quotient in a finite algebra A. Prove that the following
are equivalent.
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(i) (a,B) is Abelian.
(ii) For each B-equivalence class T, the algebra (A|r)/(a|z) is Abelian.
(iii) For each two-element set {u,v} C A with (u,v) € 8 — a, the algebra
Al{y,v} is Abelian.
(iv) There does not exist a pair (u,v) € 8 — o and a binary polynomial f of
A such that {u, v} is closed under f and ({u,v}, f) is a semilattice.

(Sufficient hints for the solution of this exercise can be found in the proof of
Theorem 5.5.)
(2) Let {a,B) be a tame quotient in a finite algebra A. Prove that the following
are equivalent.
(i) (e, B) is strongly Abelian.
(ii) (Alr)/(alr) is a strongly Abelian algebra, for each B-equivalence class T'.
(iii) There do not exist a pair (u,v) € 8 — a and a binary polynomial f of A
satisfying f(u,v) = f(v,u) = u and f(v,v) =v.
(iv) For every f € Pol, A (for any n), and for every set T =Ty x +-+ x Ty,
where Ty,...,T,—1 are [(-equivalence classes, if f(T") is contained in a
single (a, B)-trace then f|r depends, modulo a, on at most one variable.

(See the proof of Theorem 5.6. For the equivalence of (i) and (iii), notice that
if a trace algebra A|y has a Mal’cev polynomial d(z,y,z) and if u,v € N,
then the polynomial f(z,y) = d(z,v,y) satisfies f(u,v) = f(v,u) = u and
flv,v) =v.)

(3) Let (@, B) be a tame quotient in a finite algebra A with typ(a, 8) # 1. Prove
a version of Theorem 2.8 for the traces, modified as follows: Replace M4 (a, 3)
by {N : N is an (a, B)-trace}. In (2), delete the existence of e. In (4), replace
“f(A) = U” by “f(z/B) = N”. Change (5) to read: For each N, 3 is the
transitive closure of o UJ{(g(V))?: g € Pol;A}.

(4) Using the result of the last exercise, show that if (a,3) is tame, of non-unary
type, and T = z/8 # z/a, then (a|r,1r) is tame in Az, typ(a|r,1lr) =
typ(a, B), and the (a|r, 17)-minimal sets are precisely the (a, 8)-traces con-
tained in T'.

(5) Show that when (a@,) is tame in A and typ(a,) # 2, then typ{a,B8} =
{typ(a, B)}. (See Definition 5.1 for the notation. This result is trivial unless
typ(a, B) = 1; but in this case, the result of Exercise 2 above does the trick.)
Stronger: if @ < v < A < 8 and (a, ), (7,A) are tame, then typ(a,8) =
typ(v, A) unless typ(a, 8) = 2.

Exercises 2.19 (1-2) may be useful for (5), and also for the next exercise.

(6) Suppose that o <y < A < B, that (a,3) and (v, A) are tame in A, and that
typ(a, B) = 2. Prove that (v, ) is Abelian; and that typ(y,A) = 2 if, for an
(a, B)-trace N, we have v|y < A|n. In particular, typ(y,A) = 2 if y = a or if
A=4.
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(7) This exercise complements the last two by constructing a ten-element tame al-

~

gebra of type 2 that has a tame quotient of type 1. We take A = {0,1,...,9}
and put Up = {0,1,2,3}, Uy = {3,4,5,6}, U = {6,7,8,9}. These sets will
be the (04, 14)-minimal sets of our algebra. We define two equivalence rela-
tions, v with equivalence classes {0, 3,6,9}, {1,2}, {4,5}, {7,8}, and X with
equivalence classes {0,3,6,9}, {1,2,7,8}, {4,5}.

1
2
3 4 5 6
0O——e———e—0. 7
\‘\8
9
We define F to be the set of all functions f from A to A such that f =id; or

f is constant; or f(A) = U; for some i € {0,1,2}, f2 = f, and f is one-to-one
or constant on each U; and f preserves v and A. If we think of A as a ruler

Figure 11

in three rigid segments with hinges at corners 3 and 6 (see Figure 11), then
we can find three members of F' which consist in “folding” all segments onto
one segment without violating the physical integrity of the ruler. Call these
functions eg, e, ez (with e;(A) = U;). There are two other obvious members
of F, ey which maps 4, 5, 6 to 3, maps 7 to 2, 8 to 1, and 9 to 0, and leaves
U, pointwise fixed; and e, which projects A onto U; in a similar fashion.
Define a 3-ary operation do(z,y,2) on Up by the rules: do(zo,z1,72) = z;
if {¢,7,k} = {0,1,2} and z; = xx; do(xo,1,22) = “the fourth element of
Uy if zo, 1,2 are distinct ”. Note that Uy is the universe of a four-element
vector space over the two-element field, in which do(z,y,2) = ¢+ y + 2.
Define d(z,y,2) on A so that d(z,y, 2) = do(eo(x),eo0(y), e0(z)). Define A =
(A, d, ep,e1,e2,€p, €5). Now prove that (04,14) and (v, ) are tame quotients
of A, and that typ(04,14) = 2 while typ(v,A) = 1.

Let 0 < (8 in A with typ(0,3) = 2. Using Lemma 4.27, Corollary 4.34,
and Lemma 4.36, show that if U € Ma(0,3) and B is the body of U then
C(©(B?), 3;0)—i.e., the congruence generated by collapsing B centralizes 3.

The next two lemmas reveal interesting and useful properties of non-Abelian prime

quotients. In the first lemma we do not require that the algebra be finite.
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LEMMA 5.12. Let (a, ) be a non-Abelian prime quotient of an algebra A. There
exists a (unique) congruence § such that for all congruences p of A, p A B = a iff
asp<é.

PROOF. We can prove this using not much more than the definition of an Abelian
quotient (Definitions 3.3 and 3.6). Suppose that the conclusion stated in this lemma
fails. Then § = \/{u: p A B = a} satisfies § A B # a. Obviously § > a, and
§ AP € I[a,f)], and so 6§ A B = 8 since a < B. Thus we have that 3 < §. Now by
Proposition 3.4 (4), we have C (g, 8; a) holding whenever A 8 = a. Thus, by 3.4(2),
we have C(4, B; ). Since 8 < §, it follows by 3.4 (1) that C(8, B; @), i.e., that (a, 8)
is Abelian. . O

Remark 5.13. The largest congruence § such that § A 8 = « is called the pseudo-
complement of 3 over a. This is a purely lattice-theoretic concept. Such pseudo-
complements need not exist, in general. It is easily seen that when (a, 8) is prime and
non-Abelian, the pseudo-complement of 3 over a is identical to ann(a | B), defined in
Exercise 3.8 (2).

Remark 5.14. Let A be finite and (a, 3) be a non-Abelian prime quotient of A. Let
& be the pseudo-complement of 3 over a. Choose U in Ma (, 8) and let 1 € U be the
isolated element of the {(a|v, B|v)-trace, as defined by Lemma 4.15 or 4.17 (whichever
applies). Thus 1/(ajy) = {1}. Clearly, A|y possesses a largest congruence A such
that 1/A = {1}; and we have aly < A. Since |y is a lattice homomorphism, A
has a largest congruence X satisfying M|y = A. It can easily be shown, using the
information in Lemma 4.15 or Lemma 4.17, that )\’ is identical with §, the pseudo-
complement of 3 over a. )

LEMMA 5.15. Let (o, ) be a non-Abelian prime quotient of a finite algebra A,
and let v € Con A.

(1) If a Vv = B, then there exists a smallest congruence § such that § > a A~y
andaVé=p.

(2) If (a, B) is of Boolean or lattice type, then there exists a smallest congruence
6 such that a V § = .

PROOF. Choose any (a, 8)-trace N. According to Lemma 4.15 or Lemma 4.17, we
have N = I U O (disjoint union) where I = {1} and |y = I2U O%. By Lemma 2.4,
the map |y is a lattice homomorphism on I[0, 8]. Hence, since a < 3, the condition
aV§ = fis equivalent to § < B and §N (I x O) # 0. Now if the type of (o, 8) is 3 or
4, then Lemma 4.17 tells us that O = {0} (for some element 0) and thus aVé§ =
is equivalent to (0,1) € § < 8. Thus in this case, ©(0,1) is the smallest congruence
that joins with a to give 3. This proves (2).
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To prove (1), assume that o Vv = B. Choosing (1,u) € v N (I x O), we put
6= (aNvy)VO(,u). Nowlet A > aAvyand a VA = 3. Notice that from our
definition of § we have a Ay =a A6, and so a A§ < A. Choose (1,v) € AN (I x O).
Let p be the pseudo-meet operation on N supplied by Lemma 4.15 or 4.17. Since
p(u,1) = u and p(1,v) = v, we have u = p(u,v) £ 4. Since p(u,v) € O, we actually
have p(u, v) aal v. Since a A § < A, then (u,v) € AV (@ Ab) = A and (u,1) € A; and
s0o A > (aAvy)V O(u,1) = 6. This finishes the proof of (1). O

Remark 5.16. The smallest congruence é§ such that § Va = 8, when it exists, is
called the pseudo complement of a under 3.

Every finite simple algebra is tame, and its type is the same as that of its unique
prime congruence quotient (see Definition 5.1(3)). Here is our first result on finite
simple algebras. We shall study them at length in Chapter 14.

COROLLARY 5.17. Let A,By,...,B, be finite algebras such that A is simple
and of Boolean or lattice type. If A belongs to the variety generated by {By,...,B,},
then A is a homomorphic image of a subalgebra of one of the B,.

PROOF. Let A belong to the variety generated by By, ...,B,. By Theorem 0.2, A
must be a homomorphic image of a subalgebra of (B, x - - - x B,,)¥ for a finite integer
k. Therefore, for some m, we have an algebra S C H;'f__l C; where {C;,...,Cn} C
{By1,...,B,}, and a congruence a of S with S/a = A. Since A is simple, a < 1g
in Con S, and we must have typ(a,1s) = typ(0a,14) = typ(A) (by Corollary 5.3).
Let § be the pseudo-complement of o under 1g, which exists by Lemma 5.15. For
1 < j < m, let n; be the kernel of the projection of S into C;. Since § £ a, and
A{nj: j=1,...,m} = Os, then for some j we have § £ n;. By the definition of §,
it follows that 7; V a # 1s, implying that n; < « since @ < 1g. Let i be such that
C; = B;. Then S/a (% A) is a homomorphic image of S/7;, which is isomorphic to
a subalgebra of B;. This concludes our proof. 0

DEFINITION 5.18. A lattice L is said to be meet semi-distributive, or to
satisfy SD(A), iff whenever elements z,y,z in L satisfy z Ay = z A z, they also
satisfy x Ay = £ A (y V z). The property SD(V), join semi-distributivity, is
the dual of SD(A). The conjunction of these two properties, denoted SD, is called
semi-distributivity.
LEMMA 5.19. Let 8,10,41 be congruences of a finite algebra A.
(1) It'0/\11;0 = A, = a, and if B is a congruence such that a < 3 < 0 A (Yo V1),
then typ(a, 8) € {1,2}.
(2) If0V+po =0V, = B, and if o is a congruence such that 8V (Yo Ath;) < a < B,
then typ(a, 8) € {1,2,5}.
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PROOF. Under the hypotheses of statement (1), B A%y = BAY; = a, and
B < o V 1. Thus the pseudo-complement of 3 over o does not exist. By Lemma
5.12, it follows that (a, 3) is Abelian. This proves (1).

The proof of (2) is similar, using Lemma 5.15. O

COROLLARY 5.20. Suppose that o and § are congruences of a finite algebra A
such that o < B and typ{a, 3} C {3,4,5}. Then the interval lattice I|c, B] satisfies
SD(A). If typ{a, B} C {3,4}, then I[a, §] satisfies SD(V).

ProoF. This is an immediate consequence of Lemma 5.19. O

Shortly, we shall prove that the presence of a prime quotient of semilattice type
in the congruence lattice of an algebra A forces a failure of join semi-distributivity
in the congruence lattice of a certain subalgebra of A2. Similar results concerning
prime quotients of unary or affine type will be proved in Chapter 6. These results, in
combination with Corollary 5.20, will show that when we consider in place of a finite
algebra A the class of all subalgebras of finite direct powers of A, then congruence
meet semi-distributivity is equivalent to the absence of Abelian prime quotients in
all algebras of the class, while congruence join semi-distributivity is equivalent to the
absence of Abelian prime quotients as well as those of semilattice type.

Remark 5.21. The smallest lattices satisfying one, but not both, semi-distributivity
conditions are pictured below.

D,

Dy
Figure 12

The lattice D; fails SD(A), and Dy, its dual, fails SD(V). These lattices have an
interesting role in our classification scheme for locally finite varieties (presented in
Chapter 9), along with the smallest non-modular lattice, N5, and the smallest modu-
lar, non-distributive lattice, M3. We remark that D, is isomorphic to the congruence
lattice of S2, where S is a two-element semilattice. D; is isomorphic to the lattice of
convex subsets of a three-element linearly ordered set.

To conclude this chapter, we shall find characterizations of each of the three non-
Abelian types of prime quotients, in language that does not involve tame congruence
theory.
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Recall from Chapter 0 that an admissible n-ary relation on an algebra A is a subset
of A" closed under the operations of A™. A tolerance of A is a binary relation over
A that is admissible, reflexive and symmetric. Note that an admissible n-ary relation
pon A is closed under all polynomial operations of A (acting coordinatewise in A™)
iff it contains the diagonal of A", i.e., (z,...,z) € p for all z € A. (If p is binary,
this means that p is reflexive.)

LEMMA 5.22. If an algebra A has a Mal’cev polynomial, then every admissible
binary relation of A, reflexive over A, is a congruence relation.

PROOF. Let p be admissible and reflexive. Let g(z,y, 2) be a Mal’cev polynomial
operation of A (Definition 4.5). Since p is reflexive, it is closed under gq. Suppose
that (z,y), (y,2) € p. Then ¢((z,z), (z,9), (y,9)) = (a(z,2,9),9(z,%,¥)) = (y,7)
belongs to p. (In this calculation, we are using the operation on A? which is ¢ acting
at each coordinate.) Similarly, ¢({z,¥), (¥,%), (¥, 2)) = (z, 2) belongs to p. Thus p is
reflexive, symmetric, and transitive, which makes it a congruence relation. O

We recall some more definitions from Chapter 0. The converse of a binary relation
p is the relation p¥ = {(z,y) : (y,z) € p} (read “p converse”). The relation product
of binary relations p and o is the relation poo = {(z,2) : (z,y) € p and (y,2) € ¢ for
some y}. When o is an equivalence relation, we say that p is o-closed iff p = oo poo;
the o-closure of p is the relation copoo.

DEFINITION 5.23. If (o, 8) is a prime quotient of a finite algebra A, then by the
basic tolerance for (a,) we mean the intersection of all a-closed tolerances 7 of
A satisfying a # 7 C 8.

LEMMA 5.24. Let (a, B3) be a prime quotient of a finite algebra A with typ(a, 8) #
1, and let p be the basic tolerance for (a, ).

(1) If N is an (o, B)-trace and (z,y) € N? — a, then p is the smallest a-closed
tolerance containing (z,y). The transitive closure of p is (.

(2) If typ(a,B) € {2,3}, then p is the a-closure of « UJ{N?: N is an (e, f3)-
trace}; and p is the smallest a-closed admissible reflexive relation T satisfying
a#TCLH

(3) If typ(a,B) € {4,5}, then there are precisely two minimal a-closed, admis-
sible, reflexive relations T such that o # ™ C (3. These relations, py and p,
satisfy:

(i) po=pYy and poNp1 = a;
(ii) po U p1 is the a-closure of a U\J{N?: N is an (a, §)-trace};
(iii) p is the a-closure of the admissible relation generated by po U p;.
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PROOF. Our proof begins with a claim.

Claim 1. let 7 be an a-closed admissible reflexive relation on A with a # 7 C 3,
and let N be any (a, B)-trace. Then N2 C 7 U7V, and o C 7. If typ(e, B) € {2,38},
then N2 C 7.

To begin the proof of this claim, we note that every a-closed reflexive relation
trivially contains a. Now choosing any (a,b) € 7 — a, an easy application of Theorem
2.8(4) and Corollary 5.2(2) yields the existence of a unary polynomial f(z) with
(f(a), f(b)) € N% — q; therefore T|v € a|n. Since 7 is reflexive, it is preserved by all
of the polynomial operations of A; and so 7|y is an admissible, reflexive, a|y-closed
relation of the algebra A|n.

If typ(e, B) = 2, then A|y is Mal’cev (by Lemma 4.20); and if typ(a, 8) = 3, then
A|y is polynomially equivalent to a two-element Boolean algebra (by Lemma 4.17),
and again is Mal’cev. Hence if typ(a,3) € {2,3} then it follows from Lemma 5.22
that 7|y is a congruence of A|y. Now since a < 8 and |y is a homomorphism of
I[a, 8] onto I[a|n,B|n], we have a|]y < B|y = 1n in Con A|y. Consequently, if
typ(a, B) € {2,3}, then 7|x can only be identical with 1y; and so 7 2 N? in this
case. If typ(a,8) € {4,5} then Lemma 4.15 or 4.17 implies that N is the union of
c/(a|n) and d/(a|n), for any (c,d) € 1xy — a|n; so it is obvious in this case that
TUTY D N2, since 7 is a-closed and 7|y € a|n.

Claim 2. If typ(a, B) € {2, 3}, then the a-closure of a U|J{N?: N is an (o, B)-
trace} is a tolerance.

To prove this claim, let 7 denote this relation which we wish to prove is a tolerance.
Then 7 is obviously symmetric and reflexive. To prove that it is admissible, let f
be any n-ary polynomial of A and let (u;,v;) € 7 for 0 < i < n. In showing that
(f(a), f(¥)) € T, we can assume that for a certain k¥ < n we have (u;,v;) € a for
k < i < n, and for each i < k we have a trace N; and elements c¢;,d; € N; such
that (u;,¢;) € a, (v;,d;) € @, and (c;,d;) ¢ a. Since 7 is a-closed, it suffices to
prove that (f(co,...,Ck—1,Uky--+sUn—1), f(doy---,dk—1,Uk,- .., Un—1)) belongs to 7.
Thus, changing notation, we can assume that k = n and that (u;,v;) € N? — a for
0<i<n.

Since we’ve assumed that typ(a,8) € {2,3}, by Corollary 5.2(2) there exist
unary polynomials f;(z) and elements u},v; € No such that (uj,v}) € N — a and
fi(ul) = u;, fi(v}) = v; for 0 < i < n. Replacing f by the polynomial f' defined
by f'(zo,. .. ZTn-1) = f(fo(zo),---, fn=1(Tn-1)) and writing N for Ny, and changing
notation once again, we can now assume that u;,v; € N for all i. The argument
breaks into two cases.

Case 1: Let typ(a,B) = 2. Thus (A|n)/(a|n) is a vector space of dimension
1. (Since a < B, as before we have a|y < 1y, so the vector space is a simple
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algebra.) Because ugp/a, vo/a are unequal elements of this vector space, there exists,
for all ¢, 1 < i < n, a vector space polynomial h; such that h;(uo/a) = u;/a and
hi(ve/a) = v;/a. Therefore there exist polynomials h; of A such that h}(up) = u;
(mod @) and hl(ve) = v; (mod ). We define h(z) = f(z,hi(z),...,h,_;(z)), and
observe that f(z) = h(up) (mod a) and f(¥) = h(vo) (mod a). Therefore, we are
reduced to proving that (h(uo), h(vo)) € 7. This follows from the result of Exercise
2.19(6).

Case 2: Let typ(a,8) = 3. Thus, by Lemma 4.17, N = {ug, v}, and A has a
polynomial A’ such that h'(ug) = vo and h’(vy) = ug. The argument used for Case 1
works equally well in this case.

The proof of Claim 2 is finished. Assertions (1) and (2) of this lemma are easy
consequences of Claim 1 and Claim 2. For (1), note that by Claim 1, every a-closed
tolerance 7 such that a # 7 C 8 must contain a U N2 for all traces N (since T is
symmetric). Thus p (the basic tolerance) must contain a U N2 for all traces N. Now
if N is a trace and (z,y) € N? — , then taking 7 to be the a-closure of the tolerance
generated by (z,y), we have that 7 C p by the last sentence, but also p C 7 by
the definition of p; consequently p = 7. That 8 equals the transitive closure of p
is a consequence of Lemma 2.17. This finishes the proof of (1). The proof of (2) is
somewhat easier, and we omit it.

Claim 3. The admissible reflexive relation generated by a pair (a,b) € A2 is

r(a,b) = {(f(a), f(b)) : f€PohA}
and the tolerance generated by (a,b) is

t(aab) = {(f(avb)’ f(bva)) : f € POIZA} -

The proof of this claim is a simple matter of showing that these relations are
admissible; that r(a, b) is reflexive and contains (a, b); that every admissible reflexive
relation containing (a, b) contains r(a, b) as a subset; and similar facts for t(a,b). The
proofs are left to the reader.

We now assume that typ(a,8) € {4,5}, in order to prove assertion (3) of this
lemma. We choose a trace N, and choose (a,b) € N2 — a. We define py and p;
to be the a-closures of r(a,b) and r(b,a) respectively. By Claim 1, every a-closed,
admissible, reflexive relation 7 such that a # 7 C 3 contains either py or p; (i.e.,
contains (a,b) or (b,a)). Clearly a # p; C B (: = 0,1). We now will show that
po N p1 = a, from which it should be clear that py and p; are the unique minimal
members of the family of relations under consideration. Suppose that there is a pair
{c,d) € poNpy, {c,d) ¢ a. By Exercise 5.11(3), we can choose h € Pol; A with
(h(c),h(d)) € N2 — a and h(c/B) = N. By Claim 3, there are fo, f; € Pol; A with
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fo(a) = c = fi1(b) (mod a) and fo(b) = d = fi(a) (mod a). Now N is the disjoint
union of a/(a|n) and b/(a|n). If h(c) is in the first class and h(d) in the second,
then ¢ = hf; satisfies g(a) = b, ¢(b) = a (mod a). If the order of h(c) and h(d) is
reversed, then ¢ = hfy satisfies the same congruences. Choosing an (a, 8)-minimal
set U such that N is a trace in U, and an e € E(A) with e(4) = U, it follows
from {(g(a),q(b)) € N? — « that N is closed under eq and eg|y is a permutation
which exchanges the two o|n-classes. This contradicts the fact that (A|x)/(a|n)
is polynomially equivalent to a lattice or semilattice. The contradiction finishes our
proof that pp N p1 = a. It follows easily from our definition of pp and p; that
(p1)" = po.

To prove 3(ii), recall that by Claim 1, po U p1 (= po U p§) contains o U {N? :
N a trace }. On the other hand, by Claim 3 and Exercise 2.19 (6),

r(a,b)Ur(b,a) C aULJ{N2 : N atrace }.

These facts easily yield 3(ii).

To prove 3(iii), notice that pp U p; is symmetric and reflexive. Therefore the a-
closure of the admissible relation it generates is a tolerance. Thus, by definition of p,
we have that this tolerance includes p. On the other hand, by (1), p is the a-closure
of t(a, b); and therefore p contains po and p;, by their definitions. O

DEFINITION 5.25. Let (@, ) be any congruence quotient of an algebra A. By
an (a, 8)-pre-order we mean an admissible binary relation 7 of A such that 7 is a
pre-ordering of A (i.e., it is reflexive and transitive over A), @ = 7 N 7Y, and the
transitive closure of 7 U7V is 8. We say that (a, 3) is orderable iff there exists an
(a, B)-pre-order.

THEOREM 5.26. Let (a, ) be a tame quotient of a finite algebra A, with
typ(a, 8) # 1.

(1) {a, B) is orderable iff typ(a, ) € {4,5}.

(2) Assume that typ(a,8) € {4,5}. There exist precisely two minimal (a, 8)-pre-
orders, (o and (;, and two maximal (a, §)-pre-orders, & and &1, such that
every (a, B)-pre-order T satisfies (o C 7 C & or {1 €7 C €. We have {1 = (§,
& =¢&§, and (o and (; are the transitive closures of the relations py and p; of
Lemma 5.24 (3).

PROOF. We begin by assuming that typ(a, 3) = 2 or 3 and there exists an (a, 8)-
pre-order 7, and derive a contradiction from these assumptions. It is easily seen that
T # a. Since o7 =7 2 @, T is a-closed. By Lemma 5.24 (2), 7 DO N2 for every
trace N. This contradicts the condition that 7N 7Y = a.

We now assume that typ(a, 8) = 4 or 5. Letting po and p; be the two minimal,
a-closed, admissible, reflexive relations (see Lemma 5.24 (3)), we define ¢; to be the
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transitive closure of p; (1 = 0,1). We choose an (a, 3)-trace N and an element 1 in
N. If typ(a, B) = 5, then we arrange that {1} = 1/(a|n) is the neutral element of
the semilattice (A|n)/(a|n) (using Lemma 4.15). Thus {1} = 1/(a|n) whether the
type is 4 or 5. We choose any b € N — {1}. Thus we have (1,b) € N2 — a, and
N = {1} Ub/(a|n). By Lemma 5.24 (3), the pair (b, 1) belongs to precisely one of pp
and p;; we shall assume that (b,1) € po.

Since p; = py, we have (; = {§’. The relations (o and {; are pre-orders, by their
construction. It is easily seen that the transitive closure of any admissible reflexive
relation is admissible. The relations {p and (; are therefore admissible pre-orders.
Obviously, (o U (1 C 8.

We now define

& = {{z,y) € B: for all f € Pol; A such that f(z/8) C N and
f(z) =1, we have f(y) =1}
and we define £; = £§’. We proceed to prove several claims.
Claim 1. {; C & C f and &; is an admissible pre-order (for i = 0,1).

It suffices to prove this claim for 2 = 0. Since it is obvious that &, is a pre-order,
our first task will be to show that it is admissible. By Exercise 5.28 (2), this amounts
to showing that &g is closed under the unary polynomials of A. So let h € Pol; A and
(u,v) € &. To see that (h(u), h(v)) € &, let f € Pol; A be such that f(h(u)/B8) C N
and f(h(u)) = 1. Then fh(u/B8) C N and fh(u) = 1, so fh(v) = 1. We conclude
that (h(u), h(v)) € &, and that & is admissible.

Because £ is a pre-order, to show that (o C £o, we need only show that py C &.
To do this, let (u,v) € pp and f € Pol;A with f(u/8) C N and f(u) = 1. Thus
(1, f(v)) € po N N2, If f(v) # 1, then f(v) € b/(c|n), and since py is a-closed,
we have (1,b) € po as well as (b,1) € po; but this contradicts Lemma 5.24 (3(i)).
Therefore f(v) = 1, and we conclude that (u,v) € &, and consequently that (o C &.
This finishes our proof of Claim 1.

Claim 2. §, N &1 = a and the transitive closure of (o U (; is 8. Therefore (;, &; are
(a, B)-pre-orders (i = 0,1).

The second sentence in this claim follows from the first, from Claim 1, from the
definition of (a, 8)-pre-order, and from the facts that (¢, N (3 2 po N p1 = a and
& U& C B. That the transitive closure of (o U(; equals 8 is a consequence of Lemma
5.24 (3(ii)) and Lemma 2.17.

Let us prove that £ N &1 = a. Suppose that (u,v) € & N & . Then for every
f € Pol A satisfying f(u/B8) € N we have f(u) = 1 « f(v) = 1, and therefore
(f(u), f(v)) € a since (N — {1})2 C a. Using Exercise 5.11(3), we conclude that
(u,v) € a.
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Claim 8. If T is any (a, B)-pre-order, then (o C 7 C & or (o C 7" C &.

Let T be an (a, B)-pre-order. We recall from early in the proof that this implies
a # 7, and that 7 is a-closed. By Lemma 5.24 (3) we have p; C 7 for some ¢ € {0,1},
giving that pp C 7 or pp C 7¥. We may as well assume that py C 7. Thus, obviously,
Co C 7. Finally, since 7 is an a-closed subset of 3, the assumption 7 € & would
imply directly that (1,b) € 7. (Use the definition of £.) This, in turn, would put
(1,b) € (r N 7") — @, contradicting that 7 is an (a, B)-pre-order. Therefore 7 C &.
This finishes the proof of Claim 3.

The minimality of ¢; and maximality of §; follows from Claim 3 and the obvious

fact that any (a, 8)-pre-order must be incomparable to its converse. O

We have characterized the unary type of tame quotient as strongly Abelian, the
affine type as Abelian but not strongly Abelian, and the Boolean type (in Theorem
5.26) as non-Abelian and non-orderable. The next theorem exhibits a subtle difference
between prime quotients of Boolean or lattice type, and those of semilattice type.

THEOREM 5.27. Let {(a,8) be a non-Abelian prime quotient of a finite algebra
A. Let p be the basic tolerance for {a, 8), R be the subalgebra of A% with universe
R = p, and L be the interval sublattice I[(a x a)|r , (8 x B)|g] in Con R.

(1) If typ(e, B) € {3,4} then L = M,. ’

(2) If typ(a, B) = 5 then L = D,.

M, D,

PROOF. Let 7: A% - (A/a)? be the natural mapping. From the characterization
of R (= p) as the least a-closed tolerance 7 such that a # 7 C 3, it is easy to prove
that 7(R) is the basic tolerance for the quotient (a/a,3/c) in A/a. The kernel of
n|r is (a x a)|r; and we have (8 x B)|r = 7~1([(B/a) x (B/a)]lx(r))- Therefore,
the lattice L is isomorphic to the lattice derived in the same way from the quotient
(a/a,B/a) which, as we know, has the same type as (@, ). These considerations
show that it suffices to prove the theorem under the assumption a = 04.

So let (04, 3) be a prime non-Abelian quotient of A. Choose Uy € M4 (04, 8) and
a binary polynomial p(z,y) of A such that p is a pseudo-meet operation for A|y,
relative to (Oy,, Blu,). (See Definitions 4.16 and 4.18.) Let Ny = {0, 1} be the unique
trace in Up, with 1 the neutral element for p.
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Note that, by Lemma 5.24, R is the tolerance generated by (0, 1). By various parts
of 5.24 (including “Claim 3” in its proof), we have
(5.27.1) N2 C R C 3 for every (04, B)-trace N; and
R ={(f(0,1), f(1,0)) : f € Pol,A}.
Since R D 04, it is easily checked that the polynomials of R are precisely all the

operations of the form

F({zo,40)s -+ {Tn-1,9n-1)) = (9(0,1,%),9(1,0,%))

with g € Pol,,42A if f € Pol,R. We have, in particular, that every polynomial of A,
acting coordinatewise on n-tuples of pairs in R, is a polynomial of R.

Claim. If 6 € Con R and 6 < 8 x 3, then 6 is generated by 0|N02.

To prove this claim, we let § be any congruence in the interval I[0g, (8 x B)|r]
of Con R, and we set 6y equal to the congruence of R generated by 6| nz- Let
((a, b), (c,d)) be any element of §. We wish to show that ((a,b), (c,d)) € 6. We shall
assume that a # c¢. (The proof in the case b # d is similar, and if a = ¢ and b = d,
then there is nothing to prove.)

Since (a,c) € B — 04, there is f € Pol; A with f(a/B8) = No = {0,1}, and f(a) #
f(c). Note that {b,c,d} C a/B, and therefore

((f(a), £(8)), (£(c), f(d))) € Blnz -

We form the “meets” of (f(a), f(b)) and (f(c), f(d)) with the element (1,0) (using
the operation p), and obtain that

(£(a),0) = (f(c),0) (mod 6) .

Since {f(a), f(c)} = {0,1}, we thus have (0,0) = (1,0) (mod 6p).
Now (a,b) = (fo(0,1), fo(1,0)) and (c,d) = (fi(0,1), f1(1,0)) for some binary
polynomials fo and f; of A; i.e.,

(a,b) = f5({0,1),(1,0)) and (c,d) = f1((0,1),(1,0))
where fj, f{ € PolzR are fo, f1 acting coordinatewise. Therefore, we have
(01 b> = f(;((ov 1)» (010» = (fO(Ov 0)1 fO(l»O)) (mOd 00) )

(5.27.2)
(67 d) = f{((O, l)v (070>) = <fl(010)’ fl(lvo)) (mOd 00) .

Case 1: If b # d, then by the same argument, (0,0) = (0,1) (mod 6,), and we find

{a,b) = (f0(0,0), fo(0,0)) = (eo,e0) (mod 6y),



TYPES OF TAME QUOTIENTS 91

(C,d) = (fl(0,0), f1(0v0)> = (81,61) (mOd 00)

for some ep and e;. Since 04 < 3, the restriction of 6 to the diagonal subalgebra
04 = {(z,z) : =z € A} must be either the identity relation on this subset, or (8% 3)|o,,-
Thus if ey # €1, then (eq,eq) = (€1,€1) (mod 6) implies that ((0,0),(1,1)) € 6lnz C
6o. This gives that 9 2 (8 % B)|o,, and hence (eg,e0) = (e1,e1) (mod 6p). Thus,
eo # e; implies (a,b) = (c,d) (mod ) in Case 1, and ey = e; obviously gives the
same conclusion.

Case 2: Assume that b= d. If typ(04,3) = 3 or 4, then there is also a pseudo-join
operation for Ny. Then from (0,0) = (1,0) (mod 6y) follows (0,1) = (1,1) (mod 6y)
(by taking the join with (0,1)). From this, and formulas (5.27.2), we obtain that

(av b) = f(l)((lv 1)7 (0*0)) = (f0(170)7f0(1’0)) = (bv b) (mOd 90) 3

and likewise (c,d) = (d,d) = (b,b) (mod 6y). Therefore the proof of the claim is
finished if typ(04,8) # 5. So we assume now that typ(04,3) = 5. We can also
assume that fo(0,0) # f1(0,0) (else we are done, by (5.27.2)).

To conclude the proof of the claim, we choose a g € Pol; A such that g(b/3) C Ny
and ¢f0(0,0) # ¢f1(0,0). Without losing generality, we assume that gfo(0,0) = 0,
9f1(0,0) = 1. We must have :

9£1(1,0) (= g(d) = g(b)) = 9£2(0,0) (=1),

else gf1(1;0) = 0 and there is an obvious polynomial h satisfying h(0) = 1, h(1) = 0,
contradicting that A|y, is a semilattice. From all the equalities collected in this
paragraph (and fo(1,0) = b = f1(1,0) as well), we have that g, acting coordinatewise,
transforms the two ordered pairs on the far right of (5.27.2) onto (0,1) and (1,1),
respectively. Thus (0,1) = (1,1) (mod 6p); and it follows that (a,b) = (b,b) = {c,d)
(mod 6p) just as we saw for types 3 and 4 above. This finishes our proof of the claim.

To finish the proof of the theorem, we apply Lemma 2.4. Let Uj = U N R, and
let e = €2 € Pol; A with e(A) = Uy, and define €’ by €/({z, y)) = (e(z), e(y)). Thus
e’ € PoL1R, (¢/)? = €/, and €'(R) = Uj. We have that N2 is an equivalence class of
(B x B)luy = ((B % B)|r)|v;- Applying Lemma 2.4, we have that

Ivz : I[OR, (8 x B)|r] - Con R|y2 .

The claim proved above implies that this lattice homomorphism is one-to-one. Our
lattice L is therefore isomorphic to Con R| N2

It follows from our previous description of the polynomials of R, and from the fact
that R|yz = (R|y;)|nz (because € exists), and from our knowledge of Up and Ny,
that R| N2 is polynomially equivalent to (A|n,)2. (The proof of this whopper is an
exercise.) Assertions (1) and (2) of this theorem can now be validated by computing
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the congruence lattices of the direct squares of a two-element Boolean algebra, lattice,

and semilattice. O

Exercises 5.28

(1) Prove these additions to Lemma 5.24. If typ(a, 8) = 3, there exists a smallest
admissible, reflexive 7 satisfying 7 C 3, 7 € a; and this relation is a tolerance.
If typ(a,) = 4, there exist precisely two minimal relations having these
properties. (These assertions omit the requirement that 7 be a-closed.)

(2) Prove that a pre-order on the universe of an algebra is admissible iff it is closed
under unary polynomials.

(3) Prove the unproved assertion in the last paragraph of the proof of Theo-
rem 5.27.

(4) Suppose that {a, ) is a prime quotient of A of type 2, with basic tolerance R,
and that R C A? is the algebra whose universe is R. Show that the interval
I[(a x a)|r , (B x B)|r] contains a sublattice isomorphic to M.

(5) Let a, 8, R be as above, except that typ(a, 3) = 5. Let 8, 61,82 be the three
co-atoms of I[(a x a)|r , (8 % 8)|r] as pictured in Theorem 5.27. Prove that
typ(6i, (8 x B)|r) = 5 and that R/§; = A/a, for i =0,1,2.

(6) Let A be an algebra such that A|4 is Mal'cev. Prove that for any a,8 €
Con A, a0 =foa=aVp (A has permuting congruences.) From this,
derive that Con A is a modular lattice.



6. LABELED CONGRUENCE LATTICES

A finite lattice is completely described by its Hasse diagram, a directed graph whose
vertices are the elements of the lattice, and whose edges are the prime quotients.
When L is the congruence lattice of a finite algebra A, the Hasse diagram of L has a
natural labeling, namely, label every edge by its type as a prime congruence quotient
of A. This mapping from the set of edges to the set {1,...,5} is just the function
typ, defined in Definition 5.1; we call it the type labeling of L. The type labeling
of L = Con A is determined by the polynomials of A; in fact, it is determined by
Pol; A. Notice that if we replace A by (A4, Pol; A), then L remains unchanged and the
sets of (a, 8)-minimal sets and (a, 8)-traces are unchanged, for every prime quotient
(a, B), but the type labeling of L changes to a trivial labeling using only the type
label 1.

We recommend trying to visualize the labels as colors, rather than numbers (al-
though officially we shall stick with the numbers). Use the color chart: 1 = orange,
2 = red, 3 = blue, 4 = green, 5 = yellow. The colored graphs thus obtained from
finite algebras have many regularities, following from results proved in this chapter
and the next one. Each graph is divided into disjoint regions (convex sublattices)
within which only the colors red and orange appear. Edges joining separate regions
are colored blue, green or yellow. Moreover, each red-orange region is divided into
subregions colored entirely with orange, while edges between adjoining subregions are
red. The regions and subregions constitute the blocks of two congruences on the con-
gruence lattice which we shall study in the next chapter: the solvability congruence
and the strong solvability congruence. Modulo the solvability congruence, the lattice
is meet semi-distributive. Modulo strong solvability, the red-orange regions are mod-
ular lattices. An edge (a,3) between separate red-orange regions must be painted
yellow, unless o has a pseudo-complement under 8. (This follows from Lemma 5.19.)

Our purpose in this chapter is to collect results relating the omission of type labels
to the non-occurence of certain lattices as sublattices of congruence lattices. The
results proved here will enable us to make smooth progress in subsequent chapters.
This chapter is divided into two parts. In the first, we primarily study the labeled
congruence lattice of one algebra, and in the second, we compare the variety gener-
ated by a finite algebra to the varieties generated by certain of its induced algebras.
Our first result doesn’t really belong to either part, but fits here as comfortably as
anywhere.

93
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LEMMA 6.1. Let A be a finite algebra, and let (ay, B1),...,{an,On) be a list of
prime quotients of A such that every congruence © on L = Con A, except © = 0,
satisfies {a;, ;) € © for some 1 < i < n. Choose U; € Ma(ay,3;) for each i. The
function defined on L by f(6) = (6lu, : 1 < i < n) is an isomorphism of L with a
subdirect product of the Con A|y,. In symbols

f:L‘jd’H{Con““U." 1<i<n}.
s

PROOF. By Lemma 2.3 and Theorem 2.8, |y, is an onto lattice homomorphism for
all 4, and 4|y, # B;ilu;. Therefore f is a lattice homomorphism, and (ker f)N{{a;, 5;) :
1<i<n}=40. Hence ker f =0, and f is one-to-one. O

LEMMA 6.2. Let (;,5;) (i = 0,1) be prime quotients of a finite algebra A such
that BoAay = ag and fyVa; = B1. Then Ma(ao, fo) = Ma (a1, 51) and typ(ao, Bo) =
typ(a1, 1)

PROOF. That Ma (ao, Bo) = Ma (a1, 81) when (g, fo) and (a1, 3:1) are projective
quotients is the result of Exercise 2.19 (3).

To prove the equality of types, let U be an (ag, Bp)-minimal set. Suppose first that
(a1, B1) is of non-Abelian type. Let N; be the unique (@, 8;)-trace in U. (Note that
U is also an (a1, 8:)-minimal set.) By Lemma 2.4, B|n, V a1|ln, = Biln, (= 1n,)
and fo|n, A a1|n, = ao|n,. From these equations and the picture of N; supplied by
Lemmas 4.15 and 4.17, it follows that N; contains precisely one (aq, Gp)-trace Ny of
U, and we have this picture of NV; :

[ IV1

the thick curve bounds N,

Figure 13

In the picture, ag|n, = a1|n,; {1} and Ny — {1} are the two a;|n,-classes; {1} and
Ny — {1} are two of the oy N,-classes; and N7 — Nj is partitioned in some way into
ag| N, -classes.

Now for any a € Ny — {1}, a pseudo-meet operation with respect to (a1, 1),
restricted to {1,a}, is a semilattice operation, showing that {(ao, Bo) is non-Abelian.
Thus Lemmas 4.15, 4.17 also apply to U with respect to (ao,3), and Ny is the
unique (ayg, Bo)-trace in U. If typ(a;, 81) # 5, then N; = Ny, a two-element set, and
then typ(ao, Bo) = typ(eu, B1) = typ(Aln, ). If typ(es, B1) = 5, then it is very easy
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to see that A|y, cannot have a pseudo-join operation; hence typ(ag,Bp) = 5 also.
This finishes our proof for equality of types in the case that (a1,(51) is not Abelian.

Let us suppose now that (a1, (1) is Abelian. By Proposition 3.7 (2), (o, o) is also
Abelian. One can easily show, directly from the definition, that if (a;, 3:) is strongly
Abelian then (ao,Bo) = (Bo A @1,80 A B1) is strongly Abelian. Therefore, the only
thing remaining to be proved is that typ(aa, 81) = 2 implies typ(ao, Bo) # 1. Assume
that typ(ai,81) = 2, and let B; be the (a;, 8;)-body of U (i = 0,1). Let d(z,y, 2)
be a pseudo-Mal’cev operation for U relative to (a1, 8;) (Lemma 4.20). Then d|p, is
Mal’cev, and obviously By C Bj. For any (aq, Bo)-trace Ng C By, Ny is closed under
d since d(z,z,z) = z; therefore (A|n,)/(a|n,) is Mal’cev, and cannot be a minimal
algebra of type 1. O

Exercises 6.23 (1-7) give examples showing that the type labeling need not be so
well-behaved with regard to projective quotients of which one is prime and the other
is not. It is not true, for instance, that if Gy A a1 = ag, fo V a1 = 1, and ag < Bo,
then the equality typ{ai, 51} = {typ(eo,B0)} need hold.

LEMMA 6.3. Suppose that &g, 61, 62,70, 71, %, 0 are congruences of a finite algebra
A constituting a sublattice of Con A isomorphic to D2, as pictured below. If
6, < a <0, then typ(a,0) € {1,5}.

implies

8,

PROOF. Since §; V 6o = 61 V82 = 60 and 61 V (6g A 62) = 61, it follows from Lemma
5.19(2) that typ(e,8) € {1,2,5}. Assume that typ(a,f) = 2, in order to derive a
contradiction. Let N be any (a, 6)-trace. By Lemma 2.4, |y is a homomorphism of
I[04,6] onto Con A|y; and by Lemma 4.20, A|y is a Mal’cev algebra. According to
Exercise 5.28 (6), Con A|y is a modular lattice. Therefore,

baln = (82 A (11 V 60)) v = b2|n A (m1|n V So|n)
=m|n V (b2|n Aboln) = (M1 V (62 A bo))|In =1in -

Consequently, 8|y = (61 V 62)|nv = 81|n V d2|n = 61|~ V M1|n = 81|n. This gives
a|y = 0|n, since §; < a < 6; but that is absurd since N is an (a, §)-trace. sl
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LEMMA 6.4. Suppose that 6,61, 62,%,1,%,0 are congruences of a finite algebra
A constituting a sublattice of Con A isomorphic to D;, as pictured below. If
0 < a < 8, then typ(0,a) = 1.

PROOF. Since §; A 6o = 61 Ada = 6 and 6; A (6o V §2) = 61, it follows from Lemma
5.19 (1) that typ(f,a) € {1,2}. Assume that typ(f,a) = 2, in order to derive a
contradiction. Let U be any (6, a)-minimal set and let B be the body of U, and T
be the tail. Since 6; A6y = 8 (i = 0,2), we have &;|y = 8|y VOly 2 alu (i =0,2).
So by Lemma 4.27 (4), §olu U 2]y € B%2 U T2 From this, and from the fact that
Solu V 82lu = (60 V 62)|u, it is obvious that o|p V 82|p = (60 V 62)|B, a fact which
will be needed below.

We repeat the calculation used in proving the last lemma, working with congruences
over the Mal'cev algebra A|p. It is obvious that |p preserves lattice meets; and
the one non-trivial join we need is preserved (see the last paragraph). We have
S|l Am|B = 0B < 82|, and 0|5 Vb2|B = ¥|p > 71|B- Since Con A|p is modular,
this implies that v1|p = 82|p. Thus 61|p = 61| A 11| = 61| A 62| = 6]p. Since
6 < a < 6;, this contradicts the fact that 0|p # o|p. O

LEMMA 6.5. Let 69,6,,62,61,80 be congruences of a finite algebra constituting a
pentagon; i.e., 6o = 61 A6y < 8o < 61 < 6oV 0y = 05 If typ{6o,6:} C {1,2}, then
typ{éo, 61} = {1}.

PROOF. The truth of the lemma will follow if we can prove it under the assumption
that éo < 6;. We make that assumption, and assume that typ{6o,6:} C {1,2}, and
typ(6o,61) # 1. We will derive a contradiction. Let U be a (60, 81)-minimal set, and
let B and T be its (6o, 61)-body and tail.
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It is impossible to have 8| V 01| > 61|p. For we would then have a pen-
tagon 6o|B,01]8,00|8 V 01]B,61|B,60|B in Con A|p, forcing typ(6o,61) # 2; but if
typ(bo,61) € {3,4,5} then 6;|p = B2, and there is no such pentagon. Therefore
6ol V 61| 2 61|B; but, of course, &l V 01|y > 61|y. From this, we draw the con-
clusion that 8; N (B x T') # 0. (Recall that B is a union of é;|y-classes and §; equals
8o on T.) Notice that g N (B x T') = §, since 6y C 6.

Clearly, there exists a prime quotient {7y, A) in the interval I[fo, 6] with

Yoy N(BxT)=0# Ay n(BxT).

Now we assumed that typ{6o,6:1} C {1,2}; thus (v,A) and (y|y, Aly) are Abelian.
It follows by an application of Lemma 4.27 (4ii), to the algebra C = A|y and its
quotient (6o|v,81|u), that typ(bo, 1) # 2.

Thus we must have typ(o,61) € {3,4,5}. Let p(z,y) be a pseudo-meet operation
of A|y relative to (6o|u,61|u). Choose (b,u) € AN (B x T) and let v = p(b,u). By
Lemma 4.15 or Lemma 4.17, p(b,v) = v = p(v,v), and v = p(b,b) = b (mod A).
Using that (v,A) is Abelian, we have p(b,b) = b = p(v,b) (mod 7). But b € B and
u,v,p(v,b) € T. This contradicts the fact that YN B x T = @; and so our proof is
finished. (Incidentally, we have just worked the second half of Exercise 4.37(5).) O

LEMMA 6.6. Let 6g,61,62,%,6 be congruences of a finite algebra constituting a
diamond; ie., 6; Vé; =60 and 6; AN6; =3 for 0 < i< j < 2. Ifyy <a <6 and
61 < B <0, then {typ(4,a),typ(B,0)} C {1,2}.

PROOF. By Exercise 3.8 (6), each quotient (1, &;) is Abelian. Thus (%, @) is Abelian
and must have type 1 or 2. By Lemma 5.19 (2), we have typ(3,0) € {1,2,5}. If
typ(8,0) = 5 and N is a (8, 6)-trace, then &;|n,0|n,%|n form a diamond with 6;|x <
Bln < 6]n. We must have (1,u) € §o|n — 3 for some u, where 1 is the neutral element
for the pseudo-meet operation p(z,y) (since do|n V B|n = 1n). But ({1,u},p) is a
semilattice, contradicting that (1, 6o) is Abelian and (1,u) € §p — 9. O

Remark 6.7. With the aid of the theory of solvability presented in Chapter 7,
it can be proved that when D; occurs as a sublattice of Con A (A finite) as in
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Lemma 6.4, then typ{6,6;} C {1,2}; and when Mj appears, as in Lemma 6.6, then
typ{¥,6} C {1,2}.

The preceding four lemmas give restrictions governing the type labels that can ap-
pear in certain positions relative to an occurence of D2, D, N5 or Mj as a sublattice
of Con A. As a corollary to these results, we can conclude that if the unary type
does not occur in the type labeling of Con A, then D, is not embedded in Con A
(and analogous results for Dy and Mj).

Our purpose in the second half of this chapter will be to produce an approximate
converse to each of these corollaries. A result of the kind we will be proving is already
to be found in Theorem 5.27: If 5 € typ{ A}, then the congruence lattice of a certain
subalgebra of A2 has a copy of D,. Before beginning this task, we present two more
lemmas, and this notable corollary of Lemma 6.5.

COROLLARY 6.8. Suppose that a, § are congruences of a finite algebra A with
a < f and typ{a, 3} = {2}. Then I(a, ] is a modular lattice.

LEMMA 6.9. Let (a,3) be a prime quotient in a finite algebra A. Suppose that
Oo,....0n € Ila,14] satisfy B < V{0; : i < n}. If typ(a,B) # 1, then for some
i < n, typ(e, B) € typ{a,6;}.

PROOF. If (a,() is non-Abelian, then 8 < 6; for some i (by Lemma 5.12), and
the desired conclusion is trivial. Thus, we assume that typ(a,3) = 2. Let U be an
(a, B)-minimal set, let B be the body of U, and let T be the tail. By Lemma 4.27 (4i),
if 8;y € B? U T? for some i, then 6;|y > B|v; but then 6; > B, and we are done.
Thus, assume that B is a union of 8;|y-classes, for all i. Then 8|p < \/{6:|p: i < n};
and so we can pick an ip with 6;,|p > a|p. Let (7, A) be a prime quotient in I{a, 6;,]
satisfying 7|p = a|p and a|p < A|B.

We claim that typ(r,A) = 2. To prove it, we choose any (u,v) € A|p — 7|, and
e € E(A) with e(4) = U. Since (u,v) € A, there is a sequence u = ug,...,Um = v
with

(uisuit1) € T ULJ{N2 : N a (r,\)-trace } for all i < m.

Now for all (r,))-traces N, either (e(N))? C 7, or e(N) is a (7, A)-trace. Since
(u,v) ¢ 7, there exists a (r,A)-trace N C U such that N Nu/(r|y) # 0. But
u/(t|lu) € B, and N2 C 6;,|lu € B2UT?; hence N C B.

The function e, restricted to a (7, A\)-minimal set including N as trace, must be a
polynomial isomorphism of this set onto a (7, A)-minimal set V' C U. We can choose
e’ € E(A) with ¢’(A) = V; and then we have ¢'|y € E(A|y) and N C ¢'(U) N B.
Applying Lemma 4.30, we find that ¢'|y = id|y, and so U = V. Since U = e(A),
and B and N are congruence blocks in U = V (see Lemma 4.27(3)), we have that
A|ny = (A]p)|~ and this algebra is Mal'cev and nilpotent. (By Theorem 4.31 and
Lemma 4.36, A|p is nilpotent, and its induced algebras must inherit this property.)-
Thus the minimal algebra (A|x)/(7|n§) can only have type 2. (]
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LEMMA 6.10. Let {(a, ) be a prime quotient in a finite algebra A. Suppose that
Bo,...,0n € I[04, )] satisty a > N{6; : i < n}. If typ(a,8) ¢ {1,5}, then for some
i <n, typ(a, B) € typ{6:, B}

PRrOOF. If typ(a,3) € {3,4}, then by Lemma 5.15, 6; < a for some i and we are
done. Thus, let typ(a,3) = 2, and let U be an (@, 8)-minimal set, and B and T be
its body and tail. We assume that 6; Va = § for all ¢ (else §; < a). We shall use
several times the fact that | g is a homomorphism of I[04, 8] onto the modular lattice
I[0p,B|8] € Con A|p, which follows easily from Lemma 2.4 and Lemma 4.27 (3).
(There exists a congruence 6 of A, with § > 3, such that B is a 6|y-equivalence
class.)

To begin, we have 6;|p V a|p = 3|p for all 4, and \(6;|s) < a|p. Also, a|g < (|8,
since a|p < B|p and @ < B and |p is an onto homomorphism. Note also that when
7 < Bwehave 7 < a « 7|g < a|p. We can obviously assume that A{0; : i #j} £ a
for each j < n, and in fact, that whenever §; <7 < B then TAA{6; : i # j} £ a.
These facts then hold also for the 6;|p,a|,0|p in Con A|p.

Let xo denote 6p|B, Xxo be a cover of xo in the interval I[xq,8|5] (i-e., xo < Xxo <
BlB), X1 = N{6ilp: 1 <i<n}Axp and x1 = xi Aalg. Our assumptions imply
that (a|s,8lB) \ (x1,x}) and (xo A x1,x1) / (X0, X0), in the notation of Exercise
6.23 (13). The proof of this is an exercise for the reader. Now a|p < 8|p and xo < X0;
so by Exercise 6.23 (13), x1 < x} and xo A x; < xi. Note that xo A x} < a|g, so
xo A xi < xi Aalp = x1, and thus xo A xi = X1-

N{eolg:1<i}

Figure 14

Now we define 1, to be the largest congruence of A such that 9, < 8 and ¢¥1|p =
X1, and we let 1} be the smallest congruence > 1, such that ¥}|p = x}. By previous
remarks, ¥; < o and we have 9] < 3 and ¢] > ;. It is easy to see that I[a, 8] \,
I[y1, 1] We put ¢g = ¢} V 6, so that ¢5 < B and ¥g|B = xq; and we choose 1 so
that 6 V ¢1 < 9o < ¥4. Thus typ(to, ) € typ{6o, 5}. Now it is easy to see that

I[d}lv I]] / I[’ll)(),lﬁ(’)] By Lemma 621 typ(¢o,¢6) = typ(wlv"p,l) = typ(avﬁ)v and
this concludes our proof. 0O
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We now change our focus. Here begins a study of locally finite varieties, to which
we devote the remainder of this book. Recall from Chapter 0 that a variety is a
nonvoid class V of similar indexed algebras such that

HY=SV=PV=V,

meaning that V is closed under the formation of homomorphic images, subalgebras,
and algebras isomorphic to Cartesian products of algebras in V. A variety is locally
finite iff all of its finitely generated algebras are finite. The variety generated by a
class K of similar algebras is denoted V(K); thus V(K) = HSPK. If K = {A}, we
write V(A) in place of V(KX). A variety generated by a finite set of finite algebras
is said to be finitely generated. Recall that finitely generated varieties are locally
finite.

DEFINITION 6.11. Let K be any class of algebras. By CON K we denote the
class of all congruence lattices of algebras in K. By Kyin, we denote the class of all
finite members of . We denote the set [J{typ{A} : A € K¢;n} by typ{K}, and call
it the type set of K.

The type set of a locally finite variety determines a surprising collection of varietal
properties, as we shall see in Chapter 9. We remark that

typ{ G-Sets } = { unary type }, G a finite non-trivial group;
typ{ F-Vector Spaces } = { affine type }, F a finite field;
typ{ Boolean Algebras } = { Boolean type };
typ{ Distributive Lattices } = { lattice type };
typ{ Semilattices } = { semilattice type }.

The underlying theme of this second half of Chapter 6 will be that when A is
a finite algebra and N is a trace set for one of the prime congruence quotients of
A, then A|n (after conversion to an indexed algebra) generates a variety which is
interpretable in a very well-behaved fashion into the variety generated by A. Through
these interpretations, we will find that every lattice in CON V(A|n) is a complete
homomorphic image of an interval in some member of CON V(A). Every locally
finite variety V “contains”, in the sense of our interpretations, one of the varieties in
the above list corresponding to each type-label appearing in typ{V}.
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DEFINITION 6.12. Let A be any algebra and let U be any nonvoid subset of the
universe of A. By Aly we mean the indexed algebra (U, f ( f € (Pol A)|y)). This
indexed algebra Aly is polynomially equivalent to A|y, and will be called A|y with
the normal indexing.

DEFINITION 6.13. Let A be any indexed algebra and T be any set. By a diag-
onal subalgebra of A7 we mean any subalgebra of AT containing the diagonal A,
the set of all constant functions from T into A. For every nonvoid subset S of AT,
we denote by A(S) the subalgebra of AT generated by 5 U A. This algebra will be
called the extension of A by S. For any operation f on A, we write f(T) for the
operation on AT which is f acting coordinatewise. For any equivalence relation 3 on
A, we write 3(T) for the equivalence relation defined by (z,y) € BT iff for all t € T,
(z(t),y(t)) € B.

Notice that A(@) = A, and that A(S) is, up to isomorphism, an extension of A.
We are interested in this construction mainly in the case where S C N7 for some
trace N of A, but we shall prove our basic results in a more general setting.

LEMMA 6.14. Suppose that A is an algebra; that e € E(A), U = e(A) and 8 €
Con A; and that S is a B|y-equivalence class. Let T be any set and let S' = (5',...)
be a subalgebra of (Als)T. Then define A’ = A(S'); &' = eM|4; U’ = ¢'(A’); and
B =BT a
(1) The universe of A’ is closed under fT) for all f € Pol A. We have that
Pol A’ D {f™D|a : f €Pol A}, and

A" = {fT(s0,...,84-1) : fEPol,A forsome n and
" {S0,..,8,_1} C S} .

(2) We have that ¢ € E(A’); U' = €/(A’) = A'NUT; p/ € Con A'; §' is a
B'|u+-equivalence class; and S' = A' N ST.

(3) Allsr =8'|s.

PROOF. Statement (1) depends on nothing more than the fact that A’ is the
diagonal subalgebra of AT generated by S’. To prove it, let f € Pol A. For some m
and n, we have an m+n-ary term operation g € Clo,,+nA and elements ag, ..., @m-1
in A such that f(zo,...,Tn-1) = 9(@0,---,8m—-1,Z0,- .-, Tn-1). We write (a;) for the
member of A C AT whose constant value is a;. Now g(™) is a term operation of
AT, and fD(zy,...,2n-1) = ¢ ({(a0), ..., {@m-1), To,-..,Tn—1). Obviously, A’ is
closed under f(T), since it is closed under g™ and (ao), ..., {am-1) € A’; and since
g™ 4r is a term operation of A, it follows that f(T)|4 is a polynomial operation of
A’. The description of A’ follows easily from these considerations.
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To prove (2), we note that e’ € Pol; A’ by (1), and clearly e’e’ = €'; so ¢’ € E(A).
For z € A’, we have z € e'(A') iff ¢/(x) = z iff e(z(t)) = z(t) forallt € T iff z € UT.
Obviously, & € Con A’, and it is easy to see that A’ N ST is a §'|y:-equivalence
class which includes S’. To prove that A’N ST C &', let a € A’ N ST. By (1), we
can write a = f(T(sq,...,8n_1), f € Pol, A, sq,...,5,-1 € S’. We can assume that
f =ef, since eT)(a) = a. For any t € T, f(so(t),...,sn-1(t)) = a(t) € S, implying
that f(S™) C S. This holds because f(U") C U, S is a B|y-equivalence class, and
a(t), so(t),...,84-1(t) € S. (Note that if T = @ then our lemma holds trivially; AT
is then a one-element algebra.) Therefore f|s is an operation of Alg. It follows that
a € &, as claimed, since a = fT)(sg,...,8n-1) = (fls)T(s0,...,8n_1) and S is a
subuniverse of (AIs)7. This finishes the proof of (2).

In order to prove (3), we need these characterizations of Pol S’ and Pol A’.

(6.14.1)  Pol,S" = {f™|s:(50,- - Sm—1:T0r+-++Tn-1) : f € PolminA

for some m, f(S™*")C S, and sp,...,8m-1 €S’} .

(6.14.2) Pol, A’ = {f(T)[Ar(so,.. y8m=1,Z0y-+-+yTn—1): f € PolpinA

for some m, and sq,...,8m-1 € S’} .

To prove (6.14.1), notice that the term operations of Al are precisely the f|s such
that f € PolA and f(S*) C S for some k. Consequently, those of S’ are precisely
the (f|ls)@|s» = f™)|s such that f € PolgA and f(S*%) C S for some k. The
characterization of Pol,S’ follows immediately from this.

To prove (6.14.2), recall that by (1), f‘T| 4 is a polynomial of A’, for all f € Pol A.
Replacing some variables by “constants” (i.e., by so, ..., $;,—1) in a polynomial creates
a new polynomial. Therefore we have 2 in (6.14.2). To get the reverse inclusion, let
g™ |4 (g € Clo A) be any k+n-ary term operation of A’, and let wy, ..., wg—; € A’
It must be shown that where

h(an cee ’In—l) = g(T)IA'(wl)’ ceeyWe—1,T0y .- - 11'n—1)v
h(zo,...,Tn—1) can be expressed in the form claimed in (6.14.2). By an obvious
extension of (1), there exist (for some m), so,...,8m—-1 € S’ and go,...,gk—-1 €

Poln, A with w; = g7 (50, ..., $m—1) for 0 < i < k. We define

f(y01 < oy Ym-1,%0, - - - izn—l) = !](go(lj), LR ,gk—l(:’j)vz(]a see 1xn—1) .

Then f € Pol,,4+nA, and it is easy to check that

f(T)IAr(S(), ey 8Sm—=1,T0y .- ,CEn_l) = h(zg, e ,In_l) .
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This finishes our proof of (6.14.2).
The proof of (3) is immediate from (6.14.1) and (6.14.2), using the trick of com-
posing a polynomial with e, that was employed in the proof of (2). O

LEMMA 6.15. Assume that A is an algebra; thate € E(A), U = ¢(A), B € Con A;
and that S is a B|y-equivalence class. Let 6 be any congruence of A satisfying 6 < f.
Define A’ = A/0; ¢’ = eg; U' =¢€'(A’); B/ =/6; and S' = S/0. Then €' € E(A’);
B' € Con A’; S' is a B'|yr-equivalence class; and A'|s' = (Als)/(6]s).

PRrROOF. This lemma looks formidable, but is actually quite trivial to prove. The
proof is left up to the reader. O

LEMMA 6.16. Suppose that A is a finite algebra; that e € E(A), U = e(A),
B € Con A; and that S is a (B|y-equivalence class. Then typ{A|s} C typ{0a,3}.

PROOF. Let (6,6) be any prime quotient of A|s. By Lemma 2.4, restriction is a
homomorphism of I[04, 8] onto Con A|s. We can choose §, § € Con A such that
5 <8< pBandd|s =0, 0|s = 6. We then choose (c,d) € SN (§ — §). Notice that
e(c/) C ¢/6 and e(c/8) € c¢/8. Thus by Exercise 5.11(3) (the version of Theorem
2.8 (6) adapted to traces) there is a (8, 0)-trace N C c/8 such that e(N) = Nj is a
(8,0)-trace. Now N, CUnNc/B=S.

We can assume that c¢,d € N; (or choose new elements). There is e; € E(A)
with ey (A) C e(4) = U, e;(A) € M4(8,8), and N; a (5,0)-trace in e;(A). Clearly
e1(N1) = N; and e1(S) C S. Since e;(8) € 6, the range of the polynomial e;|s
contains a (6, 6)-minimal set V. We have V = ¢€/(S) for some ¢’ € E(A|s); and of
course there exists e; € E(A) such that ep]s = ¢’. We may assume that eje; = es.
Clearly e2(8) € 8, and ea(A) C e1(A), hence ez(A) = e, (A). It follows from this that
all elements of N; are fixed by ez, and thus N; C ez(S)=V. Now ¢/0NV =M isa
(6,0)-trace in V, and Ny C M. But since V C e;(A), we have M C c/0ney(A) = Ny.
So the set M = N, is both a (6,0)-trace and a (6, §)-trace. It is easy to prove that
Alm = (Als)|n; and clearly 8|p = 8|n. Hence typ(8,8) = typ((Alnm)/(6]m)) =
typ(6,0). ]
THEOREM 6.17. Suppose that A is an algebra; that e € E(A), U = e(A), B €
Con A; and that S is a B|y-equivalence class.

(1) For every algebra C € V(Alg), there exist A' € V(A), ¢/ € E(A'), U’ =

€e'(A"), B' € Con A', and a '|y-equivalence class S' satisfying:

(i) A'lss = Cle.

(ii) There exists a complete lattice homomorphism of I[04:, '] onto Con C.
(iii) If A and C are finite, then A’ is finite.

(2) If A is finite, then typ{V(Als)} C typ{V(A)}.
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PRrRoOOF. When (1i) holds, then (1ii) follows, by Lemma 2.4 and Exercise 2.5 (1).
To prove (1), let C € V(Alg). There exists S” C (Als)T for some set T, and a
congruence § on 8” with C = S”/@. If A and C are finite, then we can take a finite
T, by Theorem 0.2. Applying Lemma 6.14, we obtain A” C AT, " € E(A"), etc.
By Lemma 2.4, there exists 8" € I[04,3"] with 8”|s» = 8. Applying Lemma 6.15 to
the system (A”,e",U”,(",5",6"), we obtain a system (A’,e',U’,3,S’). We have

Alls 2 (A"]51)/(8"|sn) = (S"|s) /8 = Clc
This proves (1). Statement (2) follows from (1), by Lemma 6.16. m]

Theorem 6.17 has some interesting corollaries. In order to introduce them, we need
one more lemma.

LEMMA 6.18. Let M be a finite minimal algebra of unary type. The variety
V(MI ps) generated by M with the normal indexing contains, for every nonvoid set
S, an algebra S = (S, ...) such that S has only trivial polynomials, i.e., S|s = (S)|s.

PRrROOF. Let A = (Sym M) N (Pol;M). Every polynomial f(zo,...,Zn-1) of M is
constant, or of the form f(zo,...,Tn-1) = o(z;) for some i < n and for some o € A.
The set A is a subuniverse of the group Sym M.

Let S be any set of at least two elements. Choosing elements u # v in M, let D
be the subset of M5 consisting of the constant functions and all the functions p(z, s)
(o € A, s €S) defined by

o(u) if s'e€ S; {s}
ov) if §=s

p(o, 8)(8") = {

It is easy to check that D is a subuniverse of (MI 5r)S. The algebra D C (MI )5
whose universe is D has a congruence 6 defined by

(z,y) €0 « (3o € A)(o(z(3)) =y(s) forall s€ S) .

The algebra E = D/6 has at least |S| elements, and every term operation of E is
either constant or a projection. This lemma follows from these considerations. O

The variety of bounded distributive lattices is the variety generated by the alge-
bra ({0,1},V, A,0,1). The variety of bounded semilattices is the variety generated
by the algebra ({0,1},A,0,1). Recall that IT, denotes the lattice of all equivalence
relations on the cardinal x (and that & is a set of ordinal numbers). We define
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Ly = {II,: k is any cardinal };

Ly ={Con V: V is an F-vector space }, F is a field;
L3 ={Con B: B is a Boolean algebra };
Ly={ConL: L isabounded distributive lattice };
Ls={Con S: S is a bounded semilattice }.

THEOREM 6.19. Let A be any finite indexed algebra.

(1) If 1 € typ{A}, then for every L € L, there exists B € V(A), and 6 € Con B,
and a complete 0, 1-separating homomorphism of I|0g, 6] onto' L. If L =II,
for an integer n > 4, then B can be chosen to be finite and (0p,6) to be tame
of unary type.

(2) If (o, B) is tame in A of affine type with associated field F, then for every
L € L there exists B € V(A), and 8 € Con B, and a complete 0, 1-separating
homomorphism of I[0g, 8] onto L. If L = Con V for a finite vector space V
of dimension > 1, then B can be chosen to be finite, and 6 can be chosen so
that (0p,6) is tame of affine type, and the associated minimal algebras B|n-
satisfy B|n: 2 V]y.

(3) If 3, 4 or 5 belong to typ{A}, then for every L € L; (i = 3, 4 or 5, respec-
tively), there exists B € V(A), finite if L is finite, and § € Con B, and a
complete 0, 1-separating homomorphism of I[0p, 6] onto L.

PROOF. We begin with (1). Suppose that 1 € typ{A}. Replacing A by a
homomorphic image, we can assume that 04 < (3 in Con A, typ(04,3) = 1,
U € Ma(04,8), e € E(A), e(A) = U, and N is a (04,08)-trace in U. The alge-
bra N = Al y = NIy is minimal of unary type.

Let L = II,, the lattice of all equivalence relations over the cardinal number «.
By Lemma 6.18, there exists C € V(N) with Con C = L, and C is finite if
is finite. By Theorem 6.17, there exists A’ in V(A) (with A’ finite if C is finite),
and ' € Con A’, and a complete lattice homomorphism =’ : I[04:,8'] -+ L. For
any such homomorphism, there exists a smallest 8’ < §' such that #'(8') = ='(8'),
and a largest 6’ < 6’ such that n'(§') = n'(04/). Replacing A’ by B = A’/§’, and
using that I[6',6'] = I[0p,6), where 8 = 6'/§', we have a complete 0, 1-separating
homomorphism = : I[0p,6] - L. :

Now if L = II,,, n > 4, then B is finite by construction. The interval I[0p, 6]
is a tight lattice, by Lemma 1.10 and Example 1.12. By Theorem 2.11, (0p,6) is
tame. Now II, is simple and nonmodular. Hence by Lemma 1.10, I[0p, 6] cannot



106 DAVID HOBBY AND RALPH McKENZIE

admit a 0, 1-separating homomorphism onto the congruence lattice of a vector space.
Therefore by Theorem 5.7, (0p, 0) is of unary type (strongly Abelian). This concludes
the proof of (1).

The proof of (2) is similar. We can assume to start with that (04,3) is a prime
quotient of affine type, and that N = AIy = W|w where W is a vector space over F
of dimension 1. The steps followed before lead to B € V(A), # € Con B, and S C B
such that # = |g : I[0p,0] - Con B|s is complete and 0, 1-separating, B|s = V|y,
and L 2 Con V. Assuming that L is finite and dimV > 1, then B is finite; and as
before (by Example 1.13), I[0p, 6] is tight and L is its simple homomorphic image,-
unique up to isomorphism. By Theorem 5.7, the type of (0p,8) can only be 1 or 2. It
is not 1, because B|s is Mal’cev and S is contained in a #-class. Thus (0p, ) is of type
2. Letting N’ be any (0p, 6)-trace, we have that L' = Con B|y is a 0, 1-separating
simple homomorphic image of I[0p,6]; and so L & L'. Now, via coordinatization
in projective geometry, the field of scalars and the dimension of a vector space can
be recovered from its congruence lattice (or, as is more usual, from the lattice of
subspaces). Therefore, we can conclude that B[y & V|y.

The proof of (3) follows the same pattern, and is easier. Note that if L = Con Q
where Q is a Boolean algebra, bounded distributive lattice, or bounded semilattice,
and if L is finite, then Q is finite. 0O

We shall draw further corollaries from Theorem 6.17 after the next definition and
lemma.

DEFINITION 6.20. A lattice L will be called finitely projective iff L is finite
and for each onto lattice homomorphism ¢ : I’ -» L with L’ finite, there exists a
homomorphism ¢ : L — L’ satisfying po = id.

Note that if L is finitely projective, and if ¢ : L’ - L with L’ finite, then L’ has a
sublattice isomorphic to L. Finitely projective lattices are characterized in Exercise
6.23 (14).

LEMMA 6.21. Each of the lattices N5, D;,Ds and M, (n > 1) is finitely projec-
tive.

PROOF. We prove this fact for D;, and leave the remaining proofs to the reader.
D, is pictured in Figure 12. (See Remark 5.21.) Suppose that ¢ : L’ -+ D; and L' is
finite. Let 0 and 1 denote the least and the largest elements of D; respectively. Let
a= V¢ 10}, and b = A p~{1}. Let L” be the interval I[a,a V b] in L' and put
¢" =|pr. Ifz € L', then z” = (aV z) A (a V b) belongs to L and ¢"(z") = ¢(z).
Therefore ¢” maps L” onto L. Moreover, ¢” : L"” —» L is 0, 1-separating.

Now let u, v, w be the three atoms of Dy, satisfying uVw =1, (uVv)A(vVw) = v.
(See Figure 12.) Choose any u”,v",w"” € L" with

Lp/,(u”) _ u, Sa//(,UN) — U, (pll(wll) =w.
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Replacing v” by (u” V v") A (v" V w"), we can be sure that
W' Vo")A@" V') ="
Since " (u” V w") = 1, we have v” V w” = a V b. Similarly,
WAV =u" AW =" AW =a.

The relations
(ull V U”) Aw" —a= ull A ('U” vwll)

can be demonstrated in the same manner. One can now check that {a,u”,v",w",
u”’Vvv”,v"Vw",aVb} is a sublattice of L’ isomorphic to Dy, and that the isomorphism
provides the required map o : L — L. ]

By a finite subdirect power of an algebra A is meant an algebra B such that
for some integer n > 1, B C A™ and the image of B under each of the coordinate
projections from A™ is A.

THEOREM 6.22. Let A be a finite indexed algebra, let KC be the class of all finite
subdirect powers of A, and let S(CON K) be the class of all lattices isomorphic to
a sublattice of Con B for some B € K.

(1) These statements are equivalent:
(i) 1€ typ{K};
(if) D; € S(CON K);
(iii) Every finitely projective lattice belongs to S(CON K).

(2) D, € S(CON K) iff typ{K}n{1,5} #0.
(3) M3 € S(CON K) iff typ{K}n{1,2} #0.

PROOF. That (1iii) implies (1ii) follows from the last lemma. That (1ii) implies (1i)
follows from Lemma, 6.4. Now suppose that (1i) holds; let L be any finitely projective
lattice. It was proved by P. Pudldk and J. Tuma in [30] that every finite lattice is
isomorphic to a sublattice of I, for some finite n. We can thus assume that L C II,
and n > 4. By Theorem 6.19(1), there is B € K, and an interval I[a, 8] in Con B,
and a homomorphism ¢ : I[a, 8] - II,. [Theorem 6.19 only gives a finite B € V(A),
but the proof, via Lemmas 6.14 and 6.15, actually produces an algebra which is a
homomorphic image of a diagonal subalgebra of AF for a finite k. Thus, if we don’t
require a = Op, we can have B € K.] Letting L’ = ¢p~}(L), since ¢|z» : L' -» L and
L is finitely projective, there exists L” = L with L” C L’ C Con B. This finishes
the proof that L € §(CON K), and the proof that (1i) implies (1iii).

That typ{K} N {1,5} # 0 if D, € S(CON K) follows directly from Lemma 6.3.
For the other implication in statement (2), Theorem 5.27(2) implies that Dy €
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S(CON X) if 5 € typ{K}; and (1), just proved (combined with Lemma 6.21) im-
plies that D, € §(CON X)) if 1 € typ{K}.

Statement (3) follows from Lemma 6.6 if M3 € S(CON K), and follows from
(1) and Lemma 6.21 if 1 € typ{K}. So assume that 2 € typ{K}. Just as in the
proof of (1), Theorem 6.19(2) gives the existence of B € K and an interval I[a, 3]
in Con B which has M,, for some n > 3 (has, actually, the congruence lattice of a
two-dimensional vector space over some finite field) as a homomorphic image. Since
M;3; C M,, and M3 is finitely projective, we have that M3 € §(Con B). O

A class of finite, similar, indexed algebras closed under the formation of subalgebras,
homomorphic images, and products of two algebras at a time, is called a pseudo-
variety. Statements (1), (2), and (3) of Theorem 6.22 are obviously valid for any
pseudo-variety. (This follows from Theorem 6.22.) The subsequent chapters are
focused mainly on locally finite varieties, not pseudo-varieties, but most of the results
obtained will be valid for pseudo-varieties. Theorem 6.22 is a precursor of the full-
scale type-omission theorems for locally finite varieties proved in Chapter 9.

Exercises 6.23. We construct a collection of examples which illustrate our theorems
and destroy some plausible conjectures. We begin with several four-element algebras
having the universe A = {0,1,0’,1'} and the congruences and congruence lattice
pictured in Figure 15.

1a
0 a1
B B
5 ] 5
a
0 B 1
04
Figure 15
The following operations will be used.
sijo 10 s2/0 1071 s3|010 1
00101 00000 0 |000 O
1 1010 1 o1roY 1 000 O
ojo 1oy o |0 000 0l000 0
(1010 1]o 101 1000 0
z l uy(z) z | u2(z)
[N 0|1
1|0 1|1
o0 0]1
1|0 11

Figure 16
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(1) Assume that A = ({0,1,0’,1'},...) (operations unknown) and that Con A =

{04,14,a,p,6} (as displayed in Figure 15). Prove:
(i) A is (o, 8)-minimal and {0,1} is the only (a, 8)-trace.

(ii) Let t(x) = s1(z,0'). Either E(A) = {constants} U {id,t} or E(A) =
{constants} U {id, ¢, u2, u2}.

(iii) Ma(0,a) = {{0’,1'}}; and {0,0'}, {1,1'} are the (0, §)-traces.

(iv) Since A/6 =0/6U1/6, Pol A/§ is at least as rich as (Pol A)|(o,1); hence
typ(a, B) < typ(6,1) in the ordering of types pictured in Figure 10 (pre-
ceeding Theorem 5.5).

(v) If typ(a, B) = 2 and d(z,y, 2) is pseudo-Mal’cev for (o, 3), then we must
have s;(z,y) = d(z,0,y).

(2) Show that each of the operations sy, s2, 83,u1,u2 preserves a, 3 and §. Show
that Con (4, s;) = {04,14,0,8,6}.

(3) Let A; = (A,s1), Az = (A,381,83), Az = (A,81,u1,up), and let A3 (1 =
1,2,3) be A; with the operation s; adjoined. By the last exercise, each of
A,,...,Aq has the pentagon of Figure 15 as congruence lattice. Prove that
the type labelings for these algebras are:

Ag

Figure 17

[Note: Using Lemma 6.2, all the type labels except typ(a, 3) can be determined
by computing the two-element algebras A /8 and A/§, and determining their
types. In each of the algebras A = A;, the (a, B)-trace algebra A|{o 1} has at
least the operation of a group; thus typ(a,8) € {2,3}. The work is finished
by proving that in the richest of these algebras, Ag, (a,3) is Abelian. Define
p C A% as {0,1'}3 U {(z,y,2) € {0,1}® : s1(z,y) = 2}. Show that p is
admissible for Ag. From this, derive that ASI{O,I) is Abelian.]

(4) For any pair of non-unary types u and v, construct an algebra with universe
{0,1,0’,1'} whose congruences are the equivalence relations depicted in Figure
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15, and in which

typ(a, 8) = 1, typ(8,1) = u, typ(6,1) =v.

We construct several algebras on the base set B = {0,1,0/,1’,T}, having the con-
gruences and congruence lattice pictured in Figure 18.

1

1g
Ba B 8
a ’
0’ 1 8
B a
5 H
B
0 1 08
Figure 18
The following operations will be used.
p|l0o1 0V pplOo10 VT ps |0 1 0 1'1
0j0o1011VT 0 00000 0 |0oooo
110101 1 /00000 1 (000000
olo1rori oj0o00 0O o |00 00 0
(1o roTd 1 [000 0 0 (oo ooo
1-|TT1T111 100000 T |00o00T
01011 2|01 011 3|01 011
0 {01017 000001 00T 0T 1
1|11 v Y1l 1]010171 1|{T1r1T il
oo 1ro I o000l o1 0T 1
LB USUSUSUST Vi|oroeri |Triri
T(TTTT1 T(TTTT1 I|TT1T1TT11
z | n(z) ] vi(z) | va(2) | v3(z) | v4(z) | o(z) | 7(z)
0|1 o 1 0 1 o |1
1[0 1 1 0 1 o o
ol |0 T o v 0 1
1|0 1 1 o’ v 0 o
1|1 |1 1 1 1 o |o
Figure 19
(5) Show that each operation py,...,o, T preserves the equivalence relations «, 3, §

of Figure 18.

(6) For every {u,v,w} C {2,3,4,5}, such that {v,w} C {3,4,5}, construct an
algebra B = (B,...), using a subset of the above defined set of operations,
such that Con B = {0p,15,, 8,6} and the type labeling of Con B is:
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(7) Let A= ({071}1f0Vf11f2)7 B= ({0?1}190791792)7 where

fo(x,y) = gO(x7y) =zVy,
f1(337y) = 92(1'1?/) =zAy,
f2(z,y) =qi(z,y) = 1.
Let 1o and 7; be the kernels of the two coordinate projections from A x B,

and let o be the equivalence relation on A x B with blocks A x B — {(0,0)}
and {(0,0)}. Show that the labeled congruence lattice of A x B is

Figure 20

Prove that if we replace fi, f2,91,92 by fi(z) = 1 —z = gj(z) and fj(z) =
1 = gi(z), then the congruence lattice of A x B is unchanged, and the type
labels 5 remain unchanged, but the 4’s become 3’s.

The above exercises make it obvious that types of prime quotients not present in
A or in B can appear in A x B, or in subdirect products of A and B. The same
situation prevails with regard to the formation of subalgebras. It seems that the
only valid type-conservation theorems involve homomorphic images, and the type set
{1,2}. [We have that typ{A/a} C typ{A} if A is finite. Subalgebras and finite
products of finite solvable algebras are solvable, as will be proved in Chapter 7.]

(8) Let S be a finite simple algebra of at least three elements whose minimal sets
are two-element sets, and such that typ(S) # 1. (Such an S exists having any
prescribed type.) Define A = (S, F), where F consists of all f € Pol S such
that f is essentially unary or its range is a two-element set. Then A is simple,
typ(A) = typ(S), and A has no proper subalgebras. Let n = |A|, and define
an equivalence relation 6 on A" by: (z,y) € § — = = y or range (z) # A #
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(9)

(10)
(11)

(12)

(13)

(14)
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range (y). Show that § € Con A™ and A™/6 is a minimal algebra of unary
type.

Let B = ({0,1},...) be any algebra with base set {0,1}. Let F be the set
of all operations f on A = {0,1,2} such that {0,1} is closed under f and
fl{o.1} € Pol B. Defining A = (4, f(f € F)), show that A is a simple algebra
of type 3, and that ({0,1}, fl{0,1;(f € F)) is a subalgebra of A whose type
equals the type of B.

Prove the claims in the paragraph following Definition 6.11 that concern the
type set of a variety generated by a minimal algebra.

Prove that if A is a finite group or ring, or any finite Mal'cev algebra, then
typ{A} C {2,3}.

Let A be an indexed algebra. Show that (1) = (2) = (3):

(1) For every subalgebra B of A%, Con B satisfies SD(V).
(2) For all 8,A € Con A, [0,A]=0A .
(3) Con A satisfies SD(A).

{The semi-distributive laws SD(V) and SD(A) are defined in Definition 5.18.
The commutator [0, )] is defined in Exercise 3.8 (3). The proof of (1) = (2)
involves looking at an algebra B = A(3) C A2 whose universe is 3, and three
congruences, 7o = {{r,y) € B: z(0) = y(0)} , m = {(z,y) € B?>: z(1) =
y(1)}, and 6, the congruence generated by {((a,a), (b,d)) : (a,b) € 8}. Here,
B is any congruence of A such that [8, 4] < 8.}

For two quotients (z;,y;) (7 = 0,1 ) of a lattice L, we write (zo,y0) .,/ (z1,%1)
(or (z1,41) \\ {To,¥0)) iff yo Ax1 = 7o and yo V z; = y;. When this holds,
we say that (z;,y:) is projective to (zo,yo) in one step. Prove that if L is
modular and (zo,¥0) /* (z1,¥1), then the maps £ — zVz; and y — y Ay, are
mutually inverse isomorphisms between the interval sublattices I[zo, yo] and
Izy, 1)

It is known that a finite lattice L is finitely projective (Definition 6.20) iff L
satisfies this condition (W): for all z,y,u,v,a,b€ L,iftAy=a<b=uVv
then {z,y,u,v} NI[a,b] # @. Try to prove this result of B.A. Davey and B.
Sands [8]. (It is also known that a finite lattice is projective in the class of all
lattices iff it satisfies (W) and is semi-distributive. This deep result is due to
J. B. Nation [24].)



7. SOLVABILITY AND SEMI-DISTRIBUTIVITY

The notions of solvable and of strongly solvable congruence quotients were defined
in Chapter 3, and their most basic properties were developed there. In this chapter, we
delve deeper, and show that each of these notions supplies an interesting congruence
on the congruence lattice of a locally finite algebra. We require a new definition.

DEFINITION 7.1. Let A be any algebra.

(1) A 1-snag of A is any pair (a,b) of distinct elements of A such that for some
f € Pol,A, f(a,b) = f(b,a) = a and f(b,b) =b. Sn;(A) denotes the set of
all 1-snags of A.

(2) A 2-snag of A is any pair (a,b) of distinct elements of A such that for some
f € PolsA, f(a,b) = f(b,a) = f(a,a) = a and f(b,b) = b. Snz(A) denotes
the set of all 2-snags of A.

According to Exercises 5.11 (1-2), a prime quotient (a, 8) in a finite algebra A is
strongly Abelian iff (8 — a) N Sn;(A) = @, and is Abelian iff (8 — &) N Snz(A) = 0.
These facts allow us to prove the next theorem.

THEOREM 7.2. Let A be finite and let § < «v be congruences of A. The following
are equivalent

(1) (6,7) is solvable (or strongly solvable).

(2) Snz(A)N(y—8) =0 (or Sm(A)N(y—6)=0).

(3) For all § < a < 8 <, the quotient (a, B) is Abelian (or strongly Abelian).
(4) typ{6,7} € {1,2} (or typ{6,7} € {1}).

PRrROOF. The proof that the statements in parentheses are equivalent is analogous
to the proof for the unparenthesized statements, and will be omitted.

The equivalence of (3) and (4) is by Theorem 5.7 (3). Now suppose that (1) holds.
So we have a chain of congruences § = ap < a1 < --- < @, =« such that (a;, @it1)
is Abelian for i = 0,...,n — 1. Then, directly from the definitions, it follows that
Sny(A) N (41 — ;) is empty for i = 0,...,n — 1, from which we conclude directly
that (2) holds. Thus (1) implies (2).

Exercise 5.11 (1) yields that (2) implies (3). That (3) implies (1) is made clear by
considering any maximal chain § = g < a1 +++ < a = 7 in the interval I[6,v]. O

113
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DEFINITION 7.3. Letting A be any algebra, we define an equivalence relation ~
on Con A by setting vo ~ 7, iff 49 N Snz(A) = 7, N Sng(A). We define a second
equivalence relation ~ by vo ~ 71 iff 70 N Sn;(A) = 43 N Sny(A).

LEMMA 7.4. Let A be a locally finite algebra. Then ~ and ¥ are congruences on
Con A.

PROOF. We first prove the lemma under the assumption that A is finite; and we
tackle < first. Let a, 70,71 € Con A be such that o ~ ;. It suffices to show that
alAy 2o A~ and aV7yo R V~:. The former is clear, and to see the latter, assume
not, say (a,b) € Snp(A) and (a,b) € (a Vo) — (a V). By Theorem 7.2, there exist
u, v for which

aV(pAmn)<pu=<v<aVvy

with typ(u,v) € {3,4,5}. We choose a set U € Ma (p, ), with trace N and a pseudo-
meet operation p(z,y) which has a neutral element 1 € N. (See Definitions 4.16 and
4.18.) Now aly < plu, so

vy L aly Vv < plu Vvlu;

and {1} is a p|y-equivalence class, from which we conclude that for some u € U — {1},
(u,1) € y0 — . By Lemma 4.15 or Lemma 4.17, the pair (u,1) is a 2-snag, implying
that (u, 1) € Y A7, since 7o ~ 71. But yoAY; < g, giving (u, 1) € p, a contradiction.
Thus < is a congruence on the lattice Con A.

The proof that & is a congruence is very similar. Suppose that 79 ~ 4; and
aV(yAm) < p<v < aVy where typ(pu,v) # 1, and U € Ma(p, v). If typ(p, v) ¢
{1,2}, the previous proof yields a contradiction. (Observe that Sna(A) C Sn;(A)). If
typ(u, v) = 2, let d(z, y, z) be a pseudo-Mal’cev operation for U with respect to (i, v).
There must exist (u,b) € 7o — ¢ with u € U and b in the body of U, since pVyp > v.
The equations true for d(z,y,z) (see Lemma 4.20) show that f(z,y) = d(z,b,y)
makes (u,b) a 1-snag. Thus (u,b) € 70 A v1 < p, a contradiction.

In case A is locally finite but not finite, we argue as follows. Let 79,71, € Con A
with vo ~ 41. Of course a A vy ~ a A 71; to see that @V 4o ~ a V 71, let (a,b) €
Snz(A)N(a Vo). There is a finite algebra F C A with (a, b) € Sna(F)N(a|r VYolr).
Obviously, Yo|F ~ 71|F, and so we can conclude that {a,b) € a|r V 71|F as above.
Thus (a,b) € @ Vv, as desired. The proof for % is the same. O

COROLLARY 7.5. Let A be locally finite and o, 3 € Con A. Then a ~ 8 (or
a X @) iff for every finite subalgebra F of A, (a V B)|r is solvable (or strongly
solvable) over (a A B)|p. If A is finite then a & B iff (a A B,a V B) is a solvable
quotient; and a < B iff (a A B,a V f) is a strongly solvable quotient. 0O

Motivated by the theorem and corollary, congruences satisfying a ~ 3 will be called
locally solvable equivalent, and algebras satisfying 04 ~ 14 will be called locally
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solvable. In finite algebras, we drop the adjective “locally”. Similar terminology
will be used for ~.

COROLLARY 7.6. Let V be a locally finite variety. The class of locally solvable
algebras in V is a variety, as is the class of locally strongly solvable algebras in V.

PRroOOF. We will prove the two assertions simultaneously. It is obvious that the
class of locally (strongly) solvable algebras in V is closed under the formation of
products and subalgebras.

So let A € V contain no 2-snags (1-snags), and let B = A/§. We want to show
that Snz(B) = 0 (Sn;(B) = 0), as well. If Sny(B) (Sny(B)) is non-empty, then
there is a finite F C B with Sny(F) (Sn;(F)) non-empty. There is a finite ' C A
with F'/(0|F') & F. By Theorem 7.2, F is not (strongly) solvable; so (6|, 1|)
is not (strongly) solvable, by Proposition 3.7 (3) (Proposition 3.11(3)). Thus F,
and hence A, contains a 2-snag (1-snag). This contradiction shows that the class of
locally (strongly) solvable algebras in V is closed under the formation of homomorphic
images; and since it is also closed under the formation of products and subalgebras,
it is a variety. O

Before stating our main theorem about the solvability congruences, we recall that
SD(A) and SD(V), the properties of meet and join semi-distributivity, are defined in
Definition 5.18. Algebraic lattices are defined in §0.2.

THEOREM 7.7. Let A be any locally finite algebra and let L = Con A.

(1) The lattices L/ ~ and L/ X are algebraic, and the quotient homomorphisms
from L onto these lattices are complete (preserve all joins and meets).

(2) L/~ satisfies SD(A).

(3) If A is finite and 5 ¢ typ{A} then L/ % satisfies SD(V) and SD(A).
8

(4) ¥ is contained in &, and every equivalence class of the congruence ~ | ~
is a modular sublattice of L/ .

PROOF. We only prove the part of (1) that refers to R. First we prove that every
equivalence class of ~ has a least and a largest element. From this it follows easily
that L/ ~ is complete and that L — L/ ~ is a complete homomorphism.

Let o € L and put a* = \{8: 8 X a} and o= = A{B: B * a}. Clearly,
a N Sna(A) = a~ N Sny(A), hence @ ¥ a~. To see that & ~ a¥, let (a,b) €
Sny(A) Nat. Then for some finite nonvoid set of congruences T C a/ <, we have
(a,b) € VT. Since VT % a, then (a,b) € @. Thus a* % a X a~ and o/ % does
indeed have least and largest elements.

Now we prove that the complete lattice L/ % is algebraic. Let @ = o/ ~ be some
element in L/ ~, and put

C = {0(a,b)/ ~: (a,b) € Snz(A)Na}.
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(Here, ©(a,b) is the congruence of A generated by (a,b).) Now \/C = 7/ X where
7 =\{O(a,b) : {a,b) € Snz(A) Na} by the part already proved. Clearly, 7 < a and
anSnz(A) C 7; thus 7 & a. We conclude then that \/ C = a&. We can easily see that
every member of C is compact in L/ ~. Indeed, let (a,b) € Snz(A) and § = O(a,b),
8 =6/ ~. Suppose that

s<\iv/ 2 vesy=(\/ s~

where S C L. This means that § N Sny(A) C \/ S. Hence (a,b) € oV -V v for
some {70,...,¥m} C S. We conclude that & is contained in the join of a finite subset
of the y/ & (v € S). This shows that & is compact.

We have shown that L/ < is complete and that each of its elements is a join of
compact elements; i.e., that it is an algebraic lattice. The analogous facts for L/ <
are proved in the same manner.

To prove (2), we suppose that SD(A) fails in the lattice L/<, in order to derive a
contradiction. Then let @, 3,5 € L/ % (where & = &/ ~, etc) be such that

aNfB=ary<an(BV7).

We can assume that a, 3 and « are the largest elements in their respective equivalence
classes. Then a A 8 and a A « are largest in their classes, so @ A 3 = @ Ay. The
failure of meet semi-distributivity means that there exists

(a,b) € Snz(A)Nan[(BV7) - B.
We can find a finite algebra F C A with
(a,b) € Sna(F) Nalr N [(BlF VIF) = BlF]-
Then clearly,
alp ABlr =alr Adlr # alr A(BIFVAF) (mod ~).

Now let o/, ', be the largest elements of Con F congruent modulo ~ (in Con F)
to a|r, B|F, 7|F respectively. Again we have

dAB =AY # o A(BVY) (mod L),

Choose any congruence § € Con F with o/ A < 6§ < o’ A(F' V4'). By Lemma
5.19(1), the quotient (a’ A #,6) is Abelian. Thus § ~ o' A @, contradicting that
o' A ' is the largest element in its ~-class. This finishes the proof of (2).

To prove (3), we argue as above from a failure of SD(V) in L/. This leads to
a,f,7,6 € Con A with aV(BAY) < 8§ < aVB = aVy and (§, @V 3) non-Abelian. But
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according to Lemma 5.19 (2), typ(6,aVB) € {1,2,5}, implying that typ(é,aV ) = 5.
This concludes the proof of (3).

To prove (4), we suppose that & € L, M = a/ ~, and M/ % is a non-modular
sublattice of L/%. (It is obvious that = C ~.) Thus we have congruences 6o, 61,6 €
M with 6 < 8, and 8; A (8o V 8) # 6o V (61 A 8) (mod X). There is a finite F C A
with 8 A (65 V 8') # 65 V (6, A8’) (mod <) where &, = &|F, 6' = 6|p. But, clearly,
84 & 87 X ¢'; so we have in Con F this pentagon.

Syve

8 A(SvE)
8y v (57 A 0)
LN 4

Figure 17

According to Lemma 6.5, this is impossible. : O

Theorem 7.7 leads directly to our first characterizations of locally finite varieties
which omit the type 1, or the types 1 and 5. For any classes Ko and K; of lattices,
we denote by K1 /Ky the class of lattices L having a congruence 6 such that L/6 € K,
and every equivalence class of 8 (as a sublattice of L) belongs to Xo. We shall prove
that a locally finite variety V has 1 ¢ typ{V} iff CON V C SD(A)/Modular. We
require a lattice-theoretic lemma.

LEMMA 7.8. Let 6,9 € Con L where L is a lattice, and suppose that every -
equivalence class is a modular lattice. The lattice L' = L/t has a congruence ¢’
such that L'/#' is a homomorphic image of L/0 and every 6'-equivalence class is a
modular lattice.

PROOF. We take ' = (6 V 9)/9. Since

L'/6' =2 L/(6 V)= (L/6)/[(6V¥)/6],

we need only show that every equivalence class of ' is modular. We can assume
that 6 A ¢ = 0r, since neither the hypothesis nor the desired conclusion is altered
by factoring out the congruence 6 A 1. If the theorem is false, there must exist a
pentagon (a, b, c,d, e) in L (as pictured below) with a = ¢ (mod 6V ¢) and (e, d) ¢ ¥.

c
evb=c¢, dAb=a.

a

Figure 18
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Since (e,d) € (8 V 9) — 9, there must exist e < €' < d' < d with (¢/,d') € 6. Thus
there exists such a pentagon with (e, d) € 6.

For any (z,y) € 6 V ¢, we define p(x,y) to be the least n such that there exist
T = ug,Up,..., Uy = y With (u;,u;41) € 6 U for all 7 < n. In Figure 18, (e,c) and
{a, b) are projective quotients, as are {a,b) and (d,c). Thus p(e,c) = p(a,b) = p(d,c).
Similarly, p(a,d) = p(b,¢) = p(a,e). Now we choose a pentagon (a,b,c,d,e) with
a=c (mod @ V1) and (e,d) € 6 — 9, and such that p(a,e) + p(d, c) is minimal for
all pentagons having these properties. We shall show that (d,c) € 6.

Clearly, there exists u with d < u < ¢ such that p(d,c) = p(d,u) + 1 and (u,c) €
U Y.

Case 1. (u,c) €. Let z2=uAb, e =2Ve,d =2Vd. Then ¢ £ (cAb)Ve=c
and e’ 2 d'. Since ¢’ < d’ < ¢, then d' = ¢’ (mod ¥); and we have (e',d’) € 6 A ¢, so
e’ = d'. Therefore (a, z,€',d,e) is a pentagon. (See Figure 19.)

Figure 19

But p(d,€') < p(d,u) = p(d,c) — 1, contradicting the minimality of p(a,e) + p(d, ).
Thus Case 1 cannot occur.

Case 2. (u,c) € 0. Define z,d’, ¢’ just as before. If d’ = €' then we have the same
contradiction as before. Hence e’ < d’. We have the pentagon (z,b,c,d’,e’), pictured
in Figure 20.

Figure 20
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In this picture, (a,e) and (z,€’) are projective quotients; hence p(z,e’) = p(a,e).
Likewise, (z,b) and (d’,c) are projective and so (d’,c) € 8 and p(d’,c) = 1. Now
in the pentagon (z,b,¢,d’,€'), p(z,€') + p(d’,c) = p(a,e) + 1. This implies that
p(d,c) = 1, since p(a, e) + p(d, ¢) is minimal. It follows that p(d,u) = p(d,c) —1 =0
and d = u. Thus, (d,c) € 0, as was claimed.

By a dual argument, (a,e) € 6. Thus the pentagon (a,...,e) lies entirely inside
the class a/6. This contradicts our assumption that a/6 is a modular sublattice of L;
and finishes our proof of the lemma. O

THEOREM 7.9. For any locally finite variety V, the following are equivalent:
(1) 1¢typ{V}.
(2) D; ¢ S(CON V).
(3) CON VY C SD(A)/Modular.

PROOF. That (2) implies (1) is implied by Theorem 6.22 (1).

To prove that (1) implies (2), suppose that D; € S(CON V). Thus we have
congruences of an algebra A € V forming a sublattice of Con A as pictured in
Figure 21.

Figure 21

(We can certainly assume that the least element of the copy of D; is the least con-
gruence of A.) Let (a,b) € 6,, a # b, and choose a finite algebra B C A such that
{a,b} C B and (a,b) € 8| V 62|p. The congruences Op, 6y = 8o!5, 65 = 62|,
7 = 64V ©B(a,b), 71 = 6,V Op(a,b), 87 = v A+, ¥' = 8, V 65 constitute a sublat-
tice of Con B isomorphic to D, as can readily be verified. Thus by Lemma 6.4, we
have that 1 € typ{B}; whence 1 € typ{V}.

To see that (1) implies (3), assume that 1 ¢ typ{V}. By Theorem 7.2, and Defi-
nition 7.3, we have that ~ is the identity relation on Con A whenever A is a finite
algebra in V. By Corollary 7.5, this holds also when A is infinite. Thus by Theorem
7.7, Con A € SD(A)/Modular for all A € V.

Finally, we show that if (1) fails then (3) fails. Suppose that 1 € typ{V}. By
Theorem 6.19 (1), there exists a finite algebra B € V and § € Con B and a homomor-
phism of I[0p, 6] onto II4 (the lattice of all equivalence relations on a four-element
set). The lattice II4 is simple and non-modular, and does not belong to SD(A).
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Hence II4 ¢ SD(A)/Modular. Since the class of finite lattices in SD(A) is closed
under homomorphisms, it follows from Lemma 7.8 that I[0p,6] does not belong to
SD(A)/Modular. Thus Con B ¢ SD(A)/Modular. (]

THEOREM 7.10. For any locally finite variety V the following are equivalent.
1) typ{vV}n{1,5} =0.
(2) D2 ¢ S(CON Vyin).
(3) CON Vyin C SD(V)/Modular.

PROOF. The equivalence of (1) and (2) is by Theorem 6.22 (2). That (1) implies (3)
is by Theorem 7.7. If (1) fails, then by Theorem 6.19, either Il4, or the congruence
lattice L of the semilattice S3 x S3 (where S3 = ({0, 1,2}, A}), is in HS(Con A) for
some finite A € V. It can be shown, with some effort, that neither L nor I, is in
SD(V)/Modular. Thus it follows, as in the proof of Theorem 7.9, that (3) fails if (1)
does. a

The properties “CON V C SD(A),” “CON Vg C SD(V),” of a variety V can
be characterized in an analogous fashion, using Theorem 6.22 and Theorem 7.7.
These results are contained in Exercises 7.13 (3-4), and will be incorporated into the
theorems in Chapter 9. There is another characterization of the family of locally
finite varieties omitting type 1, which is quite interesting in its own right and will
become a useful tool in Chapter 9. This is Theorem 7.12, the proof of which requires
a result contained in the next theorem.

THEOREM 7.11. Let V be any locally finite variety.

(1) typ{V} C {1} iff every algebra in V is locally strongly solvable.

(2) typ{V} C {1,2} iff every algebra in V is locally solvable.

(3) typ{V} C {2} iff V has permuting congruences and every algebra in V is
locally solvable.

PROOF. Statements (1) and (2) follow from Theorem 7.2, Definition 7.3, and
Corollary 7.5.

To prove (3), suppose first that V has permuting congruences and its algebras are
locally solvable. Then CON V C Modular C SD(A)/Modular, implying that 1 ¢
typ{V} by Theorem 7.9. Then by 7.11 (2), we have that typ{V} C {2}. Now suppose,
conversely, that typ{V} C {2}. For every A € V, X is the identity relation on Con A
and & is the universal relation. Therefore V is congruence modular, by Theorem
7.7. In H. P. Gumm [16), it is proved that every solvable algebra in a congruence
modular variety has permuting congruences. The finite algebra F = Fy(z,y, z), the
free algebra in V on three generators, is solvable. Hence F, and therefore every algebra
in V, has permuting congruences. (See the proof of Theorem 0.3 (3).) O
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THEOREM 7.12. For any locally finite variety V, the following are equivalent.
(1) 1 ¢ typ{V}.
(2) There exists a term p(z,y,2) in the language of V such that the equation
p(z,z,z) ~ z holds in V and for every A € V and § € Con A : if 2 0,4
and {a,b) € 6 then p(a,b,b) = a and p(a,a,b) = b.
(3) For every A€V and a,8 € Con A, ifa ~  then@of = foa.

PROOF. Suppose that (3) holds. Then for A € V, we have that every equivalence
class of ~ on Con A consists of commuting equivalence relations. Consequently,
these equivalence classes are modular lattices. Then Con A € SD(A)/Modular, by
Theorem 7.7. Hence 1 ¢ typ{V}, by Theorem 7.9; and we conclude that (3) implies
(1).

Now to show that (2) implies (3), let A € V, let o, 8 € Con A, and assume that
a A 3. Then v & p where v = a A B, p = a V B. By the result of Exercise 7.13 (2),
we have u/v ~ 0 in Con (A/v). Now suppose that {a,b) € a and (b,c) € B. Let
p(z,y, 2) be the term supplied by statement (2), and let u = p(a,b,c). In A/v We
have

p(a/v,a/v,c/v) = c¢/v and
p(a/v,c/v,c/v) = afv

since (a/v,c/v) € p/v. This means that p(a,a,c) = c (mod v) and p(a,c,c) = a
(mod v). Thus
a 14
u = p(a,a,c) =c,

implying that (u,c) € ¢; and in a similar fashion we obtain that (a,u) € 8. These
considerations imply that a o 3 C o @, and from this it follows that a o 8 = o a.

The proof that (1) implies (2) uses several nontrivial results already proved. Let
F =Fy(z,y), let p = O(z,y) in F, let v be the smallest congruence in the equivalence
class 1/ ~ (see Theorem 7.7), and let A = F/v. We assume that 1 ¢ typ{V}. Let
e=idy €E(A),U=A=¢e(A),B=p/veCon A,z =z/v,j=y/v,and S =Z/B.
By Theorem 6.17, we have that typ{ V(Algs) } C typ{V}, so that 1 ¢ typ{ V(AIs) }.
Also, the algebra Alg is solvable. In fact, 3 is solvable, from its definition, which
yields the existence of a chain of congruences

0=3 << <Bn=p
such that each quotient (8;, 5;+1) is Abelian. It is easy to see that the chain
0=70ols << Pals=1s

of congruences of Alg also has each of its quotients (3;|s, Bi+1|s) Abelian. Now since
Al is solvable, the variety V(AIg) consists of locally solvable algebras (see Corollary
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7.6); and since this variety omits the type 1, then it follows by Theorem 7.11 that it
is a variety in which congruences permute. Hence there exists a Mal'cev operation
f € Cloz(Als). (See Theorem 0.3(3).) This operation f is the restriction of a
polynomial operation of A, which in turn is induced by some polynomial operation
h of F, where h can be expressed in the form

h(r,s,t) = q(z,y,7,8,t) forall r, s, teF

for a certain 5-ary term ¢ in the language of V and where z,y are the free generators
of F.
We know that (h,)|s is Mal'cev. Since Z,y € S, it follows that

(7.12.1) z = g(z,y,2,y,y) (mod v)
y = q(z,y,,7,y) (modv).

We now define p(u,v,w) = ¢(u,w,u,v,w). It remains to prove that the term p has
the desired properties. Observe that the congruences (7.12.1) can be written as

(7122) T= p(z,y,y) (mod ll)
y =p(z,z,y) (modv).

Let B €V and let # € Con B with 8 % 0p and let (a,b) € 8. Then define p: F - B
to be the homomorphism satisfying ¢(z) = a, ¢(y) = b. It follows directly from the
definition of <, and from the equivalence 6 ~ 0p, that ¢~1(0p) ~ ¢~1(f). We have
(z,y) € p~1(8), hence u < p~1(8), and so

p=pAe 1(6) X pAp~l(0p).

From the definition of v, it follows that v < u A ¢~1(0p); equivalently, v C ker ¢.
The congruence formulas (7.12.2) then imply the desired equations in B, namely
p(a,b,b) = a and p(a,a,b) = b. Taking 6 = 0p and a = b, we obtain also that
p(b,b,b) = b for all b € B. a

In [16] on page 54, a proof is presented showing that in a congruence modular vari-
ety, every solvable congruence permutes with any congruence. We have an analogue
of that result.

COROLLARY 7.13. LetV be a locally finite variety with 1 ¢ typ{V}. Let A€V
and o, € Con A. Ifa ~ 1 or B X 0 (or, more generally, if 3 ~ a A B) then
aVfB=aofoa.

PROOF. By factoring the algebra modulo a A 8, we reduce our task to deriving the
desired conclusion under the assumption that 8 <~ 04. Then, letting p(z,y, 2) be a
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term as in Theorem 7.12 (2), we proceed to prove that Boa o8 C ao Boa. Suppose
that

=
111

e

a=b=c=d.

Then a = p(a, b,b) and p(c, c,d) = d, by Theorem 7.12(2), since 8 ~ 04. Thus
a = p(a,b,b) £ p(a,b,¢) £ p(b,b,d) £ p(c,c,d) = d.

Now from foaof C aofBoa, it is easy to prove inductively that (a0 )" C aofoa
for all n; and this implies that a VB =aofoa. ]

Exercises 7.14

(1) Let A be alocally finite algebra and a be its largest locally solvable congruence.
Prove that A /a is isomorphic to a subdirect product of subdirectly irreducible
algebras whose monoliths are non-Abelian. (The monolith of a subdirectly
irreducible algebra is its smallest non-zero congruence.)

(2) Let A be locally finite, § < 6 in Con A. Show that § ~ 8 iff 0 ~ /6 in
Con (A/$).

(3) For a locally finite variety V, show that typ{V}N{1,2} = @ iff CON V C SD(A)
iff M3 ¢ S(CON V). (See Theorem 6.22.)

(4) For a locally finite variety V, show that typ{V}n{1,2,5} = @ iff CON Vy;, C
SD(V).

(5) Show that the variety of semilattices has meet semi-distributive congruence
lattices. (Use Exercise'3.)

(6) Show that if V is any variety of lattices, then V/Modular is a variety. (Use
Lemma 7.8.)

(7) Show that Lemma 7.8 remains true when the word “modular” is replaced
everywhere by the word “distributive”. Conclude that V/Distributive is a
variety whenever V is a variety of lattices.

(8) Show that each of the classes SD(A)/Modular and SD(V)/Modular is closed
under the formation of products, sublattices, and homomorphic images of finite
lattices.

(9) Let A be a finite algebra. Prove:

(i) If the sublattice pictured below occurs in Con A then typ{e, 8} C {1, 2},
and (a, 8) is Abelian. (Note that (o, 8) is Abelian even if A is infinite.)
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(ii) If the sublattice pictured below occurs in Con A and (a,B) is not
solvable then 5 € typ{a, 8}. (Use the congruence ~ and Lemma 5.19.)

(iii) If this sublattice occurs in Con A then typ{a, 8} C {1,2}.

<P

(iv) If this sublattice occurs in Con A then typ{e, 8} = {1}. (Use the last
statement and Lemma 6.5.)

<P

(10) Let V be any variety (possibly not locally finite). Prove that (i) = (ii) = (iii).
(i) CON V C SD(V)
(ii) Algebras in V have no non-zero Abelian congruences.
(iii) CON V C SD(A). (See Exercise 6.23 (12).)

(11) Theorem 7.7(2) implies that there are lattices such that any locally finite
algebra that has its congruence lattice isomorphic to one of them must be
locally solvable.

(i) Show that if A is a locally finite algebra where Con A satisfies

1=V{z:V{y:z/\y=0}=l},

then A is locally solvable.
(ii) Show that if A is a locally finite algebra and Con A is simple and does
not satisfy SD(A), then A is locally solvable.



8. CONGRUENCE MODULAR VARIETIES

The two broad families of congruence-modular varieties and congruence-distributive
varieties are rather familiar to universal algebraists and fairly well understood. The
tame congruence theory becomes somewhat simpler in these varieties, and it can be
used to obtain results that seem inaccessible to conventional methods. We first recall
the most recent characterization of congruence-modular varieties, and the classical
characterization of congruence-distributive varieties.

THEOREM 8.1. (Gumm [16]) A variety V is congruence-modular iff for some
n > 0 there are terms do(z,y, 2),...,dn(Z, ¥, 2), p(z,y, 2) in its language such that
these equations hold in V.

(1) do(z,y,2) =z, di(z,y,z) =z for 1 <i < n.

(2) di(z,y,y) = diy1(z,y,y) for eveni < n.

(3) di(z,z,y) =~ di+1(z, z,y) for odd i < n.

(4) dn(z,9,9) = p(z,9,9), p(z,7,9) = y.

THEOREM 8.2. (Jénsson [19]) A variety V is congruence-distributive iff for some
n > 0 there are terms do(z, y, 2), . . ., dn(z, y, 2) In its language satisfying the equations
8.1(1-3) and d,(z,y,2) = z.

It is a reasonable exercise to prove the theorem of Jénsson. The theorem of
Gumm is not so easily proved. These two theorems make it appear that for varieties,
congruence-modularity is an amalgam of congruence-distributivity and congruence-
permutability.

The next lemma introduces an idea that will be frequently used in Chapter 9. See
Definition 6.12 for the notation Als.

LEMMA 8.3. Let A be an algebra, e € E(A), U = ¢(A), € Con A, and § =
a/BNU for some a € U. If V(A) is congruence-modular, congruence-distributive, or
has permuting congruences, then V(Alg) has the same respective property.

ProoF. If V(A) is congruence-permutable, then there is a Mal’cev operation
p € ClozA, by Theorem 0.3 (3). The operation p'(z,y,2) = e(p(z,y, 2)), restricted
toc §, is Mal’cev and belongs to Cloz(Als). To see this, let z,y,z € S. Then
p'(z,y,z) € U, obviously, and

p’(:t, Y, Z) = pl(av a, a) = e(a) = a(mOd ﬂ)v
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so p'(z,y, z) € S. Moreover,
?'(z,y,y) = e(p(z,y,9)) = e(z) = =,

and likewise p'(z,z,y) = y. Thus V(Alg) is congruence-permutable.

If V(A) is congruence-distributive, then we have d,...,d, € ClozA satisfying
Jénsson’s equations of Theorem 8.2. These equations imply d;(z,z,z) = z for i =
0,...,n. Thus we see that the operations d;(z,y, z) = e(di(z,y, 2)), restricted to S,
belong to Cloz(Alg). Since the Jénsson equations are linear (having no superposition
of one operation applied to the results of operations), we can easily check that these
equations are satisfied by dy, . ..,d},. Thus V(Alg) is congruence-distributive.

The argument for modularity is very similar. All these arguments require the
idempotence of the operations in the characteristic equations, and the linearity of
these equations. O

COROLLARY 8.4. Let V be a locally finite variety and k € {1,2,3,4,5}. If
k € typ{V} and V is congruence-modular, distributive, or permutable, then there is
a minimal algebra M of type k such that V(M) has the same respective congruence
property.

PROOF. Suppose, for example, that V is congruence-distributive and k € typ{V}.
There is a finite A € V and a < B in Con A with typ(a,3) = k. We choose
U € Ma(a,f) and a trace N = U Na/B with a € U. By Lemma 8.3, V(Aly) is
congruence-distributive. The algebra M = (Aly)/(a|n) is a minimal algebra of type
k in this variety. O

THEOREM 8.5. A locally finite variety V is congruence-modular iff typ{V} N
{1,5} = 0 and for all finite A € V, a < fin Con A, and U € Ma(a,p), the
(a, B)-tail of U is empty.

PROOF. Let V be a locally finite congruence-modular variety. Let A be any finite
algebra in V with 0 < 8 in Con A. (By Lemma 2.18 and Corollary 5.3, it will suffice
to consider only this case.) Choose any U € M4 (0, 3), and let N be a (0, 8)-trace in
U and B be the body of U. By the proof of Lemma 8.3, there are

do(x»y» Z), oo ,d,.(:::,y, z),p(z‘, Y, Z) € POIBA

such that U and N are closed under these operations and, restricted to U, they
satisfy the equations 8.1 (1-4). The algebra A|y cannot be unary or equivalent to
a semilattice, since in either case it could not have polynomial operations satisfying
those equations. Thus typ(0,3) ¢ {1,5}.

In proving that B = U, we can assume that U = A. We suppose now that B # A,
say t € A— B, and we proceed to a contradiction. Let a and ¢ be any elements of N.
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For all i, 0 < i < n, the function f;(z) = d;(a, z, c) satisfies
B
fi(t) = di(a,t,a) = a.

Therefore f;(t) € B, fi ¢ Sym A (else f;” }(B) = B), and f; must be constant on N.
(Since A = U is (0, 8)-minimal.) Now we can prove inductively that d;(a,b,c) = a
for all i < n and a,b,c € N. This is true for ¢ = 0, and if it holds for i = j < n, then

dji1(a,b,c) =djqi(a,c,c) =dj(a,c,c) =a

if j is even, and
djt1(a,b,c) = dj11(a,a,c) =dj(a,a,c) =a

if j is odd. Now we have p(a,b,b) = d,(a,b,b) = a for all a,b € N; and p(u,u,v) =v
for all u,v € A.

Proceeding as in the proof of Lemma 4.20, we now construct another polynomial
operation of A. Let h(z,y) = p(z,y,y), and choose k£ > 1 such that hfo)(a:,y) =
h(...(h(z,9),¥),...,y) satisfies h?o)(hfo)(a:, ¥),y) = h(‘o)(z,y). Since hy(z) = h(z,
is a permutation for b € N (in fact hy(a) = a for a,b € N), it follows that hfo)(z, b)
zforallz € Aand b € N. We set p'(z,y,2) = h:‘(;;l(p(a:,y, z),z); and observe that
p'(z,b,b) = h?o)(:c,b) =z when z € A and b € N, and that p'(z,z,y) = y for all
T,y € A.

Now we choose a € N, let t € A — B as before, and define, for all z € A,

N

g(z) = p’(:c,p’(t,p'(t,a:, a),a),a).

For any b€ N, _
pl(ta by a) é p,(t) a, a) = t’

implying that p’(t,b,a) =t since t ¢ B. Thus g(b) = b, for b € N, and we have that
g € Sym A. On the other hand, g(t) = a can be calculated, using the equations from
the end of the last paragraph. This contradicts that g must leave A — B fixed, and
the contradiction ends our proof that U = B.

To finish the proof of the theorem, we now assume that V is locally finite and
not congruence-modular. There is a finite algebra A € V with Con A =L a non-
modular lattice; for example, we can take A = Fy(4). By Lemma 6.1, there must
exist a prime quotient (@, 3) in L and U € My (a, B) such that for U = A|y, we have
Con U non-modular. This implies that either the (a, 8)-tail of U is non-empty, or
else typ(a, 8) € {1,5}. Otherwise, by Lemma 4.17 and Lemma 4.20, either |U| = 2
or U is a Mal’cev algebra; but in either case, Con U would be a modular lattice. O

THEOREM 8.6. A locally finite variety V is congruence-distributive iff typ{V} N
{1,2,5} = 0 and for all finite A €V, a < B in Con A, and U € Ma(a, B), we have
Ul =2.
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PROOF. Let V be a locally finite congruence-distributive variety. By Corollary 8.4,
typ{V}Nn{1,2,5} = 0. Since V is congruence-modular, the previous theorem implies
that in V every {a,)-minimal set U is equal to its body, and since typ(a, ) must
be 3 or 4, Lemma 4.17 implies that |U| = 2.

Conversely, if V is locally finite and the (a, 8)-minimal sets in V are 2-element sets,
then Lemma 6.1 provides a subdirect representation of Con A (for A finite in V)
in a product of two-element lattices, and from this it follows that V is congruence-
distributive. (]

The combination of Theorem 8.5 and Lemma 6.1 yields an interesting represen-
tation of the congruence lattices of finite algebras belonging to congruence-modular
varieties, which is the content of the next theorem. Let A be a finite algebra in a
congruence-modular variety. For any prime quotient (a, 3) in A and (e, 3)-minimal
set U, the algebra A|y is either equivalent to a two-element bounded lattice or
Boolean algebra, or it is a nilpotent Mal’cev algebra. (See Theorem 8.5, Lemmas 4.17,
4.20 and 4.36, and Theorem 4.31.) These algebras A|y are E-minimal; and a complete
description of all E-minimal Mal’cev algebras will be supplied in Theorem 13.9.

Quasigroups are defined right before Lemma 4.6. A loop is a quasigroup (4,)
having an element 1 such that 1-z = z -1 = z for all elements z. A loop with
operators is an algebra, one of whose basic operations is the operation of a loop.

THEOREM 8.7. Let A be a finite algebra such that V(A) is congruence-modular.
There exist finite algebras B,B,,...,B,, each a loop with operators, such that
B,,...,B, are nilpotent and E-minimal, and

Con A= ConB & [] Con B..
1

Proor. We take (ai,B1),...,{an,0n) to be a list of all the prime quotients in
Con A. Let B; € Ma(ai,3;) for i = 1,...,n and put B = []IB;. For each i,
choose 1; € B;. If B; is a two-element set, let = -; y be the operation of a group
on B; with identity element 1;. If |B;| > 2 then since B; equals its (a;, 5;)-body
and typ(as, B:) ¢ {1,5}, we have typ(a;, ;) = 2; in this case choose an operation
di(z,y,2z) € PolzA|p, satisfying the properties of Lemma 4.20, and put ¢ ; y =
di(z,1;,y) for z,y € B;. By Lemma 4.20, (B;,+;) is a loop for 7 = 1,...,n; and
Con (B;,-) 2 Con Alp,. Let = - y be the binary operation on B such that (B,-) =
H?(Bl'v l)

Now for ¢ = 1,...,n, if |B;] > 2 let B; = (B, ;,...) have for its basic operations
z-;y and the members of Pol; A|p,. If | B;| = 2, let B; = (B;, -;). By Theorem 4.31 and
Lemma 4.36, when |B;| > 2 the algebra A|p, is nilpotent. Since Con B; = Con A|p,
and Pol B; C Pol A|p,, it follows that B; is nilpotent and E-minimal. When |B;| = 2,
it is obvious that the Abelian group B; is nilpotent, and that Con B; = Con A|p,.
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By Lemma 6.1, the mapping 8 — (0|, : 1 < ¢ < n) is a subdirect embedding of
Con A into [];Con B;.
To construct the basic operations of B (besides z - y), we define for 1 < i,j <n

M;; = {f : for some g € Pol,A, f = g|p, and f(B;) C B;}.

We define X to be the set of all sequences o = (01, ...,0,) where for all j € {1,...,n}
there is an i such that 0; € M; ;. For each o € T, we define a function f, € BE by

fo({b1,- .-y bn)) = (01(bs,), - - -, on(bi,))

where g; € M;, ; for all 1 < j < n. Now we take B = (B, -, f,(0 € X)).
The proof of this theorem will be finished once it is shown that the mapping =
defined by

7n(0) =6|p, x---x0|B,

= {(b,c) € B: (bi,c;) €0 forall 1 <i<n}

is a lattice isomorphism of Con A with Con B. It should be obvious (from the
description of the subdirect representation of Con A into [] Con B;) that m is one-
to-one; and it is easy to see that 7(Con A) C Con B. We leave it as an Exercise (in
fact, 8.8 (3)) to show that m(Con A) = Con B and = is a lattice isomorphism. O

Theorem 8.7 could be useful for the investigation of the lattice varieties of the form
HSP(CON V) derived from (locally finite) congruence-modular varieties V. It has
been conjectured that every such lattice variety either consists of distributive lattices
or is identical with HSP(CON grM) for some ring R with unit, where g M is the
variety of unitary R-modules.

Several results about the free spectra of congruence-modular varieties are proved
in Chapter 12.

Exercises 8.8

(1) Let V be a locally finite congruence-permutable variety. Prove (i): typ{V} C
{2,3}; and (ii): for every finite A € V and a < 8 in Con A and (a,b) € f—a,
there exists u = b (mod ) with {a,u} C N for some (a, 8)-trace N. Consult
Lemmas 5.22 and 5.24. [There is an open question here. Do (i) and (ii) imply
that V is congruence-permutable? In Theorem 9.14, we learn that typ{V} C
{2,3} if V is congruence n-permutable for some n.] »

(2) Let A be a finite algebra such that typ{A} = 2. Prove that for every a < 8
in Con A and U € Ma (e, (), the (e, 8)-tail of U is empty. (See Lemma 4.27
and note that A is solvable.)
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(3) Complete the proof of Theorem 8.7.
(4) Let G be a finite group, pi,...,ps be the prime divisors of |G|, and P; be a
Sylow p;-subgroup of G for 1 < ¢ < n. Show that the mapping

0+ (8lp,:1<i<n)

is a lattice embedding of Con G into [J; Con P;, but not necessarily a sub-
direct embedding. (See Exercise 4.37(6) for a proof that the groups P; are
E-minimal algebras.)



9. MAL’CEV CLASSIFICATION AND OMITTING TYPES

The clone of a variety V, denoted Clo V), is equal to the clone of term operations
of the free algebra in V on denumerably many free generators. We regard clones now
as multi-sorted “algebras”

C=(C,, compf,pP(1<nkl<w, 0<i<m<w))

with denumerably many universes Ci, C2, ..., and with operations “of composition”
compic : C X C;‘ — Cy, and constants p* € Cp, where p/*(Zo,...,Zm-1) = Ts.

W. Neumann and W. Taylor have introduced a lattice of varieties, in which V < W
iff hom(Clo V,Clo W) # 0. The members of this lattice are equivalence classes
of varieties under the equivalence relation V ~ W iff V < W < V. (See [13] for
more details.) They say that V is interpretable into W when V < W. Their
lattice is called the lattice of interpretability classes of varieties. We mention
that V < W holds, where V consists of algebras A = (A, fA(i € I)), iff there are
elements ¢; of CloW for i € I with ¢; n-ary iff f; is n-ary, such that for every algebra
B = (B,...) € W the algebra (B,tB(i € I)) belongs to V. (When this holds, the
map f; — t; extends to a homomorphism of Clo V into Clo W.)

For an example of interpretability, let M be the variety with one basic operation
p(z,y, z), consisting of all the algebras that obey the equations p(z,y,y) =~ = and
p(z,z,y) =~ y. Then a variety W satisfies M < W iff there is a term ¢(z,y, 2) in the
language of W (or an element ¢t € ClogW) such that t(z,y,y) =~ z and ¢(z,z,y) = y
hold in W. The filter {W : M < W} in the lattice of interpretability is just the class
of congruence-permutable varieties (Theorem 0.3).

A variety V is called finitely presented iff its clone has a finite presentation—
that is, iff V has finitely many basic operations and can be defined by a finite set
of equations. By a strong Mal’cev class is meant a class of varieties of the form
{V : W <V} where W is finitely presented. The formula “W < V” (where W, but not
V, is known) is called a strong Mal’cev condition. By a Mal’cev class is meant
any class of varieties of the form {V : 3, W, <V} where Wy > W, > --- > W, > ...
and the W, are finitely presented. A weak Mal’cev class is any class which is an
intersection of countably many Mal’cev classes.

There are six principal theorems in this chapter, showing that for I an order ideal in
the partially ordered set of types (Figure 10), the property typ{V}NI = 0 is equivalent
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to a natural Mal’cev condition. In most cases, our theorems show that a very broad
range of varieties omit the types in I, and yet each of these varieties is surprisingly
well-behaved, in certain respects. Taken together, the theorems provide remarkable
insight into the classification of locally finite varieties by Mal’cev conditions.

DEFINITION 9.1. A variety W will be called idempotent iff all of its operations
satisfy f(z,...,z) = z. A variety W will be called special iff it is finitely presented,
idempotent, and can be defined by linear equations, i.e., equations of the form o =~ 7
where each of o and 7 has at most one occurrence of an operation symbol. A (weak,
strong) Mal’cev condition will be called special (or idempotent) iff its definition
involves only special varieties (or idempotent varieties).

We remark that it is apparent from Theorems 8.1 and 8.2 that congruence-modulari-
ty of a variety, and congruence-distributivity, are equivalent to special Mal’cev condi-
tions. One aspect of the connection between Mal'cev conditions and omitting types
is made manifest in our next lemmas.

LEMMA 9.2. LetV and W be varieties and suppose that W <V and W is special.
Let A€ V,e € E(A),U =¢(A), € Con A, and S = a/BNU for somea € U. Then
W <V(Alg).

PROOF. See the proof of Lemma 8.3. m}

LEMMA 9.3. Let W <V where W is special and V has a finite algebra A with
1 € typ{A}. Then W is trivial, i.e., W < Sets = {(X) : X # 0}.

PROOF. We can assume that A has a minimal congruence 3 of type 1. Let N be
any (0, 8)-trace. By Lemma 9.2, W < V(Aly). By Lemma 6.18, V(Aly) contains
a two-element algebra S such that every operation of S is constant or a projection.
Every operation f in Pol S satisfying f(z,...,z) = = must be a projection. Thus
W < V((S)) = Sets. a

LEMMA 9.4. (W. Taylor [32, Cor. 5.3]) For any idempotent variety V, the following
are equivalent.

(1) V £ Sets
(2) There exists a special variety V' such that V' <V, V' £ Sets.
(3) For some n > 1 there is a term f(zy,...,z,) of V and n linear equations

satisfied in V:

f(@11,-- 0 T10) = f(Y11,- -+, Y1n)

f(xﬂls"'!xn‘n) = f(ynlw-'yynn)

in which z;;, y;; are variables and z;; # y;; for each i.
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PROOF. Trivially, (3) implies (2), and (2) implies (1). To prove that (1) implies
(3), we assume that V £ Sets. Since Clo,Sets is an n-element set for each n, a
compactness argument proves the existence of a finite subset of the equations of V
which cannot be modeled in Sets, i.e., there is a finitely presented idempotent W < V,
W £ Sets. Thus we can assume that V is finitely presented. We work within Clo V
and write clone equations as ordinary equations, using = in place of ~. For example,
in place of

compg(f, pg,pf,pf) = compg(f,p"{,pf,pg)

where f € ClozV, we would write f(z,y,y) = f(y,¥,z).

Let fo,...,fr be the elements of Clo V corresponding to the basic operations
of V, and let ¥ be a finite set of equations in these operations which defines V.
Thus {fo,- .., fr; L) is a presentation of Clo V. By introducing the clone elements
fr+1,- -+, fe that occur as subterms in building the equations of £, we can find a dif-
ferent presentation (fo, ..., f¢; £1) such that ¥, consists of linear equations together
with equations of the form

(941) ft(f]x (.’Dl, e 71“71))- .. 7fjm(xl7' . 1Zn)) = fj(zlv e 1zn)

with f,',fjl,...,fjm,fj among fo,..., fe.

Note that for every f,g € Clo V there is h € Clo V such that f and g can be
obtained from h by identifying variables. For example, if f € Clo2V and g € ClosV,
and if we take

h(:t, y,z,u,v,w) = f(g(zaya Z)vg(uyvyw))’

then h(z,y, 2,x,y,2) = g(z,9,2) and h(z,z,z,y,y,y) = f(z,y) (because V is idem-
potent). Thus there exists h € Clo,V for some n such that each f; is obtained by
identifying variables in h. Let h be such an element and define A by

(9.4.2) Moy« -y Tnz—1) = h(h(To, . .y Tn=1)y+ -+ B(Zn2—p, .. s Tn2-1)).
The equations (9.4.1) can now be written as linear equations of the form
A(variables) = A(variables);

and the linear equations in ¥; can also be written in this form. Let X5 be the set
consisting of all these equations of the above form, plus

(943) /\(.’L‘o, ey L0y TL1yeeeyLlyeeeyTy—1yee- ,1)"_1)

= A(:507-~~11‘%—171:0)'"7$1'A—17-"azO,"-yxn—l)'

Finally, let £’ be the set obtained by adjoining (9.4.2) and h(z,...,z) = z to Z,.
Note that any variety W interprets &5’ (with an n-ary and an n?-ary term) iff V < W.
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We claim that the clone element A, and the set ¥, of linear equations, substantiates
Lemma 9.4(3). If this is false, then there must be an m < n?,saym =n-i+j
(0 < 4,j < n), such that in every equation of ¥, the same variable appears at the
m-th place on both sides. Since equation (9.4.3) is in X2, we must have : = j. But
then we can check that X5’ is interpretable in Sets by setting h(zo,...,7n_1) = z;,
A(Zoy -+ »ZTn2-1) = Tmm. (Equation (9.4.2) will be true here since ¢ = j.) By the
remark at the end of the previous paragraph, V < Sets, a contradiction. O

LEMMA 9.5. For any idempotent variety V, the following are equivalent.

(1) V ¢ Semilattices.

(2) There exists a special variety V' such that V' <V, V' £ Semilattices.

(3) For some m > 1 there is a term f(zi,...,Zm) of V such that for every non-
void set I C {1,...,m}, there is an equation f(Zi,,...,&i,,) = [(Yiys-- -+ Yim)
satisfied by V, where {z;; : j € I} # {y;; : j € I} and the x;; and y;; are
variables.

PROOF. Again, it is trivial that (3) implies (2), and (2) implies (1). Now we
assume that V £ Semilattices. As in the last proof, we can assume that V is finitely
presented, and in fact that Clo V has a presentation (h, k; ) where ¥ consists of the
equations

k(IEg'o, cee ’zn-—l,n'—l) = h(h(zo,o» e ’zﬁ.n-—l)v ey h(z‘n—l,Oy cee vzn‘l,n—l))’
and h(z,...,z) =z

together with a finite set I of linear equations of the form k(variables) = k(variables).

Let Seq = U{Seq(m) : 1 < m < w} where Seq(m) is the set of all sequences
(00y---,Om=-1) = o with {0g,...,0m-1} C {0,...,n — 1}. To define some clone
elements, we select infinitely many distinct variables z,(o € Seq). Then we define

h! = h, h? = k, and inductively,

r™ (2, : 0 € Seq(m + 1)) =
h(h™((z (o)~ : T € Seq(m))), - .., A" ({(T(n—1)~r : T € Seq(m)))).

We take T to be the set of all linear equations of the form hi(variables) = h7(variables)
true in Clo V.

Letting C be the clone of the variety of semilattices, if T is not modeled by any
sequence of elements ¢! (n-ary), g% (n?-ary), ... in C, then a finite subset of T is not
modeled. Since h* can be obtained from k7 by identifying variables when i < j, we
could conclude that C cannot model all the true linear equations of Clo V involving
a single h"™ (for r sufficiently large). We could take f = h” and m = n” and satisfy
Lemma 9.5 (3), since if there were an I without the required equation, we could, by
taking f(zi,...,zx) = A{zi : i € I}, model the linear equations for f in the clone of
semilattices. Thus Lemma 9.5 (3) will hold unless T can be modeled in C.
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To finish the proof, we now assume that ¢, q?,... are elements of C modeling T'.
We shall derive a contradiction.

For each o € Seq, put o € D iff ¢™ depends on z, (where o € Seq(m)), and put
oc€eliff o ¢ D. Thus

(9.5.1) ¢™((z, : 0 € Seq(m))) = A{zs : ¢ € DN Seq(m)} for each 1 < m < w.
Using (9.5.1) and some of the equations in T, we can easily see that:

(9.5.2) If 0 € I then 770, 071 € I for all T € Seq.

(9.5.3) If o~(j) € I, then 07 (3,j) € I.

(9.5.4) o € D iff D[g] = {i < n:07(i) € D} is nonempty.

Claim. For every o € D, there is i < n such that o~ (z) € D and |D[o~(3)]| < | D[o]].

To prove this claim, let 0 € D. The set D[o] is nonempty, by (9.5.4), and we define
p(Zo,---,Tn—1) = N\{zi : i € D[o]}. The operation p? cannot satisfy all the linear
equations satisfied by h2, else we have an interpretation of V in semilattices. Thus
there is an equation

h2((usj : 1,5 < n)) = h*({vij : 1,5 < n))
true in Clo V, where u;;, v;; are variables such that
{uij : 1,5 € Dlo]} # {vi,j : i,j € D[o]}.

The two sides of this equation can be substituted into h™*2, where o € Seq(m),
replacing the subterm h%({(z,~(ij) : i,j < n)) to obtain an equation in T. Since
¢™+? must satisfy this equation, we conclude that there are 7,; € D[o] such that
0~(i,7) € I. Thus 0~(i) € D and j € D[o] — D[o~(i)]. By (9.5.2) and (9.5.3),
Do~ (i)] C D[o], and so the claim is established.

The claim clearly implies that D = @. Hence ¢! is constant. This is impossible,
since the equation hl(z,...,z) =z isin L. O

We are now ready for the first main theorem of this chapter.
THEOREM 9.6. For any locally finite variety V the following are equivalent.

(1) 1 ¢ typ{V}.

(2) There exists an idempotent variety £ such that £ <V and € ¢ Sets.

(3) There is a positive integer m such that for every A € V and a, 3,7 € Con A
we have a N (B 07) C Ym © Bm where By = B3, Yo = v, and inductively, fnt1 =
BV (aArn) and Yas1 =7V (@A Ba). Insymbols, V E an(Bo7) S Ym ©fm.

(4) D; ¢ S(CON V).
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(5) CON V C SD(A)/Modular.

(6) There is a ternary term which defines a Mal’cev operation on every block of a
locally solvable congruence in V.

(7) Every two locally solvable congruences on an algebra in V permute.

PRrROOF. The equivalence of (1), (4), (5), (6), (7) is contained in Theorem 7.9 and
Theorem 7.12.

We have that (2) implies (1), easily, by Lemma 9.3 and Lemma 9.4.

To see that (1) implies (3), we must consider the free algebra F = Fy(z,y, 2) and its
congruences a = 6(z, z), 8 = 0(z,y), ¥ = 6(y, 2). Defining B, and 7, as in statement
(3), it is easy to prove that (3,) and (v,) are increasing sequences. Since F is finite,
there is an m > 0 such that 8, = Bm+1 and Ym = Ym+1. Then, by the definition of
Bm+1 and Ym+1, we have a A By < ¥m and a AYm < B ie., aA By = aAyy,. Now
from this and Theorem 7.7 (2) it follows that a A By ~ & A (Bm V Ym). It is easy to
prove, inductively, that B, Vyn = BV~ =, Va = a Vv, for all n. Therefore, since
X is a lattice congruence, we have

aAﬂm:‘aA(ﬂmv'Ym):aa
ﬂm’i‘ﬁmvc":ﬂ\/'ﬁ
aA’Ym'E’a’

7m'3’,3v'7’§‘,3m~

Now by Theorem 7.12, B, and vy, permute. Since (z,z) € B0y C Bm ©Ym, it follows
that (z,z) € Ym 0 Bm.

Now let A be any algebrain V and let o', #',7' € Con A and let {a,c) € a'N(B'o7').
Let b € A be such that (a,b) € 3, (b,c) € . Define a homomorphism 7 € hom(F, A)
by setting m(z) = a, 7(y) = b, 7(z) = c¢. Obviously a C 77 (c/), B C 7~ 1(A),
¥ C n~(v'); therefore B, C 7~ 1(B,,) and vm C 7 1(v},) since 771 is a lattice
isomorphism of Con A with the interval I[r=1(0),1] in Con F. It follows that
7(Ym © Bm) C Yim © Bl and so (a, c) = w({(z, 2)) € ¥}, © By,. We have now shown that
(1) implies (3).

To prove the implication “(3) implies (2)”, assume that (3) holds with a certain
value m. Let a,B3,7 € Con Fy(z,y,2) be as above. Thus we have (z, z) € Ym © Bm.
This property, that “(z,z) € vm o B, is equivalent to a special Mal’cev condition.
(In fact, “(3m)({z, z) € Ym©oBm)" is equivalent to a certain special Mal’cev condition
for varieties.) We omit the proof of this fact, although we do prove it for m = 1
while proving the next theorem; and the general proof is visible in that argument.
Now, from the fact just noted, there must exist a special £ such that £ < V and
whenever £ < W then W satisfies “(z, z) € ym © Bm”. We can check that Sets does
not satisfy “(z,z) € Ym o Bm”. (Fsets(T,y, 2) is a 3-element algebra with universe
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{z,y, 2}, satisfying B, = B, 7 = 7 for all n.) Therefore £ ¢ Sets, and we have
shown that V satisfies (2). 0O

Remark 9.7. As far as locally finite varieties are concerned, the special Mal’cev
class

{V : forsome m, VEaN(Bov) C Ymo P}

is the largest idempotent Mal’cev class distinct from the class of all varieties.

THEOREM 9.8. For any locally finite variety V, the following are equivalent.

1) typ{V}n{1,5} =0.
) There exists an idempotent variety £ such that £ <V and £ ¢ Semilattices.

(
(2
(3) V E an(BomnC(rV(@np)eBY (@A)
(

4) For some n > 0 there are terms do(z,y, 2),...,dn(z,y, 2), p(z,y,2) and
eo(z,y,2),...,ex(z,y,2) such that these equations hold in V:

= do(l‘, Y, Z),

d,’(l‘, Y, y) ~ d§+1(1', yvy) and e‘i(xyyv y) = €.’+1(.’E, Y, y)

for even i < n,

di(z, z,y) = dis1(z,2,y) and e;(z, 7,Y) = eit1(z, 2, Y)

for odd i < n,
dn(z,9,y) = p(z,y,y) and p(z,z,y) = eo(z, Z,y),

d,‘(.’b‘, y,l‘) ~ di+1(zv Y, IL') and ej(““» y,:z:) ~ €j+1($,y,$)

for odd i < n and even j < n,

en(z,y,2) = 2.

(5) Dy ¢ S(CON V).
(6) CON Vyi, C SD(V)/Modular.

PROOF. The equivalence of (1), (5), (6) is proved in Theorem 7.10. We shall prove
that (2) implies (1), (1) implies (3), (3) and (4) are equivalent, and (3) implies (2).

Now if (2) holds, then, by Lemma 9.5, there is a special variety £ such that £ <V
and £ ¢ Semilattices. Certainly £ £ Sets, so by Theorem 9.6, 1 ¢ typ{V}. If
5 € typ{V} then, by Lemma 9.2, £ < V({({0,1},A,0,1)). Since every idempo-
tent polynomial of ({0,1},A,0,1) belongs to Clo({0,1},A), we actually have £ <
V({{0,1}, A)) = Semilattices, a contradiction. Thus (2) implies (1).
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Assume that (1) holds. Let F = Fy(z,y, ) and let a, 3,y be the same congruences
on F encountered in the last proof. Since a VB = aV~y = V-, we have, by
Theorem 7.7 (3), that

Bi=BV(aAy) X BVY RV (aAf)=m.
Thus by Theorem 7.12, 8; o y; = 71 © B1, and we have (z, z) € 7, o §1. By the proof
of Theorem 9.6, “(z,z) € y1 0 B1” is equivalent to (3). Thus (1) implies (3).

We now show that “(z,z) € v; o 8;” is equivalent to (4). Note that a, 3 and vy
are respectively the kernels of the three endomorphisms of F defined by the con-
ditions mi(z) = m(z) = z, m(y) = y; m(z) = m(y) = =z, m(z) = y; and
w3(z) = z, m3(y) = m3(z) = y. Thus for any terms s(z,y,2) and t(z,y, z) we have
(sF (z,y,2),t¥ (z,y,2)) € a iff s¥(z,y,2) = tF(z,y,z) iff the equation s(z,y,z) ~
t(z,y,z) holds in V. Similar statements hold for 8 and v. That (z,2) € v, o B iff
(4) holds should now be clear from these remarks.

Now suppose that (3) (and (4)) hold. The equations (4) (for a certain n) define a
special variety £, with 2n+3 basic operations such that £, < V. If €, < Semilattices
then, by the equivalence of (3) and (4), in the free semilattice on generators z,y, z we
have (z,2) € 11 o B1. This free semilattice has seven elements and it can be checked
that here (z,z) ¢ 7 o (1, although (z,z) € 2 o f2. Therefore &, $_ Semilattices.
This concludes the proof that (3) implies (2). (m}

Remark 9.9. We shall later point out (Theorem 9.18) that if a variety satisfies a
lattice equation for congruences, V CEN €, and if ¢ does not hold in every lattice (i.e., if
€ is non-trivial), then V satisfies Theorem 9.8 (2), and so if V is locally finite it satisfies
Theorem 9.8 (3). In this connection, we remark that Gumm'’s characterization of
congruence-modular varieties in Theorem 8.1 is equivalent to

V Eoan(Ber) Cllany) Vienb)es;

and this inclusion trivially implies Theorem 9.8 (3).

THEOREM 9.10. For any locally finite variety V the following are equivalent.
(1) typ{V}n{1,2} =0.
(2) There exists a special £ <V such that for every finite field F we have £ ¢ ¢V,
where gV is the variety of vector spaces over F.

3) Vv CEN anN(Boy) C Bm N7m for some m (where By, and v, are as in
Theorem 9.6).

(4) M; ¢ S(CON V).
(5) V £ SD(A).

(6) The only Abelian congruence of any algebra in V is the identity relation.
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ProoOF. It is clear that if an algebra in V has a non-zero Abelian or solvable
congruence, then some finite algebra in V has such a congruence. It follows from
Theorem 5.7 (2) that (1) and (6) are equivalent, and equivalent to V having no non-
trivial solvable congruence quotients—i.e., R =id on Con A for every A € V. By
Theorem 7.7 (2), (6) implies (5). Obviously, (5) implies (4); and (4) is equivalent to
(1) by Theorem 6.22(3). Thus (1), (4), (5), (6) are equivalent.

Now suppose that (1) holds. Let F = Fy(z,y,z) and let a,3,v be as in the
proof of Theorem 9.6. Pick an m > 0 such that Bn = Bm+1, Ym = Ym+1, and so
aAPBm = aAYm. Since (5) holds, then aA By, = aA(BmVYm) = a. Thus @ < Bn Aym.
In particular, (z,2) € Bm A Ym. As in previous proofs, this is equivalent to (3) (for
the fixed m). Thus (1) implies (3).

It should be obvious that (3) (at least for a fixed m) is equivalent to a special
Mal’cev condition. (The proof is left as an exercise for the reader.) Thus, as-
suming (3), there exists a special £ such that £ < V, and whenever £ < W then
W satisfies (3). To see that ¢V (F a finite field) does not satisfy (3), notice that
M3 € S(CON V) and that gV has permuting congruences. It follows that £ £ gV,
and so we have proved that (3) implies (2). Finally, (2) implies (1) via Lemma 9.2.
(€ £ 7V implies € £ Sets as well.) O

THEOREM 9.11. For any locally finite variety V, the following are equivalent.
1) typ{V}n{1,2,5} =0.

(2) There exists a special € such that £ < V, £ £ Semilattices, and for every
finite field F, £ £ pV.

() V E an(Bon) C(BY @A AGV(@AB).

(4) For some n > 0 there are terms do(z,y, 2), . ..,dn(,y, 2) such that V satisfies:
= dO(x,yv Z),

di(z,y,y) = di+1(z,9,y) and di(z,y, ) = dit1(z, y, )

for even i < n,
di(z,z,y) = diy1(z, z,y) for odd i < n,
dn(z,y,2) = 2.

(5) D2,M3 ¢ 8(CON Vy;n).

(6) Vsin C'(=)N SD(V).

PROOF. The theorem is a little stronger than the union of Theorems 9.8 and 9.10.
It can be proved by the same arguments, involving no new tricks, so we leave the
proof as an exercise. O
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DEFINITION 9.12. A variety V is called n-permutable iff for every A € V and
a,3 € Con A, we have ao, 3 = 3o, a, where a0, f =aofoao... (withn—-1
occurences of o).

We shall see that n-permutability (for some n) is equivalent, in a locally finite
variety, to the omission of types 1, 4, and 5.

LEMMA 9.13 (Hagemann, Mitschke [17]). For any variety V and integer n > 1,
the following are equivalent.

(1) YV _E_n+ 1-permutable.
CON
(2) There are terms py(z,y,2),...,pa(z,y, 2) such that V satisfies

z = pi(z, ),
pi(z, z,y) = pir1(z, y,y) for each i,
Pa(z,2,y) R y.
(3) For every A €V and subalgebra p of A2 such that id4 C p we have p C p".

PROOF. This is Exercise 9.20 (4). - O

THEOREM 9.14. For any locally finite variety V the following are equivalent.
(1) typ{V} C {2,3}.
(2) There exists a special variety £ such that £ <V and £ ¢ D (the variety of
distributive lattices).
(3) For somen,V E n-permutable.
CON

PROOF. By Lemma 9.13, n-permutability is equivalent to a strong special Mal’cev
condition. The variety D is not n-permutable for any n. Hence (3) implies (2). If
(2) holds, say £ <V and € ¢ D, then £ ¢ Sets and £ ¢ Semilattices. Thus, by the
now familiar argument via Lemma 9.2, typ{V} N {1,4,5} = 0. Hence (2) implies (1).

Now assume that (1) holds. Let F = Fy(z,y) and let p be the subalgebra of F2
generated by {(z,z),(y,y),(z,y)}. Let p be the transitive closure of p. Thus p is a
reflexive, transitive subalgebra of F2. We claim that (y,z) € 5. Suppose that this
fails. Now 6 = 5N (p)” is a congruence of F, and (z,y) ¢ 6. Choose congruences
satisfying 8 < a < B, (z,y) € B — a. Choose an (a, 3)-minimal set U and, by 5.7 (1)
and 2.8(4), an f € Po,F with f(F) = U and (f(z), f(y)) € B — a. Let N be the
(o, B)-trace f(z)/(Blv). Since p is a reflexive subalgebra of F2, it is closed under
all polynomials of F. Therefore (f(z), f(y)) € p. Since typ(a,B) € {2,3}, then
by Lemma 4.17 or Lemma 4.20, F|y is Mal'cev. Let d € PolgF induce a Mal'cev
operation on N. Then

(f(v), f(=) = d((f(x), f(z)), (£ (=), F(w), (f (), F())),
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so {f(y), f(z)) € p. Therefore (f(z), f(y)) € pNp” C 0 C . This contradiction
proves that (y,z) € p.

We now choose elements y = ay,...,a0 = z in F such that (a;y1,a;) € p for
0 < i < n. We shall show that V is n + 1-permutable. For each ¢ < n, there must be
a term p;41(z, y, 2) such that p;+1({z, z), (z,¥), (¥,¥)) = (@i+1,a:). Then we have

T =a = pl(zvy)y)a
iz, z,y) = a1 = pa(z, 9, 9),

Pa-1(Z,Z,Y) = an—1 = pu(z,9,9),
Pa(z,7,Y) = an = y.

These equations holding in Fy(z,y) are equivalent to equations of V implying n + 1-
permutability via Lemma 9.13. Thus we have proved that (1) implies (3). ]

THEOREM 9.15. For any locally finite variety V the following are equivalent.

(1) typ{V} C {3}
(2) There exists a special £ < V such that £ £ D (distributive lattices) and for

all finite fields F, £ ¢ gV.
(3) There are terms fo(z,y, z,u), ..., fa(Z,y, 2,u) such that V satisfies:

(‘) :czfo(:c,y,y,z), .
(i) filz,z,9,2) = fis1(z,y,9,2) and fi(z,7,9,9) = fir1(z,y,9,y) for
alli <n,
(iii)  fo(z,z,9,2) = 2.

(4) V _E_n-permutable for somen and V FE_SD(A).
CON CON

5B) Vv CSN n-permutable for some n and V CEN aA(BV7y) L Bm for some m
(where By, is as in Theorem 9.6).

PRrROOF. That (1) and (4) are equivalent follows from Theorems 9.10 and 9.14.

Now we prove that (1) implies (3). Assume that (1) holds and let F = Fy(z, y, 2)
and a, (3, be the usual congruences on F, as in the proof of Theorem 9.6. Let p be the
subalgebra of F? generated by {(z,z), (y,), (2, 2), (y,z)}. Since V is n-permutable
for some n, by Lemma 9.13 there is n such that p¥ C p"; i.e., the transitive closure
of p is the congruence 8 = O(z,y). By Theorem 9.11 ((1) ¢ (3)), we have that
(z,2) € an(Boy) C BV (aA7y). Since § is the transitive closure of p, it follows that
(z,2) € po((aAy)op)™ = pognt1(aAy) for some n. Thus there exist ag, ai, ..., azn4+1
in F with £ = ao, z = agn+1, and (azi, a2i4+1) € p, and (azj41,0a2(j+1)) € @ A~ for all
i <nand j < n. There are terms f;(z,y, 2,u) such that

(a2i1 a2i+1> = fi((zfz)5 (y,x), <y1 y)) (27 Z))
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for all : < n. Here,

fO(zfyv yvz) =a9 =T, fn(zvzy yJ) = Q2n+1 = 2,

and the formulas

filz,z,y,2) = azj41 =i azjv2 = fi+1(2,9,9,2)
imply the equations 3(ii), since a is the kernel of the endomorphism 7; of F sending
z to z, y to y and 2 to z, and since v is the kernel of 7, sending z to z, y to y, and
z to y. Then (1) does imply (3).

Now assume that (3) holds. Thus for some n we have £, < V where &, is the special
variety defined by the equations (3), involving the operations fo,..., fr. Defining
pi+1(z,y,2) = fi(z,y,2,2), it is clear that in £, the terms py,...,pn41 satisfy the
equations of Lemma 9.13. Thus &, CEN n+ 2-permutable. This implies that £, £ D.
Also, the last steps in the argument of the last paragraph are reversible, showing that
inF = Fg¢, (z,y, 2), (z, 2) belongs to the transitive closure of BU(aN~); in particular,
(z,z) € BV (@ A7). As in the proof of Theorem 9.10 (or Theorem 9.6), it follows
that &, satisfies all parts of Theorem 9.10, and so &, $_ rV for any finite field. Thus
(3) implies (2).

By Theorem 9.10 and Theorem 9.14, (2) implies (1). By the same theorems, (5)
implies (1). Finally, it remains to show that (4) implies (5).

Let us assume that in V, congruences are n-permutable and congruence lattices
satisfy SD(A). We can work in the finite algebra F = Fy(z,z1,...,2,). We consider
three congruences of F:

a = e(on,In),
B = O((zo, z1), (T2, 23),-..),
v = O({z1,z2), (T3, Ta),...).

Note that (zo,z,) € a A (8o, 7). We define Sk, vk for all k£ > 0 as in Theorem 9.6.
Since F is finite, we can choose m > 0 such that Bn+1 = Bm, Ym+1 = ¥m, and so
a A Bm = a A%y, By SD(A), this implies that a A (Bn V Ym) = @ A Bim; and just as
before we find that (zg,z,) € Bm.-

Now let A € V and o/, 3',7' € Con A. To see that a' A (B’ V') < 8.,, choose
(a,b) € &’ A(B'VY'). Since congruences in V are n-permutable, there exist ag, . .. ,an €
A with ag = a, ap, = b, (ai,a:41) € B for even i < n, and (a;,a;+1) € v for odd
i <n. Let 7 : F - A be the homomorphism defined by n(z;) = a; (1 =0,...,n).
Noting that w(a) C o', m(B) C B, n(y) C 7, we easily deduce that 7(8,) C 5.,.
Thus (a,b) = (7(z0), 7(zn)) € Bl,, as desired. a

The theorems of this chapter demonstrate that the lattice-theoretic concepts .of
meet and join semi-distributivity are closely bound up with the classification of locally
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finite varieties according to the strength of the special Mal'cev conditions that they
satisfy. Each of the two semi-distributive laws for all congruence lattices in a variety
is equivalent to a weak special Mal’cev condition. G. Czedli ([6] and [7]) found
specific, but not particularly useful, weak Mal’cev conditions equivalent to each of
these properties. Historically, the semi-distributive laws for congruences in a variety
have been little understood and infrequently applied. Czedli proved the equivalence
of Theorem 9.15 (4) > (5) for every variety, not just for locally finite ones. His result
states that for an n-permutable variety V, congruence meet semi-distributivity is
equivalent to the satisfaction, for some m, of the lattice equation (em) : aA(BV7) <
Bm in all congruence lattices of V. Moreover, he proved that if V is congruence n-
permutable, then V is congruence join semi-distributive iff for some m, V CSN Em
where €}, is obtained from €., by exchanging V and A.

We see by Theorems 9.10 and 9.11 that for locally finite V, the satisfaction of
SD(V) in the congruence lattices of the finite algebras in V implies the satisfaction
of SD(A) in the congruence lattices of all algebras in V. (For a related implication,
see Exercise 7.14 (10).) Whether SD(V) for the finite algebras implies SD(V) for all
algebras is an open question, even if we assume that V has n-permuting congruences.

B. Jénsson and I. Rival [20] proved that a wariety of lattices consists entirely of
lattices satisfying SD(A) iff for some m the members of the variety all satisfy e,,. In
contrast with the mentioned results of Czedli and J6nsson and Rival, we have the
following, due to R. Freese and J. B. Nation [12].

THEOREM 9.16. The variety of bounded semilattices is congruence meet-semi-
distributive, but any lattice equation holding in all its congruence lattices holds in
every lattice.

This theorem does not really contradict Theorem 9.10. In fact, congruences of
semilattices satisfy the inclusion aN (B ov) C B2, but this inclusion is not equivalent
to a lattice equation, due to the occurrence of composition in it.

We can draw an interesting conclusion by combining Theorem 9.16 with a basic
result of A. Pixley [28] and R. Wille [33], which we reproduce below.

THEOREM 9.17. Let ¢ be any equation for lattices. The class of varieties whose
congruence lattices satisfy € is defined by a weak special Mal’cev condition.

From Theorems 9.16, 9.17 and 9.8 we have the following.

THEOREM 9.18. LetV be a locally finite variety of algebras and € be an equation
for lattices. If V C!;N ¢ and € does not hold in every lattice, then typ{V}N{1,5} = 0.

In the next two chapters, we shall study residual properties and decidability in
locally finite varieties which omit types 1 and 5. The results obtained there apply
to every locally finite variety whose congruence lattices satisfy a non-trivial lattice
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equation, or are n-permutable for some n. To finish this chapter, we present a partial
converse to Theorem 9.18.

THEOREM 9.19. Let V be a locally finite variety. If V c’c__)N n-permutable for
some n (i.e., if typ{V}N{1,4,5} = 0), then there exists a lattice equation which fails
to hold in some lattice but is satisfied by the congruence lattice of every algebra in
V.

PROOF. Let u,v,z,y, 2 be lattice variables. Define yo = ¥, 2o = 2, and inductively,
Yk+1 =YV (T A2) and 2k41 = 2V (z Ayx). Consider the lattice equation (depending
on m)

(9.19.1) uA((uAv)V(cA(yV2))<vV(zA(uV(zAyn))).

Assuming that V CgN n-permutable for a fixed n, we shall prove that (9.19.1) holds
in the congruence lattices of V if m is sufficiently large.

If A €Vand \,7,0,8,7y € Con A, and a,b € A, then since V is congruence
n-permutable, we have

(@,0) € AA((AAT)V (@A (BV1)))

iff there exist elements of A satisfying the congruences graphed in Figure 25, and also
(ai,ai+1) € a for all odd i < n. (We can assume that n is odd.)

A

We consider the algebra

A=F =Fy(z0,Z1,...,n, %5 (1< i<m,i0dd, 1 < j<n-1)),
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and examine the generic congruences of F for this graph. They are

A= @((zo,z,.), ('770»1'1)7 (.’172,23), ey (1‘“_1,1‘")),
T= (_)((10311)1 (121333)7 ey (zn—lvzn))v
a = e((.’B],.’Ez), (x3? 1’4), ey (zn—Zyxn—l)),

. ., _n—4 .
B = O({(yi,2j+2-¥i,2j+3) : 4 0dd, j < T} U {(zi,4i,1), (¥i,n—1, Tis1) : 4 0dd}),

D

n—1

v = O({{yi,2j-1,%i,2j) i 0dd, 1 < j <

Here (zo,zn) € AA((AAT)V (@ A(BV 7)), via Figure 25, with =; = a;, yi; = ci;.
We construct 8y, ¥m from a, §,~ in the usual way, and choose m large enough so
that By = Bm+1, Ym = Ym+1. Since a A By, = a A ¥, we have

aABm ~aA(BmVIm)=aA(BV7)

(by Theorem 7.7(2)). Thus Con F has the sublattice pictured in Figure 26.

[AADV(@A BV A AV (aABm) p an(Bvy)

AAT)VI(@ABYIIAAYV(aABm)]
S aA(Bvy)A(Av(aaBm))

Figure 26

Since the lower right interval in the pentagon is solvable, then typ{fo,61} C {1} by
Lemma 6.5. But 1 ¢ typ{V}, hence 6, = 6,. This certainly implies that

(9.19.2) AN((AATIV(@ABVY)))STV(aAAV(aApBr))).

In other words, (9.19.1) holds for the specific 5-tuple (u,v,z,y,2) = (\,7,a,8,7)
in Con F. Then the familiar arguments with homomorphisms will easily prove that
(9.19.1) holds for any 5-tuple of elements in Con A, for any A € V.

Figure 27
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To finish the proof, we need to see that (9.19.1) fails to hold in some lattice. In
fact, for every m, this equation fails to hold in the lattice pictured in Figure 27. O

Exercises 9.20

(1) Let A be an Abelian algebra in a locally finite variety and suppose that A has
a polynomial f(z,y) satisfying the equations f(z,z) = z, f(z,y) = f(y,z).

Show (using Theorem 9.6, or directly) that A is Mal’cev. Show that the non-
T+y

2

locally finite algebra (Q, ) is Abelian and not Mal’cev, where Q is the
set of rational numbers.

(2) Let A be an Abelian algebra in a not necessarily locally finite variety satisfying
Theorem 9.8 (4). Prove that A is Mal’cev. (Hint: Show that di(z,y,y) = z
and e;(z,z,y) =y in A.)

3) Prove Theorem 9.11.

4) Prove Theorem 9.13.

5) Prove (3) = (2) in Theorem 9.14.

6) (Polin’s variety) The variety P generated by the pair of two-element algebras
({0,1},A,0,1, fo, go) and ({0,1},A,0,1, f1, 1) where fo(z) = 1=, fi(z) =z,
go(z) =1, gi(z) = 1 — z, discovered by S. V. Polin, was the first example of a

(
(
(
(

non-congruence-modular variety V such that V CSN ¢ for some lattice equation
€ not holding in all lattices. Show that P satisfies the equivalent conditions of
Theorem 9.15. Show, via Theorem 8.5, that P is not congruence-modular.

(7) Let V be any variety of semigroups (it need not be locally finite) which is
not equivalent to a variety of groups of finite exponent. Prove that V con-
tains a two-element strongly Abelian semigroup, or a two-element semilattice.
Therefore typ{V} N {1,5} # 0.



10. RESIDUALLY SMALL VARIETIES

A variety V is called residually small iff there is a cardinal number A such that
every subdirectly irreducible algebra in V has at most A elements. Varieties that
are not residually small are called residually large. We use Vs; to denote the
class of subdirectly irreducible algebras in V, and Spec(Vsy) to denote the class of
cardinalities of the members of Vgj.

We conjecture that if V is generated by a finite algebra then Spec(Vsr) must be
either a finite set of finite cardinals, or an unbounded set of cardinals. (In the latter
case, Spec(Vs) contains all of the infinite cardinals, at least if V is locally finite.) The
truth of this conjecture has been established for several important families of vari-
eties. For congruence-modular varieties, it was proved in [10], and the finite algebras
which generate residually small congruence-modular varieties were characterized. For
example, a finite group has this property if and only if all of its nilpotent subgroups
are Abelian. The conjecture was established for varieties of semigroups in [23].

We shall prove in this chapter that if a locally finite variety V satisfies typ{V} N
{1,5} = 0, and is residually small, then V is congruence-modular. Thus the above-
stated conjecture is true for those locally finite varieties that omit the types 1 and 5;
and the conjecture is true, a fortiori, for every locally finite variety whose congruence
lattices obey a non-trivial lattice equation.

LEMMA 10.1. Let L be any finite non-modular lattice. Either L has a sublattice
isomorphic to D, (Figure 12), or L has a sublattice as pictured in Figure 28 with
ug < Uy < 2 and Tg < T.

X2
u
X1
Uo
Xo
Figure 28

PRrRoOOF. For z < y in L, define f(z,y) = |I[z,y]|. A pentagon in L is a 5-
tuple of elements (zg, 1,2, u1,up) With 21 Vug = z2 > uy, 1 Auy = 2o < ug,
ug < u;. Since L is non-modular, it has a pentagon. Let (zg,z1,Z2,u1,uo) be

147
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a pentagon such that f(zo,z2) = n is the minimum for all pentagons, and such
that f(zo,z1) + f(u1,22) = m is the minimum over all pentagons (yo,¥1, ¥2,v1,vo)
satisfying f(yo,y2) = n.

Case 1. f(uj,z2) > 2. Choose an element e with u; < e < z3. If e Az = xp
then the pentagon (zo,Z1, T2, €, up) has f(zo,z1) + f(e,z2) < f(zo, 1) + flu1,z2),
contradicting the minimality. Thus e A z; > zo. If ug V (e A z1) < e, then the
pentagon (e A T1,%1,Z3,€,ug V (e A 1)) has f(e Az1,22) < f(Zo,Z2), contradicting
the minimality. Thus up V (e A ;) = e. But then the pentagon (zo,e A z1, €, uy, ug)
contradicts minimality. Thus Case 1 cannot occur.

Figure 29

We thus have u; < 2. We can assume that ug < u; (else replace ug by an element
ug satisfying ug < ug < u1).

Case 2. f(zo,z1) > 2. Choose an element e such that o < e < ;. Now
d = eVup # ui, else (zo,e,d,uy,up) is a pentagon with f(zo,d) < f(zo,z2) and
f(zo,€) + f(u1,d) < f(zo,z1) + f(u1,z2), contradicting minimality. It is easy now
to check that d A u; = ug (since up < uy), that dVu; =  (since u; < z2), and that
dVv Ty = T2.

Figure 30

If d A z; > e, then again, the pentagon (o, up,d,d A z1,€) contradicts minimality.
Thus we have a sublattice of L isomorphic to D5.

In the remaining case, we have u; < z and zo < z; and, as we remarked, we can
arrange that up < u;. O

LEMMA 10.2. Let A be a finite algebra having a pentagon in Con A as pictured
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in Figure 31, with a < 3, 0 < 6, typ(a, ) = 2, and typ(0,6) € {3,4}. ThenV(A) is
residually large.

B
8
@ 3or4d
0
Figure 31

ProOOF. Let {0,1} be a (04,8)-trace. (See Lemma 4.17 and Remark 5.4.) Thus
Al{o,1} is a lattice or Boolean algebra. Since 04 < §, we have § = ©(0,1); thus
B < aVO(0,1). It is easy to see that our assumptions imply that C(B,8;a) holds.
(See Definition 3.3.)

Put B = A/a and change notation, so that 8 denotes the image in B, under the
quotient map, of the congruence in A with the same name, and so that 0 and 1 denote
the elements of B corresponding to the elements of A with these names. We have
secured the following facts.

(10.2.1) B is minimal and typ(0, 8) = 2.
(10.2.2) B < ©(0,1), and B|(o,1) is a minimal algebra of type 3 or 4.

(10.2.3) For all polynomials f(z,%) of B, pairs (a,b) € g,
and sequences @, 7 € {0,1}" (where f is n + 1-ary),
we have £(a, @) = f(a,5)  f(b,a) = f(5,).

Now we choose U € Mg(0, 8), choose a (0, 3)-trace N C U, and a 3-ary polynomial
d(z,y, 2) of B such that d(B%) C U, d|y is pseudo-Mal'cev, and d|y is the operation
z — y + z in an F-vector space V = (N,...) polynomially equivalent to B|x. (See
Lemma 4.20. Here, F is some finite field.) The zero element of this vector space will
be denoted by e.

To prove this lemma, let x be an arbitrary infinite cardinal. We shall construct a
subdirectly irreducible algebra in HS(B*) whose cardinality is at least as great as .

We denote by B, (3) the set of all functions f € B* such that (f(z), f(j)) € B for
all i,j < k. By S we denote the subalgebra of B* generated by {0,1}* U B.(3). We
put

Ye= {f € N™: {i: f(i) # e} is finite and Zf(z) = e}.
i<k
(The sum is taken in the vector space V, and is meaningful since it is essentially a
finite sum.) Notice that X, is a subset of S and a subspace of the vector space V*.
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We define 6 to be the congruence of S generated by (Z.)2. We define é = (e,...),
the zero element of the vector space V*. We proceed to prove that

(10.2.4) é/6NU" =3, .

For this proof and later, we need to observe that the polynomial operations of S are
precisely those operations on S of the form H(Z) = F()(z,b, %) where (for some
m,n, k) % is an m-tuple of members of {0,1}*, b is an n-tuple of members of B, (),
Z is a k-tuple of variables, and F is an m + n + k-ary polynomial operation of B. It
is understood that for f = (fo,..., fi_1) € S¥, F®)(z,b, f) is computed coordinate-
wise (i.e., for i < &, H(f)(1) = F(2(:),b(), f(3)))-

To prove (10.2.4), we note that since U is the range of an idempotent polynomial
function of B, we have SN U” = ¢(S) for some unary polynomial o of S satisfying
o =02 Thus

6* = {(f,9) € §*: for all H € Po};S,
{H(f),H(g9)} C U” implies H(f) € Z. iff H(g) € Z.}

is a congruence of S. Hence, to prove (10.2.4), it will be sufficient to show that
(Be)? C 6.

So let ug,u; € T, H € PoliS, {H(uo), H(u1)} C U*, H(up) € .. We have to
prove that H(u;) € E.. Let v; = H(u;) (i = 0,1). We write H(z) = F(*)(3,b, %)
as in the last.paragraph. We can assume that the range of F(*) (acting in S) is
contained in U* (or replace H by oH). Now since F(Z(3),b(:),uo(s)) € N for all
i < K, we have that F(%(i),b(j),u) € N foralli,j < x and u € N (as N is a B|y-class
and b(i) = b(j)(mod B)). We can therefore make some calculations in the vector
space V.

Using (10.2.3), from the equation

F(2(i),b(0), ) — F((i), b(0), e) = F(2(0),b(0), &) — F(2(0), 5(0),e),

by replacing the underlined 5(0), e by (i), u we obtain
F(2(4), b(3), u) = F(2(0),b(i),u) — F(2(0),b(0), ) + F(2(), b(0), )

for all i < k and u € N. A similar argument, using that 3 is an Abelian congruence
(Theorem 5.7 (3)), shows that

F(2(0),5(3),u) = F(2(0),5(0),u) — F(2(0),b(0), ) + F(2(0),b(i), €) -
Thus we have, for certain ¢; € N,

F(2(i), b(s), u) = F(2(0),b(0), u) — F(2(0),5(0), ) + c;

foralli < x and u € N.



RESIDUALLY SMALL VARIETIES 151

The mapping A(z) = F(2(0), 5(0), z) — F(2(0),5(0), ) (for z € N) is a polynomial of
B|n~, hence also of V. Since A(e) = e, there is an element A € F with A(z) = A- z.
Hence we have the equation

F(Z(l)va("’)’ u) =Au+gc,

so long as u € N. Let ¢ = (¢;: i < k), a member of V*. Then for € € {0,1} we have
ve = H(ue) = A - ue + c. Since uy — ug € Xe, then v; —vg = A (u; — up) belongs to
¥e. Since vy € X, we then get that v; € L., which is what we set out to prove. This
finishes our proof of (10.2.4).

We choose now any element a € N — {e} and define, for i < k, a; and s; to be
the elements of S such that a;(j) = e and s;(j) = 0 for j # ¢, while a;(¢) = a and
$i(¢) = 1. Note that a; = a; (mod 6) for all 4, < k; and that a; # é (mod 6), by
(10.2.4). Let us choose a maximal element § in the set

{¢ € ConS: 6 <9 and (ao,é) ¢ ¥} .

There is a smallest congruence of S strictly larger than 6, namely 6 v ©(ao, €); thus
S/6 is subdirectly irreducible.

We can prove that S/é has at least « distinct elements by showing that s; /6 #
35 /0 for all i # j. Suppose otherwise, and without loss of generality, assume that
(30,81) € 6. We shall now employ (10.2.2), the fact that 8 < ©(0,1) in Con B.

Case 1. Where Q is the body of U with respect to (0, 3), there are ho,...,hy €
Pol; B such that {ho(0), ho(1),...,hr(0),h1(1)} C @Q and (a,e) lies in the equivalence
relation on @ generated by the set p = {(h;(0),hi(1)): ¢ < n}. Then since Blg is
Mal’cev, the congruence on B|g generated by p is identical to the least reflexive
subalgebra of (B|g)? containing p (see Lemma 5.22), and it follows that there is
some h € Pol;B with h(0) = a, h(1) = e. Since (sp,31) € 6, using the polynomials
of S which act on {0, 1}* as the lattice operations of ({0,1}, V, A)*, we find that

0,1,...,1,..) =8, V(0,1,...,1,...) 250V (0,1,...,1,...) = (1,1,...,1,...).
Then applying h co-ordinatewise, we get that
6
(a,e,...,e,...)=(e,€,...,6,...),

i.e., that (ag,€) € 6. This contradicts our choice of 6.

Case 2. Suppose that Case 1 fails. Since U = o(B), ¢ = 02, and 8 < ©(0,1), we
have that |y is contained in the equivalence relation generated by

{{h(0), h(1)): h € Pol;B and h(0), k(1) € U}.
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It follows from the failure of Case 1 that there is h € Pol; B with h(0) € Q (the body
of U) and h(1) € U — Q (or the same with 0 and 1 interchanged). The polynomial
f(z) = d(z,h(0),e) is a permutation of U (see Lemma 4.20). Hence with ¢(z) =
fh(z), we have ¢(0) = e and ¢(1) = u € U — Q (since f(Q) = Q).

é
Since s Z 30 A sy =(0,0,...), applying ¢ we obtain (u,e,e,e,...) =&. Therefore

d((u,e,ee,...), € ap) %d(é, g, ap) , ie.,

(d(u,e,a),e,e,e,‘..)éao.

But d(u,e,a) £ d(u,e,e) = u, implying d(u,e,a) = u since u € U — Q. Thus we
have
6 6 _
ap = (u,e,e,e,...) =€,
the same contradiction as before. This concludes the proof of the lemma. ]}

LEMMA 10.3. Let A be a finite algebra having a pentagon in Con A as pictured
in Figure 32, with o < f and typ(a,3) € {3,4}. If 5 ¢ typ{V(A)}, then V(A) is
residually large.

B
Sor4 8
o
0
Figure 32

PRrROOF. We choose U € Mj (e, 8) and denote its trace by {0,1}, and its pseudo-
meet operation by p(z, y) (see Lemma 4.17). Since 6|y Ve|y > Blv and §luABly = Ou,
there must exist v € (U — {0,1}) N 1/6. We choose such an element v and put

u = p(0,v). By Lemma 4.17, u e p(0,1) =0and u =

O@EnT

0

Figure 33

Letting x be any infinite cardinal, we define elements s; and t; of A* (for i < k) by

3i(7) =0, t:(j) =1 (for j # i) and s;(i) = u, t;(i) = v.
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We define S to be the subalgebra of A" generated by the set
{constant functions} U {s;: ¢ < k} U {t;: i < k}.
We define some congruences of S.

6 =0({(s;,t;): j <k})
Pi = @({(81‘,0), (tiv i)}) for i < k.

where 0 and 1 are the constant functions. Now we claim that 1/ nU* = {i}.

The claim can be proved by the same general method used to prove assertion
(10.2.4) of the preceding proof. Let H € Pol;S and ¢ < k be such that H(S) C U*
and H(s;) = 1 (or H(t;) = 1, but the details of the proof would be the same). We
have to prove that H(t;) = 1. It is clear that S C A.(§) and 8 C 8™ (i.e., (f,g9) €0
implies (f;, g;) € B for all i < ). Thus, writing w = H(t;), we have w(j) L w(£) and
w(j)é 1 éw(@) for all j,£ < k. Hence w is constant (since 6N 3 = 04) and w = 0
or w =1 (since 1/8NU = {0,1}). Furthermore, w(i) 21, since 3;(i) =¢;(i). Thus
w = 1, as desired (since (0,1) ¢ a).

From the claim, we get in particular that (0,1) ¢ 6. Let 6 denote a congruence of
S maximal in the set of ¥ such that 8 < ¢, (0,1) ¢ v.

The subdirectly irreducible algebra S/© has cardinality k. To prove it, we simply
show that the congruences § V p; are all distinct, and thus that S/6 has k many
distinct finitely generated congruences. Suppose, to the contrary, that bv pi = 6v I
with i # j. Note that (0,1) € 6 v p;. Since p; and pj are finitely generated, there
must exist a finite (= finitely generated) algebra T C S such that T contains all of
the constant functions and the elements s;, ¢;, s; and ¢;, and

Olr v o = bl v 4,
(61 i) € élT \ P;

where p) = O ({(s;,0), (t;,1)}) and P = ©r({(s;,0), (t;,1)}). By Theorem 7.7 (3),
the congruence |7 V p} is solvable over 8|7 = |7V (0! Apj}). (Note that p; Ap; = 0s.)
However, since T contains the constant functions, {0,1} is a 2-snag in Blrv pi)— b\,
which contradicts Theorem 7.2. m]

THEOREM 10.4. Every locally finite variety that omits the types 1 and 5, and is
residually small, is congruence-modular.

PROOF. Let V be a locally finite variety such that typ{V} N {1,5} =@ and V is
not congruence-modular. There is a pentagon in the congruence lattice of the finite
algebra Fy(z,y,2,u). By Theorem 9.8, the lattice Dy cannot be embedded into
this congruence lattice. Thus Con Fy(z,y, z,u) contains a pentagon as described in
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Lemma 10.1. In a quotient algebra, we have a sublattice of congruences with oo < 8
and 0 < §. By Lemma 6.5, typ(0, §) cannot be 2.

B
)
[
0
Figure 34

Using Lemma 10.2 or Lemma 10.3, we conclude that V is not residually small. O

Exercise 10.5. Let A be the eight-element algebra whose basic operations are just
all the operations preserving the order of the partially ordered set depicted in Fig-
ure 35.

Figure 35

Prove that V(A) is not congruence-modular. (Assuming that there are 3-ary opera-
tions dp, . . ., dp, p of A satisfying the equations in Theorem 8.1, show that d;(a, z,b) =
a for all z € A, i < n; then derive a contradiction.) Prove that V(A) omits the types
1 and 5. (Show that A has operations obeying the equations in Theorem 9.8 (4) with
n = 6.) Conclude, by Theorem 10.4, that V(A) is residually large. [The algebra A is
pre-primal, that is, Clo A is a maximal proper subclone of the clone of all opera-
tions on its universe. This seems to be the first example of a residually lafge variety
generated by a pre-primal algebra. It is also probably the most difficult exercise in
this book.]



11. DECIDABLE VARIETIES

Loosely speaking, a class of algebras is decidable if there is an algorithm that can
be applied to any sentence to determine if the sentence is valid in all members of the
class. One of the most important achievements of mathematical logic in this century
has been to supply a precise and workable mathematical definition of this concept—a
class is decidable if and only if its first order theory is a recursive set of first order
sentences. By mid-century, the decidability or undecidability of many specific classes
of algebras and relational structures had been determined.

If a class is decidable then, in a certain sense, its members cannot be very complex.
The theory of graphs is non-recursive; indeed, there is no recursive set of sentences
containing every sentence valid in all graphs and containing no sentence which fails to
be valid in some finite graph. (“Sentence” here is understood to mean sentence in the
first order language of graphs. The result was proved by I.A. Lavrov [21].) For the
classes which are varieties, most of the classes known to be undecidable were proved
to be so by interpreting into them some class of graphs, including all finite graphs, in
such a way that the undecidability follows from Lavrov’s result. By constructing such
interpretations, A.P. Zamyatin [34] proved that every non-Abelian variety of groups
is undecidable. Finite graphs can certainly be enormously complicated. A variety
into which finite graphs can be interpreted contains algebras at least as complicated
as any given finite graph.

Decidable varieties are really quite rare. The varieties of semilattices, of distributive
lattices, of lattices, and of algebras with two unary operations are undecidable. On
the other hand, every variety of Abelian groups, every variety of algebras with one
unary operation, the variety of Boolean algebras, and any variety of rings generated
by finitely many finite fields, is decidable. (References for all facts stated here can be
found in [5].)

We believe that in seeking to find an algebraic characterization of the family of all
decidable varieties, one will be led to a clearer understanding of the ways in which
a variety can be well-structured (i.e., possess algebras whose structural features are
classifiable and describable, in some sense), or poorly structured. In this chapter,
we show that tame congruence theory is a powerful tool for the investigation of
decidability in locally finite varieties. We prove that every locally finite, decidable
variety satisfying a non-trivial idempotent Mal’cev condition (i.e., omitting the unary
type) is congruence-modular. Combining this result with the chief theorem of [5)
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(Theorem 9.1), we conclude that in such a variety every algebra decomposes as the
direct product of an Abelian algebra and a centerless algebra, and the centerless
algebras in the variety constitute a discriminator variety. As in [5], the decidability
question for finitely generated varieties that omit the unary type reduces to the
decidability question for varieties of modules over finite rings. These results were
proved in [5] for congruence-modular varieties.

Here is the plan of this chapter. It contains four constructions of interpretations.
For locally finite V admitting one of the types 4 and 5, we show how to interpret the
variety of bounded distributive lattices or the variety of bounded semilattices into
V. In either case, it follows that V is hereditarily undecidable—if K is any class
of algebras similar to those in V and if V C K, then K must be undecidable. Then,
assuming that some finite algebra in V has a prime quotient (a,3) of type 2 or 3
and an (a, 8)-minimal set with a non-empty tail, we show how to interpret the class
of “atomic Boolean pairs” (relational structures defined in [5]) into V. From these
results, and Theorem 8.5 in this book, it follows that if 1 ¢ typ{V} and V fails to be
congruence-modular, then V is hereditarily undecidable.

LEMMA 11.1. Every locally finite variety V such that typ{V} N {4,5} # 0 is
hereditarily undecidable.

PROOF. We assume that 5 € typ{V} and show how to interpret bounded semilat-
tices into V. (If 4 € typ{V}, a very similar construction interprets bounded distribu-
tive lattices into V.) It is well known that the variety of bounded semilattices (and the
variety of bounded distributive lattices) interpret the class of all graphs. Each of these
classes is finitely axiomatizable and undecidable. Hence it follows that V is heredi-
tarily undecidable, if we can interpret one of these classes into it. The interpretation
we use has been more or less defined in Chapter 6 (starting with Definition 6.12), but
was not shown there to be first order definable.

We begin by fixing a finite algebra A € V and a minimal congruence 3 on A with
typ(04,0) = 5. Let U € Ma(0, 8), and let N = {0,1} be the (0, 8)-trace in U, and let
p(z,y) be a polynomial of A such that p|y is a pseudo-meet operation with respect to
(Ou, Blu). (See Lemma 4.15-Definition 4.16.) Notice that N = {z € U: p(z,0) = 0}
and U — {1} = {z € U: p(z,0) = z}.

Now let S = (S,A,0,1) be any bounded semilattice. There is only one subdirectly
irreducible bounded semilattice, within isomorphism, namely ({0,1},A,0,1). Thus S
is isomorphic to, and we may assume it is equal to, a subalgebra of ({0,1}, A, 0,1)* for
some finite or infinite cardinal k. (Here, K = 0 and |S| =1 is an allowed possibility.)

We define B = A(S), the subalgebra of A* generated by all the constant functions
together with the members of the set § C N*. It follows from Lemma 6.14 (2) that
S = BN N* (since the term operations of ({0,1},A,0,1) are the same as those of
A|n). We can now show that the algebra S is first order definable in B. (The



DECIDABLE VARIETIES 157

formulas to be used depend on A, but not on S.)
Let e € E(A) with U = e(A). There are terms e(z, §) and p(z, y, Z) in the language
of V and elements ay,...,an,b1,...,by in A such that

e(z) =e(z,a,...,an)
p(xi y) = p($7y’b17 oo ,bm)

for all z,y € A. Let 0, i,a1,...,bm be the constant functions (elements of B) con-
structed from the corresponding elements of A. It is now trivial to see that where y,
7, 6 are the formulas

[l,(fl})i E(xaél,-'-yan) =T
n(z): () & p(z,0, b1,.e bm) =

o(xvy)z): P(fﬂ,%i’h (XX )am) =2,

[«=2)

for any f,g,h € B we have

feU® & BEu(f)
feS§ o BEn(f)
fAg=h o BEO(f,g,h) if fg,h€S.
Thus the algebra S is definable in B by these fixed formulas using the parameters

0,1,81,...,bm.

For every bounded semilattice S, there is an algebra B € V and elements

(),i,{zl,...,f;m € B such that our formulas define in B an algebra isomorphic to
S (as was shown above). Thus we have an interpretation, in the sense defined and
used in [5], of bounded semilattices in V. O

LEMMA 11.2. Let V be a locally finite variety having a finite algebra A with a
prime quotient {a, B) of type 8 and a set U € Ma (a, ) with a non-empty (a, B)-tail.
V is hereditarily undecidable.

PROOF. Let § > o be maximal in Con A with § $ 8. Thus § <y =6V g and
6§ AB = a. By Lemma 6.2, combined with the detailed picture of (@, 3)-minimal sets
supplied in Lemma 4.17, we have the same facts with regard to (6,) that we have
assumed to hold for (@, ). By Lemma 2.18, this situation persists when we factor
A by 6. Thus we can assume that @ = 04 and that A is subdirectly irreducible with
monolith (smallest non-zero congruence) f3. '

Let X be a set and (B, By, <) be a structure of the following kind. Each of By and
B, is a subset of the set of all subsets of X, closed under Boolean operations of union,
intersection and complementation (i.e., they are subalgebras of the Boolean algebra
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Su (X)); Bo C B ; every finite subset of X belongs to By; and < is set-inclusion
restricted to B;. The class of all such structures, BP;, has a finitely axiomatizable,
undecidable theory [5, Theorem 6.2]. While working with a specific member of BP;,
we will show how to interpret the whole class into V.

Choose and fix a set U € Ma (04, 8), and let N = {0,1} be the (04, 3)-trace in U,
and p(z,y), ¢(z,y) be polynomials of A under which U and N are closed and such
that ({0,1},p|n,qln) = ({0,1},A,V) and plu, gl have the properties of pseudo-
meet and pseudo-join operations (Lemma 4.17-Definition 4.18). Given C' C A and
B; € {By, B1}, define

ClBi] = {feC¥:fc)eB;foralceC}.

Choose an element u € U — {0,1} (the tail of U). Let D’ be the subalgebra of AX
generated by
{constant functions} U {0, u}[Bo] U {0, 1}{B:].

Let D be the ae-closure of D', i.e., f € D iff f € AX and for some g € D’ the set

[f # 9] = {z: f(z) # 9(x)}

is finite.

Our goal is to interpret the structure (Bi, By, <) into D, using first order formulas
with finitely many constant functions @ (a € A) as parameters. Below, “definable”
means definable in D by first order formulas using constant functions as parameters.
We shall not bother to actually write out all the formulas to be used.

Notice that D is contained in the subalgebra A[B;] of AX. In particular, D N
{0,1}* C {0,1}[B], and this inclusion is an equality. We shall write D(0,1) for the
set DN {0,1}X.

(11.2.1) D(0,1) = {0,1}[{B;] and this set is definable.

(11.2.2) The natural order on D(0,1), i.e., f < g iff f71(1) C g7 (1),
is a definable relation.

The first claim follows easily by the argument used in the last proof. The second
claim is also easy to prove; for f,g € D(0,1) we have f < g iff pX)(f, g) = f, where
pX) is the binary polynomial of D which acts coordinate-wise like p.

For z € X we define 1, to be the element f € D(0,1) such that f~(1) = {z}. We
put X = {1;: z € X}. We now assert that

(11.2.3) (D(0,1), <) is isomorphic to (B; , C).
(11.2.4) X is definable.
(11.2.5) This relation is definable:

E={(f,g) € D*: f € UX and g = 1, for an z such that f(z) # 1} .
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Claim (11.2.3) should be obvious, after the earlier claims. Then (11.2.4) follows
from the observation that X is the set of covers of 0 in the partially ordered set
D(0,1). Now DNUX is definable, as in the proof of Lemma 11.1. To verify (11.2.5),
note that when f € UX and g = 1, then f(z) = 1 iff p¥)(£, g) # p¥)(£,0). (Recall
from Lemma 4.17 that p(a,0) = p(a,1) = a for all a € U — {1} while p(1,0) = 0,
p(1,1)=1)

(11.2.6) This relation is definable:

A = {{f,g,h) € D? : h =1, for an z such that f(z) # g(z)}.

The proof of (11.2.6) is the hardest piece of our argument. The relation
{{a,b) € A%: for all f € Pol; A, f(A) C U implies f(a) = 1 iff f(b) =1}

is easily seen to be a congruence of A separating 0 and 1. Since (0,1) belongs to
the monolith, 8, the congruence just defined is trivial. Thus whenever a # b there is
f € Pol; A with f(A) CU and f(a) =1 « f(b) # 1. We list all unary polynomials
mapping A into U as fi,...,fm. Letting A = {a1,...,a,}, we select n + l-ary
terms ty,...,tn so that fi(y) = ti(y,a1,...,an). Now if f,g € D and ¢ € X then
f(z) # g(z) iff for at least one i € {1,...,m},

(ti(fvaly' .. 7a‘m)y 12) €EEe (ti(gvﬁl,-“ vam)ﬁ 11) ¢ g

(with = specified by (11.2.5)). Thus A is definable.
Recalling that u is an element we selected in the tail of U, we define D(0,u) =
Dn{0,u}X.

(11.2.7) D(0,u) is a definable set.

Indeed, f € D(0,u) iff f € D and for no g € X do we have both A(f,0,g) and
A(f,d,9).

(11.2.8) D(0,u) = {0, u}[Bo).

It is clear that {0,u}[Bo) C D(0,u). To prove the other inclusion, suppose that
f € D and f(X) C {0,u}. From our definition of D, there is some f’ in D’ which
agrees with f at all but finitely many z € X; and there are are finitely many elements

flv--'afk € {O$u}[30]1 91,---,9¢ € {07 1}[31]

and a polynomial ¢(y1, ..., Yk, 21,-- -, 2¢) of A such that

Fr=t O for g1, 90) = tF0(F,9) .
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We can assume that t(A*¥+¢) C U (or compose ¢ with an idempotent polynomial whose
range is U). Now if ¢(@,b) = u for elements a € A*, b € {0,1}¥, then t(a,¢) = u
(mod B) for any ¢ € {0,1}*, and thus ¢(@,¢) = u since u/BNU = {u}. Thus if we put

f”=t(X)(f11"'1fkvﬁv"'a6)

then f”~1(u) = f'~(u). Since obviously f” € A[By), we have f'~!(u) € By. But
then f~!(u) € By, because By contains all the finite subsets of X and f and f’ agree
almost everywhere. Thus f~1(0) = X — f~!(u) € By also, and f € {0,u}[Bo] as we
claimed.

(11.2.9) {0,1}{Bo] is definable.

To prove this, we note that any f € D(0,1) belongs to {0,1}[By) iff for some
(unique) g € {0,u}[Bo], f~1(1) = g~ *(u). When f € D(0,1) and g € D(0,u) then

~1(1) C g~ Y(u) iff ¢X)(f,g) = g. (Recall that g is the pseudo-join operation, which
means that ¢(1,u) = u, ¢(1,0) = 1 and ¢(0,a) = a for all a € U.) Thus the formula
f € {0,1}[Bo] is equivalent to: for some g € D(0,u), f is the largest (under <)
member of D(0,1) such that ¢'X)(f,g) =

Now the structure ({0,1}[Bi], {0,1}[Bs], <) is isomorphic to (B; , By , C); and
by (11.2.1), (11.2.2) and (11.2.9) this structure is definable in D. m}

LEMMA 11.3. Let V be a locally finite variety having a finite algebra A with a
prime quotient (a, 8) of type 2 and a set U € Ma (a, 3) with a non-empty (a, 3)-tail.
V is hereditarily undecidable.

PROOF. As before, we can assume that @ = 04. Let d(z,y,2) be a polynomial
of A for which d|y is a pseudo-Mal’cev operation on U with respect to (Oy,8|v)
(See Lemma 4.20-Definition 4.22.) Let @ be the body and T # @ be the tail of U
with respect to (Oy, Bly). Let 0 € @, N =0/B8|y, and 1 € N — {0}. We know that
for u € @, the polynomial f,(z) = d(u,0,z) defines a permutation on U, while, for
u €T, fu(x) is constant on N. For any u € U, let

k(u) = ker fulv = {(z,y) € U: d(u,0,z) = d(u,0,y)} .
Then choose ug € T with k(ug) minimal. Thus N2 C k(uo); and every u € U satisfies:
k(u) < k(uo) © k(u) =0y & ueQ.
Having chosen 0, 1, ug, we now consider any structure (B, Bo, C) with B C B; C

Su (X), of the kind we used in proving the last lemma. Agam we take for D the
ae-closure of the subalgebra of AX generated by

{constant functions} U {ug,0}{Bo] U {0, 1}{B;].

For a,b € U we write a 4 b iff k(a) C k(b) (defined above); and for f,g € DNUX we
write f 4 g iff k(f) C k(g) where

k(f) = {(r,s) e DNUX : dX)(£,0,7) = dX)(£,0,s)} .
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(11.3.1) The sets D(U) = DNUX, D(Q) = DNQX, D(T)=DNTX are
definable, as is the relation 4 on D(U).

For f,g € D(u), f 4 g iff for all z € X, f(z) 2 g(z)-

The proof of this is quite easy. D(U) is definable as in previous proofs. Then <«
in D is definable (we defined it), and its claimed property is easily established using
‘the ae-closed property of D. We have f € D(Q) iff f € D(U) and f < 0; and we have
f € D(T)iff f € D(U) and dX)(£,0,1) = 1.

We write a ~ b (where a,b € U) for @ 4 b 4 a; and we write f ~ g (where
f,ge D)) for f aga f. We write a < b for “a 94 b and not b 9 a”, and similarly
with f < g. Notice that for f € D(U), f < 1 iff for all z, f(z) € Q or f(z) ~ uo.

(11.3.2) The set D(0,1) = D N {0,1}¥ is definable and equals {0, 1}[B,].
The natural order in D(0,1) is definable.
That D(0,1) = {0,1}[B,] should be obvious since, as in the last proof,
{0,1}[B,] € D C A[B,] .

An element f € D(U) belongs to D(0,1) iff for every g € D(U) such that g « g
there is h € D(U) with g 9 b < o and (f,0) € k(h) or (f,1) € k(h). We ask the
reader to verify this assertion, which shows that D(0,1) is definable. To define the
natural order in D(0,1), we note that when f,g € D(0,1) then f < g iff whenever
h € D(U) and h 4 iig then (g, 0) € k(h) implies {f,0) € k(h).

(11.3.3) - For every f € D(U), f~*(T) € By.

This claim is demonstrated in exactly the same manner that we used in showing,
in the proof of Lemma 11.2, that D(0,u) = {0,1}{Bo]. (Details left to the reader.)

(11.3.4) The set {0,1}[Bo] € D(0,1) is definable.
To see this, observe that if f € D(U), g € D(0,1), and f 4 g, then g71(1) C
fYUT) iff (g,0) € k(f). Now by (11.3.3), since {0, u}[Bo] C D we have
By = {f—l(T) : f € D(U) and fﬂﬂo} H
and thus any g € D(0, 1) belongs to {0, 1}[Bo] iff there is a smallest (in the sense of
4) f 41 such that f € D(U) and (g,0) € k(f).

Now (11.3.2) and (11.3.4) yield the definability of ({0,1}[B1], {0,1}[Bo] , <). As
with the previous lemma, that concludes our proof. O

THEOREM 11.4. Every locally finite variety V with 1 ¢ typ{V} is either heredi-
tarily undecidable or congruence-modular.

ProoF. If 1 ¢ typ{V} and V is not hereditarily undecidable, then Theorem 8.5
and Lemmas 11.1-11.3 imply that V is congruence-modular. ]
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Remark 11.5. In April 1986, R. McKenzie and M. Valeriote completed a proof
that every locally finite and not hereditarily undecidable variety V decomposes as a
varietal product, V = V; ® V, ® V3, of three special varieties satisfying typ{V;} = {i}.
As in [5], the precise result obtained reduces the decidability question for all finitely
generated varieties to the same question for varieties of modules over finite rings.
The proof of this result is being prepared for publication; it makes heavy use of tame

congruence theory.



12. FREE SPECTRA

The free spectrum of a variety V is the function, denoted fy, with domain the
set of positive integers, such that fy(n) is the cardinality of the free algebra in V
freely generated by n elements. For example, the free spectrum of Boolean algebras
is

f(n) =27".
The precise determination of the free spectrum, d(n), of the variety of distributive lat-
tices is an old problem in combinatorics—still unsolved, although various asymptotic
formulas are known. It is easy to see that

2([%]) <d(n) <2%.

A variety is locally finite iff its free spectrum is a finite-valued function. Various
properties of locally finite varieties seem to be loosely related to the magnitude and
the rate of growth of their free spectra. If V = V(A) then fy(n) = |Clo,A| for all
n. The free spectrum of a variety enumerates the cardinalities of the sets of n-ary
members of the clone of that variety (for n = 1,2,3,...) and may be thought of
as simply the “cardinality” of the clone. If V = V(A) and A is a finite k-element
algebra, then fy(n) < k¥ < 22°" for some constant c.

One of the few results showing an influence of the free spectrum is described in
H. Neumann’s book [25], p. 180: A finitely generated variety of groups is nilpotent of
class k iff fy(n) < 2¢* for some constant c. Part of this result, for k£ = 1, generalizes:
If A is a finite Abelian algebra (see Chapter 3) and V = V(A), then fy(n) < 2¢™" for

a constant c (see [3]).

" Tame congruence theory yields several new results regarding free spectra which we
have no idea how to prove outside the theory. We begin with a known result.

THEOREM 12.1. (J. Berman [2]) The following are equivalent for any variety V
and integer k > 1.
(1) fy(n) < c-n* for some c (and for all n).
(2) There is a polynomial p(z) with rational coefficients and of degree < k such
that fy(n) = p(n) for large n.
(3) V is locally finite and has no term operations depending on more than k
variables.
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PROOF. Suppose that (3) holds. Let V = V(A) so that fy(n) = |Clo,A| for all
n. Let e,(0 < n < w) be the number of operations in Clo, A that depend on all n
arguments. Then e, is finite, and = 0 if n > k. For n > k, since each member of
Clo, A depends on a unique set of at most k of its arguments, we can calculate that

fv(n)=§ef- (’;) = p(n)

where p(z) is obviously a polynomial. Thus (3) implies (2).
Clearly (2) implies (1). Finally, if (1) holds, then for all n > k' > k, we have
n

ek - (k’) < fv(n) < c- n¥, which implies that e = 0. Thus (1) implies (3). [}
THEOREM 12.2. Let V be a finitely generated variety. Either fy(n) < c-n* for
some finite ¢ and k, or else fy(n) > 2"~* for some positive integer k and for all n.

PROOF. Let ¥V = V(A) where A is a finite k-element algebra, and suppose that
Theorem 12.1(1) fails. Thus for all n, A has term operations depending on at
least n arguments. Let p, = |Pol,A| and let e, be the number of operations in
Pol, A = Clo, (A,a (a € A) ) that depend on all n arguments. By Theorem 12.1 and
Corollary 4.2, we have e, > 1 for all n > 1. Thus

d n
= . >
Pn k+§eu (u)_
k+zn: ") =k—1+2"
u=1 v

Let A = {ao,...,ak-1} and @ = (ag, ..., ak-1). Since every f in Pol, A is of the form
f(z) = g(&,a), g € Clon4iA, it follows that

fv(n + k) = |Clo,,+kA] > pn > 2",
Thus fy(n) > 27~k for all n > k, and this trivially holds for n < k. m]

THEOREM 12.3. Let V be a non-trivial locally finite, congruence-distributive
variety (or more generally, assume that typ{V} N {3,4} # 0). Then for every c such
that 0 < ¢ < 1, and for large n, we have fy(n) > 22"

PRroOOF. It follows from Theorem 8.6 that if V is non-trivial (i.e., if fy(2) > 1),
locally finite, and congruence distributive, then {3,4} N typ{V} # 0.

Let A be a finite algebra in V and (a, 8) a prime quotient in A of type 3 or 4. Let
U € Ma(e,B), N ={0,1} be the (a, #)-trace of U, and p(z,y) and q(z,y) be poly-
nomials of A inducing pseudo-meet and pseudo-join operations in U (Lemma 4.17-
Definition 4.18). Assume that A has k elements. Thus for all n,

fv(n+k) > |Cloq4rA| > [Pol Al .
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Let d(n) = |Clo,({0,1},A, V)|, the free spectrum of distributive lattices. Since
pl{o,13 = A and g|{0,1} = V, we have that |Pol, A| > d(n) for all n. Thus

fv(n) >d(n—k) forn>k.
Now d(n) is equal to the number of non-void anti-chains (sets of incomparable ele-

ments) in the partially ordered set of non-empty subsets of an n-element set. Any
collection of subsets which are all the same size is an anti-chain, so

amzx&o,

Given any ¢ with 0 < ¢ < 1, choose r so that ¢ < r < 1. Using Stirling’s formula,
it can be shown that for large n,

@)z

foln) 22777,

Thus

2¢n

and for large n this will be > 22", (The argument in this paragraph was supplied by
J. Berman.) . (m}

The next results involve the concepts of nilpotency introduced in Definition 4.35.

LEMMA 12.4. Let A be a finite algebra such that typ{A} N {1,5} =0 and A is
not right nilpotent. There is a constant ¢ > 0 such that |Clo,A| > 2" for large n.

PROOF. Since 14 > [1)2 > [1)3 > ..., A must have a non-zero congruence 8 such
that [8,14] = B. By choosing any a such that a < 3, and considering A/« in place of
A, we can arrange that 04 < 8 and [8,14] = 8. Now if typ(04,8) = 3 or 4 then the
desired conclusion follows from Theorem 12.3, applied to V(A). Thus we only have
to demonstrate the desired conclusion under the hypothesis that typ(04,3) = 2. Let
this be the case, let U € Ma(04,0), and let N be a (04, 8)-trace in U.

Choose any a # b in N. The center of A, Z(A), defined in Exercise 3.2 (5), is the
largest congruence § for which [§,14] = 04. Now B £ Z(A), hence (a,b) ¢ Z(A), as
B = ©(a,b). Thus there exists a polynomial f(z,y1,...,¥m) and ¢,d € A™ such that
f(a,&) = f(a,d) and f(b,&) # f(b,d) (or the same with a and b interchanged). Here

F6.0L £(0,0) = fla; D E (b,d) ;

so by Theorem 2.8 (4), there is g € Pol; A with g(4) C U and gf(b,¢) # gf(b,d).
We have {gf(b,&),gf(b,d)} C N’ for a trace N’ C U. Since all of the (04, 8)-traces
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in U are polynomially isomorphic (Lemma 4.20), there is h : N’ ~ N. Redenoting
hgf(z,y) by f(z,7), we now have

(124.1) f(a,&) = f(a,d), f(b,€) # f(b,d), f(N x {¢,d}) C N.

Let (N, z+y, —z,0, A-z(\ € F)) (F is a finite field) be the vector space polynomially
equivalent to A|y. We will also use z + y, —z for the polynomial operations of A
whose restrictions to N are the vector space operations. Define new polynomials of
A:

90(z,9) = f(z +a,d) - f(z +a,9),

gl(xvg) = f(:c+a,37) _f(z+a76) .
(12.4.2) There exists A # 0 in F such that for z € N,

go(z,d) = 0 = g1(,¢) and go(2,8) = Az = gu(z,d) .

Indeed, the functions g;(x,¢), gi(z,d) are unary polynomials of the vector space
which map 0 to 0. So (12.4.2) follows easily. Multiplying by A~!, or iterating, we
create polynomials ho(z,7), hi(z,7) of A satisfying
(12.4.3) ho(z,d) = hy(x,&) = 0 and ho(z,¢) = hy(z,d) =z for z € N.

For any n > 1 we will define 22" polynomials in the 1+m - n variables z,§o, §1,- - - »
#n-1 (Jo,---,Pn—1 are disjoint m-tuples of variables). Let Su(n) be the set of all
subsets of {0,...,n — 1}. For each S € Su(n) we put

®5(2,J0, -+ n-1) = h¥ 0 --- 0 h¥"~1(z)

€o €n-1

where &; = 0if i ¢ S and &; = 1if i € S, and where h?*(z) = h;(z, 7). (Thus
®s(z,§o,- .., ¥n—1) is a composition of n unary functions, h¥%, applied to z.) We can
see from (12.4.3) that

(12.4.4) For any S € Su(n) and &,...,&,-1 € {¢,d} and T € N,
@s(x,éo,...,én_l) =zif {Z te = d_} = S,
and ®gs(z,&0,...,8n—1) =0if {i:& =d} #S.

Now for any set S C Su (n) we put

As(@,Fo,- -+, Gn-1) = Y Bs(2,5o,-- -+ Fn-1)-
Ses
Suppose that S; # Sz, {S1,82} C Su(Su(n)). We can choose, say, S € S; — Sa.
Taking & = d when i € S and & = ¢ when i ¢ S, we see from (12.4.4) that for all
z € N and T € Su(n), ®r(z,€p,...,6n—1) =z if T =S and =0if T # S. Thus
As, (z,€0,...,8n—1) =z and Ag,(z,&p,...,6n—1) =0 for z € N.
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We have proved that |PolyymnA| > 22". Now if k = |A| and n > k + 1, then it
follows that [2t=t]

|Clo,A| > |Pol,—xA| > 22

The desired result follows easily from this. O

Every locally finite variety whose congruence lattices obey a non-trivial equation
in joins and meets satisfies the hypothesis of the next theorem. (See Theorems 9.18
and 9.19.)

THEOREM 12.5. LetV be a locally finite variety such that {1,5}N typ{V} = 0. If
fv(n) fails to be > 2*" for large n and some ¢ > 0, then V has permuting congruences
and every finite algebra in V is nilpotent.

PROOF. We assume the hypothesis, and also that fy is not at least doubly ex-
ponential in growth. By the preceding lemma, every finite algebra A in V is right
nilpotent. It easily follows from this that typ{V} C 2. By Theorem 7.11(3), V has
permuting congruences. In varieties with permuting congruences, the commutator is
symmetric. (See Exercise 3.8 (4).) Thus the finite algebras in V are (left and right)
nilpotent. O

Exercise 12.6. Construct a finite nil-2 Mal'cev algebra A (with infinitely many
basic operations) such that |Clo, A| > 22" for all n.
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We defined a finite algebra to be tame just in case its congruence quotient (0,1)
is tame. For a tame algebra A, we write M(A) in place of Ma (04,14); and we call
the members of M(A) the minimal sets of A. The minimal sets of a tame algebra
A are the same as the (04,14)-traces in A. The statements in Theorem 2.8 have
a simpler form and meaning when (a, 3) = (04,14); the reader should review that
theorem now and consider its meaning for tame algebras.

The shape of the congruence lattice of a finite algebra can determine that the
algebra is tame. For example, the class of tame algebras includes all finite simple
algebras. Any tame algebra that is not simple is Abelian. (These remarks are justified
by Theorem 2.11, Examples 1.11-1.13, and Theorem 5.7.) Tame algebras are of five
types. The type of a tame algebra A, written typ(A), is equal to typ(04,14). In
this chapter, we obtain special representations for tame algebras of types 1 and 2; we
look at an ordering property of tame algebras of types 4 and 5; and we demonstrate a
representation over finite fields for the E-minimal algebras of type 2 which we studied
at length in the last half of Chapter 4.

LEMMA 13.1. Let A be a tame Abelian algebra; let N be a minimal set of A and
let 0 € N; define F' to be the set of all f € Pol; A with f(A) C N and f(0) = 0; and
define F as the set of all f € Pol; A with f(A) = N.
(1) If typ(A) = 1 and k = [Clo;A| then |F| < k, |A| < |N|*, and if A is simple
then |N| < max(k, 2).
(2) If typ(A) = 2 and k = |Clo2A| then |F'| < k, |A| < |N|*, and if A is simple
then |N| < k.

PROOF. Choose e € F such that e = e (Theorem 2.8(2)). We suppose first
that typ(A) = 1. For any f € F there exists ¢ € Clo,4+1A (for some n) and
(ai1,...,a,) = @ € A™ such that f(z) = g(z,a). By Exercise 5.11(2) (or Claim 3
in the proof of Theorem 5.6), the polynomial eg(z,yi,...,yn) depends on at most
one variable. It certainly depends on z; thus eg(z,y1,...,yn) = eg(z,z,...,z).
Therefore we have h € Clo; A such that f(z) = eh(z). From this it follows that
|F| <|ClojA|. By 2.8(4), for any z # y in A there is f € F with f(z) # f(y). Thus
z— (f(z): f € F) is an embedding of A into NF; so we have |4| < |N|/F!.

Finally, suppose that A is simple. Let IT = (Pol;A|y) N (Sym N). Every unary
polynomial of A|y is constant or belongs to IT (as A|y is a minimal algebra). There-

168
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fore Con A|y = Con(N,II). Now A|y is simple, since restriction maps Con A onto
Con A|n. In order that (N,II) be simple, if |[N| > 2 then IT must be transitive on
N. Since |II| < |F|, we get the last inequality in statement (1).

Now suppose that typ(A) = 2. Then A|y is polynomially equivalent to a vector
space (N, z+y, 0, Ax()A € K)) over a finite field K. Let |F/| = m and F' =
{fo,--- s fm—1} where for each i < m, fi(z) is of the form eg;(z,a) with g; € Clog41 A
and @ € A% (where £ = |A]). Let g!(z,y) = gi(z,¥,...,¥), choose a € A, and set
fi(z) = egl(z,a) — egi(0,a). Then we claim that F' = {fy,...,fl,_1}. It is clear
that f € F'. If f] = f; then the function f{(z) — f}(z) is constant. Using that A is
Abelian, we derive that f;(z) — fj(z) = fi(y) — f;j(y) for all z, y, which implies that
fi = fj since f;(0) = f;(0) = 0. Thus we have m distinct functions f;, and it follows
that m = |F'| < |Clo2A|.

Now using 2.8 (4) and the fact that (Pol; A|x) N (Sym N) is transitive on NV in this
case, we can easily see that F’ separates points of A, and so |4| < |N|IF ‘I, Finally,
suppose that A is simple. Then our vector space is simple, and of dimension 1, and
it follows that |N| = |K| = |F'|n]| < |F'|. O

This lemma just proved will be useful in the next chapter, and it introduces us to
the idea of representing a tame algebra as a set of functions into a minimal set.

DEFINITION 13.2. Let A be an algebra and k be a positive integer. We define an
algebra, the [k]-th matrix power of A, which we shall denote by A[¥l. The universe
of this algebra will be the direct power set A*. For any n > 0 and f,..., frk—1 €
Clon A we define an n-ary operation [fo, ..., fk—1] = f on AF by the rule:

f(iov vee 153"—1) = (fo(io ot iﬂ_l)s (XX 1fk—1(i0 e i'ﬂ_l))
Here * = (z},...,zt_,) € A¥ and

0.z = (2l 2,2 T e AmE,
A is the non-indexed algebra (A*, F) where F is the set of all operations of the
form [fo, ..., fk—1] with {fo,..., fk—1} C CloxA for some n > 0. (Note that F is a
clone.)

For the purpose of formulating the next two theorems, we introduce some more
concepts. An algebra A = (A4,...) will be called a reduct of B = (B,...) iff
A = B and Clo A C Clo B. The algebra A will be called a subreduct of B iff
it is a subalgebra of some reduct of B. Algebras A and B are said to be weakly
isomorphic iff A is isomorphic to an algebra B’ = (B,...) such that Clo B’ =
Clo B.

If B is a unary algebra (i.e., if its basic operations are unary) and if A is a subreduct
of Bl¥l for some k > 1, then it can easily be seen that A is strongly Abelian. We
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shall now prove a converse of this fact for strongly Abelian tame algebras. In [22]
it was proved that any strongly Abelian tame algebra A = (A, f), having just one
basic operation f which is not constant, is weakly isomorphic to (N, o) for some
k, where N is a minimal set of A and o is a permutation of N. A consequence was
that any finite algebra whose congruence lattice is, say, M7 has at least two basic
operations. For strongly Abelian tame algebras in general, we have only been able to
obtain the weaker result of the next theorem.

THEOREM 13.3. Let A be a tame algebra of type 1 (strongly Abelian) and let
N € M(A) and k = |Clo;A|. The algebra A is isomorphic to a subreduct of NI¥],
where N = (N, ¢(c € N)) has only constant operations.

PROOF. We let F be as in Lemma 13.1 and, using 13.1 (1), we choose an enumera-
tion fo, ..., fk—1 of F. As in the proof of 13.1 (1), the map n(z) = (fo(z), ..., fi-1(z))
is a bijection of A with a subset E = m(A) of N*. Letting p; be the projections of N*
onto N, we have p;m = f; fori =0,...,k—1. For each operation g on the set A, there
is a unique operation g, on E (having the same arity) such that 7 : (A,g) — (E, gx) is
an isomorphism. Thus 7 is an isomorphism of A with a certain algebra E = (E,...).
Now we just have to show that every basic operation of E is a restriction to E of one
of the operations of NI,

Let g be a basic n-ary operation of A and g, be the corresponding operation of
E. For each ¢ < k consider the polynomial operation f;g(zg,...,Zn—1) of A. By
Exercise 5.11(2), this operation depends on at most one variable. Thus there is
n; < n and f{ € Pol; A such that f;g(zo,...,Zn-1) = f{(za,). If f! is not constant,
then f/(A) = N (since N € M(A)), and there is k; < k such that f/ = f,. In
this case, take h;(mg,,..,x::ll) = zz:, so that h; € Clo,xN. We have, for 3° =
7(zo0)y...,§" ! = m(xp-1) in E, that

pigr(gov" 'vgﬂ_l) = fig(x()v”' ,I"_.l) = fl/(zﬂ-x) = fki($ﬂi)

=pe (™) = vit = ha(@® 77

If f} is constant, say = c, then we take h; = ¢, h; € ClonN.
We have now defined hy, ..., hg—1 € CloyxN, and in the notation of Definition 13.2,
it is obvious that g, is the restriction to E of the operation [hy,...,hg-1] of N k. 0O

Remark 13.4. The definition of Al is related to the formation of rings of matrices.
If M is a module over a ring R, then M* can be given the structure of a module over
the ring of k-by-k matrices with entries from R, and this module has the same clone of
term operations as M[¥l. Note that A} has the same clone of term operations as the
algebra defined in Exercise 3.12 (4). The next theorem was discovered independently
by P.P. Pélfy and by the authors.
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THEOREM 13.5. Let A be a tame algebra of type 2 (Abelian, not strongly
Abelian) and let N € M(A) and N = A|y. Then N is polynomially equivalent
to a vector space V over a finite field K; and for some k < |Clo2A|, A is isomorphic
to a subreduct E of NI¥ (where E spans V* as a K-vector space if A is simple).

PROOF. We choose 0 € N and let F’ be defined as in Lemma 13.1. By 13.1(2),
|F'| < |ClozA|. Since A|y is a minimal algebra of type 2, we have a vector space
{N,+,-,0,...) =V over a finite field K, which is polynomially equivalent to A|y.
Let I = {f € F': f = f? and f(A) = N}. By 2.8(2), I # 0. Notice that F' is a
vector subspace of V4 (direct power of V).

We claim that I spans F” as vector space. Indeed, let f € F’. There exists A € K
such that f(z) = A-z when £ € N (since f|y € Pol;V and f|n(0) =0). If A # 0
then %-fel. If A = 0 then for any e € I we have e — f € I. (Note that e — f is
defined on A since e(A)U f(A) C N.) Thus in either event, f is a linear combination
of vectors in I.

Now let eg,...,ex—; form a maximal linearly independent subset of I. By the
claim just proved, ep,...,ex—1 span the space F'; and by 13.1(2), k¥ < |Clo2A].
Hence using 2.8 (4) we can easily prove that eg,...,ex—1 separate points of A, i.e.,

the map n(z) = (eo(z),...,ex—1(z)) is a bijection of A with a subset E = m(A) of
Nk, As in the last proof, 7 : A & E for a certain algebra E with basic operations
g» (g a basic operation of A). The projections p; of N* onto N satisfy e; = p;m for
i=0,...,k—1.

Now let g be an n-ary basic operation of A, and g, be the corresponding operation
of E. For i < k, using the Abelian property of A, we can prove that there are c € N
and ag,...,an—1 € F' such that

n—1

€ig(zoy...,Tn-1) = Z aj(z;) +c.
0
Since e, . ..,ex—1 span F’, there are Aj; € K such that

eig(Zo,...,Tn-1) = E )\jmem(xj)*'c-
j<n
m<k

This translates into: For °,...,7" ' € E,

pig‘n‘(gov aee ,gn—l) = Z '\jmyfn +ec.
Jm
Since there is a similar equation for each basic operation g, and for each ¢ < E, we
conclude that E is a subreduct of NI¥],
Finally, suppose that A is simple. Then N is simple and dim V = 1. Therefore \'A
is a k-dimensional vector space. If, now, E spans a space E < N¥, then there exist
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Aoy - - -, Ak—1, 10t all 0, such that 3~ Ay; = 0 for all § = (yo,...,yk—1) € E. (Since E
cannot have k linearly independent linear functionals po,...,px—1.) But this means
that 3 A;e; = 0 in the space F’, contradicting the choice of e;. Thus E spans Vk. O

For tame algebras of types 4 and 5, we have found no representation result analo-
gous to Theorems 13.3 and 13.5. (An analogous result can be proved for type 3; but
it is essentially meaningless, since every finite algebra is isomorphic to a subreduct of
a [k]-th power of the two-element Boolean algebra.) Tame algebras of types 4 and 5
do, however, possess an interesting property which we shall now examine.

In Chapter 5 we introduced the notion of an {a, 3) pre-order and proved (Theo-
rem 5.26) that a tame quotient (a, 3) in a finite algebra A has type 4 or 5 (assuming
typ(a, B) # 1) iff A admits an (o, ) pre-order. When this result is specialized to
the case {a, 8) = (04,14), it states: A finite, tame, and not strongly Abelian algebra
A has type 4 or 5 iff A has an admissible, connected, partial order; i.e., iff there
exists a partial ordering < of the set A such that all polynomials of A are monotone
with respect to < and the transitive-symmetric closure of < is A x A. These facts
can be summarized in the statement that tame algebras of types 4 and 5 are order-
able, while those of types 2 and 3 are not orderable. The following theorem is an
immediate consequence of Theorems 5.24 and 5.26.

THEOREM 13.6. Let A be any finite simple algebra of type 4 or 5. There are six
subalgebras po, p1,Co, (1,0, &1 of A such that 04 C p; C ¢ C & (1=0,1), pr = pf,
G =(5 & =& &N =04, and

(1) po and p; are the minimal reflexive admissible relations on A, and
poUpy =04 UU{N2 : N € M(A)};

(2) Co, & are connected partial orderings of A, and (o is the transitive closure of
Po;

(3) for every admissible partial ordering p of A such that 04 < p, either (o <
pbor(iSp<é.

If A, p;, (;, & satisfy the statements of this theorem and N = {u,v} is one of the
minimal sets of A, then for one of ¢ = 0,1 we have that p; is the subalgebra of A2
generated by 04 U {(u,v)}, ¢; is the transitive closure of p;, and &; is the set of pairs
(z,y) € A% such that for every f € Pol; A, f({z,y}) = N implies f(y) = v.

Some examples of simple algebras of type 5, the graph algebras of C. Shallon, and
their orderings, are defined and studied in the exercises ending the next chapter.
Every finite simple lattice has type 4, and the lattice ordering is one of the two
minimal admissible partial orderings (;.

The final topic of this chapter is a representation theorem for E-minimal algebras
of type 2. The E-minimal algebras were introduced and classified into five types in
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Definition 2.14, Lemma 4.28, and Lemma 4.32. The most interesting of these are the
E-minimal algebras of type 2. These algebras are characterized as finite, non-trivial,
nilpotent algebras having a Mal’cev 3-ary polynomial, and having no non-constant
idempotent unary polynomials other than the identity function. Our interest in them
is heightened by Theorem 8.7.

We remark that the topic we are now discussing is nearly disjoint from the earlier
topic of this chapter; an algebra is both tame and E-minimal iff it is minimal.

A local ring is any ring with identity in which the non-invertible elements form
an ideal. It is easy to see that any finite non-trivial unitary module over a local ring
is an Abelian E-minimal algebra of type 2. In Exercise 13.10 (3), the reader is asked
to show that, conversely, every Abelian E-minimal algebra of type 2 is polynomially
equivalent to a unitary module over a finite local ring.

DEFINITION 13.7. Let GF(q) be a finite field of g elements and let k be a positive
integer. An algebra E(g, k) is defined as follows. The universe is the set E(g, k) =
(GF(q))*. The basic operations are simply all the operations f on E(g, k) for which
(if f is n-ary) there exist Ao, ..., A\n—1 € GF(q) and operations h, ..., hx_1 on GF(q)
(completely arbitrary except that h; is n-i-ary) so that for all 2°,...,z""! € E(q,k):

£@&°,...,2°°Y) = (yo,...,yk—1) where for i < k,
i =3 Nal +ha(ad,. ., 2dg, .2 2.
j<n
The operation f defined by the formula is denoted by [Xo,...,An—1; hoy...,he-1],
or by [X; A].

Remark 13.8. The basic operations of E(q, k) constitute a polynomial clone con-
taining all the polynomial operations of the vector space GF(q)*. The congruence
lattice of E(g, k) is a k + 1-element chain; the congruences are the relations

0; = {(z,7) : zj = y; for all j < i},

and they satisfy 1 = 0p > 6; > 6 > --- > 0 = 0. It is quite easy to check that
[6i,1) = 641 for i < k, so E(g, k) is nilpotent. It is also easy to see that every
e € Pol,(E(q, k)) satisfying e2 = e must be constant or the identity, using that e has
the form e = [Ao; k). In sum, E(g, k) is an E-minimal algebra of type 2.

THEOREM 13.9. For any finite, non-trivial algebra A the following are equivalent.

(1) A is E-minimal and of type 2.
(2) A is Mal'cev and isomorphic to a reduct of some algebra E(q, k), where k is
the height of Con A.
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PRrRoOF. The proof that (2) implies (1) is an easy deduction from the remarks
above. The proof that (1) implies (2) occupies several pages.

Let A be a finite algebra satisfying (1). Taking 6 € Con A with § < 14, A is the
body of a (6,1)-minimal set. Thus by Lemma 4.20, A has a Mal’cev polynomial d
that is a permutation when any two of its variables are fixed. By Lemma 4.36, A
is nilpatent. We define ht (A) to be the length of a maximal chain in Con A. (All
maximal chains have the same length, since Con A is modular.) By induction on
k = ht (A), we shall prove that A is isomorphic to a reduct of some E(g, k).

If £ = 1, then A is simple. Thus A is (04, 14)-minimal (by Lemma 4.28); i.e., it
is minimal. In this case, A is polynomially equivalent to a vector space of dimension
one over GF(q) for some ¢ (see 4.7, 4.10, 4.11); and so A is isomorphic to a reduct
of E(q,1).

Now assume that k > 1, and that every finite, non-trivial algebra B satisfying (1),
of height < k, satisfies (2). Let § be any minimal congruence of A. From the proof
of Lemma 4.36, and the result of Exercise 3.8 (4), we have that [14,6] = [6,14] = 04;
i.e.,, 6§ C Z(A). (The center of A, or Z(A), is defined in Exercise 3.2(5).) The
algebra A’ = A /6 satisfies (1), and ht (A’) =k — 1. Let ¢' : A’ - (E(¢', k- 1),...)
be an isomorphism of A’ with a reduct of E(¢’, k — 1) (for some ¢, by the induction
assumption).

Let To = ¢'~1({0, ..., 0)), an equivalence class of §, and put To = A|z,. By Lemma
4.28 and Theorem 4.31, Tj is a (0, §)-trace; and so Ty is polynomially equivalent to a
1-dimensional vector space over GF(q) for some ¢. Passing to an algebra isomorphic
to A, if necessary, we can assume that Ty = GF(q) and Ty is polynomially equivalent
to E(g,1).

The next step is to set up a bijection between A and E(¢', k—1) x E(g,1). We may
assume that A’ = {To,...,Tu—1} (u = (¢')*~1) with Tp = GF(q) = E(g,1). For each
i < u choose an element a; € T;, and choose ag = 0. Define a function s’ on A by
§'(x) = a; whenever z € T;. For a € A, put p'(a) = ¢'(a/s), and p(a) = d(0, §'(a), a).
Finally, for a € A, put ¢(a) = (p'(a),p(a)). From the properties of d(z,y, z), we
easily deduce that ¢ is a bijection between A and E(¢’,k — 1) x E(g,1).

Replacing A by an isomorphic algebra, we can now assume that

A= E(qlik - 1) X E(q71) = E(qlwl) XX E(ql71) X E(Qal)-

(The second equation is not strictly true, but it is a harmless identification of two
sets by a bijection.) The elements of A will be written either as

z=(%,y), (F€E(,k-1);y€E(q1),

or as
T = (.’Co, - ,Z'k_l), (1’0, vy Tg—2 € E(q', 1) ; Tp—1 € E(q, 1))
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For = = (zo,...,Zk—-1) in A and 0 < i < k, we define

pi(z) = (o) - -+ Tiz1),

pi(z) = =,

s(z) = (0,...,0,z-1),

0; = ker p).
We also put po(z) = o, 6o = 14 and p = px—1. Note that p’ = p,_,, '(z) =
{Zo,...,Tk—2,0) and § = ker p' = ker s’. We have secured the following facts.
(13.9.1) {6; :i <k} C Con A, and since ht (A) =k,
1la=0p>6; > - >0x_2>6>04.

Moreover, § < Z(A).
(13.9.2) p’' =pj_, is a homomorphism of A onto a reduct of E(¢',k —1).

(13.9.3) Where Ty = s(A), we have that p|r, is an isomorphism of A|r,
with an algebra polynomially equivalent to E(g, 1).
This implies that d({0, y), (0, 2), (0, u)) = (0,y — 2 + u),
since E(g, 1) has a unique Mal’cev operation.

(13.9.4) Writing 0 for the element (0,0) in A, we have
d(0, s'(z),z) = s(z) for all z € A.

We begin our examination of the operations of A by establishing some more facts.

(13.9.5)
(i) For any f € Pol,A and u € A, and for Z,§,Z € A™ satisfying (y;,2;) € 6 for
i < n, we have
d(u, f(%), f(d(,5,2))) = d(u, f(§), £(2))-
(Here f(d(Z, 7, Z)) denotes f(d(zo, Y0, 20),- - - s A(Tn—1,Yn~1,2n—1))-)
(ii) If (y,2) € 6 then
d(u,y,2) = d(z,y,u)
and
d(y, u,d(u,y, 2)) = d(d(u, y,2),u,y) = 2.
(iii) If y = 2 = w (mod ) then

d(u7 y’ Z) = d(d(u7 y’ w)7 u! d(u! w7 z))'
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These equations follow from the fact that § C Z(A). For (i), observe that
d(u, f(i)y f(d(ix ¥, _:l,-l_)) = d("’v f(g)v f(d(ga 7 Q)) =u.

Replacing the underlined occurrences of yo, . ..,¥n—1 by 20, ..., 2n—1 gives the desired
equation. For (ii), in the equation d(u, 2,2) = d(z, z,u), replace the underlined z's
by y, obtaining that d(u,y,2) = d(z,y,u) (where (y,2) € Z(A)). For the second
equation of (i), take n =1 and f(z) = z in (i), obtaining

d(y,u,d(u,y,2)) = d(y,y,2) = 2

(and d(d(u, y, 2), u,y) = d(y,u,d(u,y, z)) since (u,d(u,y, z)) € §). For (iii), again by
(i) with f(z) = z, we have

d(d(u,y,w), u,d(u,w, 2)) = d(d(u,y, w), w, 2)
= d(z,w,d(w, y,u)); and
d(u,y, 2) = d(u, w,d(w, y, 2)).

Replacing all four underlined occurrences of w by y gives the elements d(z,y,u) and
d(u, y, 2), which are equal by (ii). Thus we can conclude that (iii) holds.

(13.9.6) For z € A we have z = d(s(z),0, s'(z)) = d(s'(z), 0, s(z)).
This follows from (13.9.4) and (13.9.5)(ii). Our next goal is to prove

(13.9.7) For every f € Pol, A, there exist g € Pol,(E(q', k — 1)),
and b’ : E(¢',k —1)® — E(q,1), and Aq,...,An—1 € GF(q) so that
for all zo = (Zo,%0)s-+++%Tn-1 = (Tn-1,Yn—1) in A,

f(zc, e 1zn—1) = <g(‘i‘03 e 15:11—1) ) Z A‘i *Yi + h”(i‘07- . ’i’n—-l)> .
This formula can be rewritten as

(13.9.7') p'f(%) = g(p'(2)) and p(f(&)) = h(p(Z)) + h'(p'(2)) for z € A",
where h : E(q,1)" — E(q,1) is linear and h’ is arbitrary.
(Here p(Z) denotes the string p(zo),...,p(Tn-1).)

We know by (13.9.2) that g exists. We have to find h and &/, given f € Pol, A. To
that end, we define

ho(Z) = d(0, f(s'(2)), £(2)),
hi(Z) = d(0, 8'(f(2)), £(s'())-
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(13.9.8) We have that hg,hy : A® — Tp and

() ho(Z) = ho(s()),
(ii) ha(2) =hi(s'(2)),
(iii) s(f(%)) = d(ho(%), 0, b1 (Z)).

The truth of (13.9.8) will follow from (13.9.4) and (13.9.5) and the fact that f(Z),
f(s'(%)), and 8'(f(z)) (= 8'(f(s'(Z))) ) are congruent modulo 8. To get (i), substitute
0,0, 8'(%), Z for u, ,7, 7 in (13.9.5)(i). Then we get

ho(s()) = d(0, £(s'(s(2))), £(s(2)))

= d(0, £(0), £(d(0, 8'(),)))

=d(0, f(¢'(2)), £(2))

= ho(&).
For (ii),

hi(s'(2)) = d(0, '(f(s'(2))), f(s'(s'(2)))) = d(0,8'(f(2)), £(s'(%))) = h1(3).
For (iii), take u, y, z, w in (13.9.5)(iii) to be 0, s'(f()), f(%), f(s'(Z)) and obtain
8(£(z)) = d(0, s f(2), f(2)) = d(h1(Z),0, ho(Z))
= d(ho(%), 0, ha(&)).

(The last equality is by (13.9.5)(ii), since we have (0, ho()) € 6.)

Now for Z € T§, ho(Z) is congruent to 0 modulo 8, so ho(Z) € Tp. This implies that
hol|, € Pol, Ty, so by (13.9.3) there is h € Pol, (E(g, 1)) such that p(ho(Z)) = h(p(Z))
for all £ € T§'. Thus we have

ho(2) = ho(s(2)) = (0,p(ho(%))) = (0, h(p(%))),

for all £ € A™. Morebver, h must be linear, since ho(0) = 0. Similarly (13.9.8)(ii)
implies that there is b’ : E(¢’,k — 1) — E(q,1) satisfying hy(Z) = (0, h'(p'(Z))).
Finally (13.9.8)(iii) and the equation in (13.9.3) then imply that

(0,p(f(2))) = s(f(2)) = d(ho(2),0, h1(2)) = (0, h(p(2)) + h'(p'(2)))-
This completes the proof of (13.9.7) and of (13.9.7).

It remains to show that ¢ = ¢’ and to “un-twist” our representation and show that
A is isomorphic to a reduct of E(q,k). To do that, we study Pol; A, and begin by
noting that (13.9.7) implies



178 DAVID HOBBY AND RALPH McKENZIE

(13.9.9) For every f € Pol; A, there are ' € GF(¢') and A € GF(g) such that
for all £ = (zo,...,Zk-2,y) € A and for ¢ < k — 2, we have:

pi(f(x)) - Nz; depends only on p(z) = (To, ., Tie1);
and p(f(z)) — Ay depends only on p'(z) = (zo, ..., Tk—2).
We define ¥ to be the set of triples
(f,N,)) € (Pol;A) x GF(¢') x GF(q)

that satisfy (13.9.9); and we define o to be the set of pairs (\’, A) such that (f, N, A) €
¥ for some f. We shall show that o is an isomorphism of GF(q') with GF(q). Note
that for each f € Pol; A there is a unique (), A) with (f, A, ) € Z.

(13.9.10) Fori<k -1,
pi(d(z,y,2)) — (pi(z) — pi(y) + pi(2))

depends only on p(z), pi(y), pi(2). I (f, N, ), (g,7,7) € Z,
then (f 0 g, Ny, \y) € T and (b, X+, A+7) € T,
where h(z) = d(f(z),0, g(z))-

In (13.9.10), the claimed property of d follows easily from (13.9.7) and the Mal’cev
equations for d; the other statement is then easily derived from (13.9.7).

(13.9.11) The domain of ¢ is GF(q').

To prove this claim, we recall that 8; < 14 where ; = ker p} = ker po. Thus A is
minimal of type 2 with respect to (61,14). This implies that A /6, is polynomially
equivalent to a vector space of dimension 1 over some GF(g”). The algebra po(A) =
A /6, thus has precisely as many unary polynomials fixing 0 as it has elements; i.e.,
it has ¢’ of them. In other words, f(z) = Mz is a polynomial of pp(A) for all
A € GF(q'). This implies statement (13.9.11).

(13.9.12) The range of o is GF(q).
This claim follows easily from (13.9.3). For every A € GF(q) there is f € Pol; A

with f({0,y)) = (0, \y) for all y. By (13.9.9) we have (f,7',7) € T for some v',7.
Then

pf(00)—7v-y=Ay—v-y

is constant, so A = «.
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(13.9.13) 0 is an isomorphism of GF(q¢’) onto GF(g).

This will follow by (13.9.10), (13.9.11), (13.9.12), if we establish that o is a one-
to-one function. At least, o is a subring of GF(¢') x GF(g) projecting onto both
factors. Thus it suffices to show that if (\',0) € o then A’ = 0, and if (0, \) € o then
A = 0. Suppose that (0,A) € o and, say, (f,0,)) € X. Then pof is constant, so f is
not a permutation of A. Since A is minimal relative to (04, 6), it follows that f|r,
is constant. This implies that A = 0. Similarly, if (f,\’,0) € X, then f cannot be a
permutation, and so f(14) C 6, (again we use the E-minimality). This implies that
AN =0.

We now have that ¢ = ¢ and A = E(g,k). Let B = (A4,...) be the algebra
satisfying 7 : B & A where n((Z,y)) = (&,0(y)). We claim that B is a reduct
of E(q,k). To prove it, we examine any polynomial f € Pol,B. By (13.9.7) and
Definition 13.7, there are Ao, Ay, . .., An—1, A\h_; € GF(q) and hy, ..., hx_; such that
for any Z € B™ we have:

(13.9.14) Foralli <k -2,

pi(f(&) =Y X; - pilz;) + ha(pj(2)); while
J

p(f(@) =0"" (Z A;j - op(z;) + hk-1(P'(i)))
3
=Y 07 () plx;) + 0 hea (9 (2)).
i

These formulas will imply that f is a polynomial of E(q,k), as soon as we know
that o=1()\;) = /\;-. This is easily seen to be the case, by replacing all variables
of f except the jth by 0. The formulas (13.9.14) imply that the resulting unary
polynomial f; corresponds to a unary polynomial h; of A such that (hj,/\;-, Aj) €X.
Thus o(\}) = A;j. This completes our proof. O

Exercises 13.10

(1) Let A be a tame algebra of type 1. Let B = (N*,...) be the reduct of NI¥]
constructed in Theorem 13.3, which has a subalgebra isomorphic to A. Prove
that A and B generate the same variety.

(2) This exercise refers to Theorem 13.5, but otherwise is the same as the first
exercise.

(3) Using the result in Exercise 3.2(3), show that an E-minimal algebra of type
2 is Abelian iff it is polynomially equivalent to a unitary module over a finite
local ring.
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Show that an E-minimal algebra of type 2 has a Mal’cev term operation that is
one-to-one in each variable when the others are held fixed. {Outline: Choose
any maximal congruence §. Then A is (§,14)-minimal of type 2. We are in
the situation of Lemma 4.20 with A = C = the (6, 14)-body. Choose a term
h(z,y, 2,4) and choose @ € A™ so that the polynomial operation h(z,y, 2,a)
corresponds to £ — y + z in the vector space A/§. Then the term operation
f(z,y,2) = h(z,h(y,¥,¥,---,¥),2,¥,...,¥y) can be shown to also correspond
to z—y+zin A /6. Moreover f € ClogA. Starting with this f, the construction
in the proof of Lemma 4.20 will produce a Mal’cev term operation having the
desired property.}

Let f be an n-ary operation and d be a Mal'cev operation of an algebra
A. Suppose that a; and b; are congruent modulo the center of A for 7 =
0,...,n— 1. Prove that d(f(a), (), f(¢)) = f(d(a,b,¢)).



14. SIMPLE ALGEBRAS IN VARIETIES

It is known that two finite subdirectly irreducible algebras that generate the same
congruence distributive variety must be isomorphic [19]; that two finite simple alge-
bras that generate the same congruence modular variety must be isomorphic; that if
B is finite, V(B) is congruence modular, A is simple and A € V(B), then |A| < |B|.
(The second and third assertions are proved in [10].) To what extent can these results
be generalized and extended outside congruence modular varieties?

Every finite simple algebra is tame, and has a type. Lemma 13.1 makes it clear
that a locally finite variety V can have only a finite number (up to isomorphism) of
finite, simple, Abelian algebras, for they are all homomorphic images of Fy(k*) where
k = |Fy(2)|. We shall find that an infinite, simple, Abelian algebra cannot belong to
any locally finite variety. Considering a variety V = V(B) where B is finite, we shall
show that if 5 ¢ typ{V}, then V has only finitely many simple algebras and they
are finite; and if {1,5} N typ{V} = 0, then a minimal congruence of an algebra in V
cannot have an equivalence class of size exceeding |B|, and any two simple algebras
in V which generate equal varieties are isomorphic.

To start things off, we establish some bounds on the cardinalities of traces and
of equivalence classes of minimal congruences in certain varieties. For any pair of
congruences a < [ in an algebra A, §(3/a) is defined to be the supremum of the
cardinalities of the 3/a equivalence classes in the algebra A/a. Our first lemma
generalizes part of the content of Lemma 13.1.

LEMMA 14.1. Let V be a locally finite variety generated by Abelian algebras. Let
A €Vanda < 8inCon A. If (a, ) is not strongly Abelian then §(3/c) < k¥ where
k= |Fy(z,y)l.

PROOF. We assume the hypotheses, including that (a, 3) is not strongly Abelian.
Factor by a and change notation, so that now a = 0. We assume that {(3/0) > £ = k*
(k = |Fy(z,y)|) and derive a contradiction. First we pass to a finite algebra. There
exists (Definition 3.9) f € Pol,+;A for some n, and @,b,& € A™*!, such that

(14.1.1) f(ao,---,azn) = f(bo,...,bn),
f(ao,cl,...,c,.)=u¢v=f(bo,c1,...,cn),
ap=by and a; =b; =c¢; (mod B) for i=1,...,n.

181
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Also there exist elements dy,...,ds € A, all distinct and congruent modulo 3. Note
that since 04 < £,

(14.1.2) {{ai,bs) 11 < n}U{{bi,ci): 1 <i<n} COa(y,v),
©a(u,v) = Oa(dp,dg) forallp < g < L.

There exists a finite algebra A’ C A such that A’ includes all the above mentioned
elements, f|4 is a polynomial of A’, and the formulas (14.1.2) are true in A’. Choos-
ing a maximal congruence § among all those of A’ not containing (u,v), and a cover
~ > 6 of 6, we find that f(v/8) > £+ 1 and (6,7) is not strongly Abelian.

We choose a finite free algebra F € V with a homomorphism 7 of F onto A'. F
is Abelian, since it can be embedded in a product of Abelian generating algebras
of V. We now change the original notation, setting a = 7~1(§), 8 = =~*(v), and
A = F. Thus we have a finite Abelian algebra A € V and a prime quotient (a, 8),
not strongly Abelian, such that §(8/a) > £+ 1. Using Theorem 7.2, we conclude that
typ(a, B) = 2.

We can now virtually repeat the argument of Lemma 13.1 (2) to obtain the sought-
after contradiction. Let U € Ma(a, ), let 0 € U, and let T be a (-equivalence
class. Since A is Abelian, so is A|y; hence every prime quotient of A|y is Abelian
(Theorem 7.2), and it follows by 4.27(4) that U has empty tail with respect to
{a|u, Blu). Therefore, by Lemma 4.20, we have a polynomial d(z,y,2) of A under
which U is closed, such that d|y is Mal’cev and satisfies 4.20 with C = B =U.

Let F' = {f € Pol;A : f(A) C U and f(0) = 0}. Suppose that |[F'| = m,
and enumerate F' = {fo,..., fm—1} With f;(z) = egi(z,a) where e € F', € = e,
e(A) =U, a € A" (with n = |A]) and g; € Clo A. Let gi(z,y) = gi(z,y,...,y) and,
choosing a € A, put

fi(@) = d(eg}(z,a), eg}(0,a), 0).

If f{ = f; then d(f{(z), f;(z),0) = 0. Using the Abelian property, we conclude that
d(d(egi(x,a), egi(0,a),0),d(eg;(x,a), eg;(0,a),0),0)

is independent of z. Since its value is simply d(fi(z), f;(z),0), and since f;(0) =
f3(0) = 0, we conclude that d(f;(z), f;(z),0) = 0, which implies that f;i(x) = f;(z)
by 4.20. Thus fi = f} implies i = j;s0 F' = {fg,..., f;,_1}, and we have m = |F'| <
|Clo;A| < k.

By the properties of d(z,y, z) on U(= B) (Lemma 4.20), the group (Pol;A|y) N
(Sym U) is transitive on U. Hence by 2.8 (4), for every (z,y) € T? -« thereis f € F’
with (f(z), f(y)) ¢ @. The mapping

m(z) = (fo(z)/e,..., fm-1(z)/a), for z €T

therefore has kernel a|r, and serves to embed T/« into [[{fi(T)/a:0<i<m-1}.
To get that |T'/a| < ¢, it suffices to show that |f;(T)/a| < k, since m < k.
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For each i < m, f;(T) is contained in one S|y equivalence class N’, which is an
(a|u, Blu)-trace since U has no tail. We have N’ >~ N where N is the trace containing
0. The elements of the field over which (A|n)/a is a vector space are just the (f|n§)a,
f € F'; hence the 1-dimensional vector space (A|x)/a has cardinality < m < k. The
same is true for |[N’/a|. This concludes our proof that |T/a| < k¥ = ¢. This is true
for all B-equivalence classes T', contradicting that §(8/a) > ¢. O

LEMMA 14.2. Let V be a locally finite variety generated by strongly Abelian
algebras. For A € V and a < (8 in Con A we have {(8/a) < max(2,k;)*?, where
k1 = |Fy(z)| and ky = [Fy(z,y)|.

PrOOF. Following the lines of the last argument, we see that it is sufficient to
consider a finite strongly Abelian algebra A € V and a prime quotient (a,3) of A.
This we now do. By Theorem 7.2, we have typ(a,8) = 1.

To begin, we claim that for every (z,y) € 8— a, there is an element e € E(A) such
that e(4) € Ma(a,8) and (e(z),e(y)) ¢ a. Indeed, by 2.8(4) there is f € Pol; A
such that f(A) € Ma(e,8) and (f(z), f(y)) ¢ a. By 2.8(6), for this f, there is
U € Ma(a, B) such that f : U ~ f(U). Thus there is g € Pol; A such that gf|y = idy.
By 2.8(1), f(A) ~ U ~ f(U), hence f(U) = f(A) (since f(U) C f(A)). Now it
follows easily that gf € E(A), that gf(A) = U, and that (gf(z),9f(¥)) ¢ a.

Now let T be any [-equivalence class, let a € A, and define

F, = {e € E(A) : e(A) € Ma(a, B) and e(z) = f(z,a) for some f € Clo;A}.

Notice that |F,| < k. Using the claim above, we shall now prove that, modulo «,
F, separates the points of T'. :

To do this, let (u,v) € T? — a. Let e € E(A) satisfy (e(u),e(v)) ¢ a, e(4) €
Ma(a,B). Choose f(z,7) € Clo,+1A for some n, and ¢ € A™ such that e(z) =

f(z,€). By Lemma 4.4, since €2 = e, we can arrange that the equation

f(f(z’ g)v 17) = f(zag)
holds in A. Since A is Abelian, the equation

f(f(z,9),2) = f(z,2)

holds also. For 7 € A", write f7(z) = f(z,7); then we have f7 o f¥ = f7 for all 7, 3.
From this it follows that

fT€E(A), f7(4) = f(4), and (f"(u),f(v)) ¢ &

for each ¥ € A™. Clearly, then, for 7 = (a,...,a), we have f € F, and (f7(u), f7(v)) ¢
a.
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From what we have shown, the mapping 7(z/a) = (e(z)/a : e € F,) embeds T/a
into M{e(T)/a : e € F,}. To see that |T/a| < max(2,k;)*?, as desired, it only
remains to see that |e(T)/a| < max(2, k;) for each e € Fj,.

To see this, let e € Fy, e(A) = U. We can assume that |e(T")/a| > 2; thus e(T) is
included in one {a, 8)-trace N in U, and |[N/a| > 2. Define

I ={efly: f€CloyA}NSymU.

Obviously, |II] < k;. We claim that II = (Pol; A|y) N (Sym U). To verify this claim,
let g € (Pol;Aly) N (Sym U). For some h(z,§) € Clop41A (for some n) and @ € A™
we have g(z) = h(z,a) = eh(z,a) for all z € U. Let f(z) = h(z,z,...,z). For any
u € U, we can pick v € U such that

eh(u,...,u) = g(v) = eh(v,a1,...,an).

Since A is strongly Abelian, this equation implies that eh(u, ...,u) = eh(u, ay,...,a,).
Thus g(u) = ef(u) for all u € U, consequently, g € II.

Now A|y is minimal relative to (a|y,Blv), and every f € Pol;A|y either belongs
to IT or satisfies f(N) x f(N) C a. Thus the simple minimal algebra (A|n)/(a|n) of
type 1 has for unary polynomials just the constants and the functions (f|n) (such
that f € I and f(N) = N), which are permutations of N/(a|n). Since the algebra
is simple and has > 3 elements, this set of < k; permutations must be transitive on
N/(a|n); hence |e(T)/a| < [N/(a|n)| < ki. O

THEOREM 14.3. Let V be a locally finite variety. Every simple Abelian algebra
in V has cardinality not greater than k* where k = |Fy(z,y)|.

PROOF. Suppose that A is a simple Abelian algebra in V, and put V' = V(A),
and (a,8) = (04,14). Notice that V' is locally finite and |Fy(z,y)| < |Fy(z,y)|.
Thus Lemma 14.2 gives the desired conclusion if A is strongly Abelian, and otherwise
Lemma 14.1 gives the conclusion. O

The next lemma is related to Corollary 5.17.

LEMMA 14.4. Let A and B be finite algebras, A € V(B), and let 3 be a minimal
congruence of A such that typ(0,8) € {3,4}. Then §(3/0) < |B|. If A is subdirectly
irreducible and the (0, 8)-minimal sets have empty tails, then A € HS(B).

PROOF. We assume the hypotheses. For some finite m there is an algebra S C B™
and a homomorphism 7 of S onto A. Let § = 771(04) and v = 7~(8). For i < m,
let n; be the kernel of the i th projection of S into B. We have that § < v and (by 5.3)
typ(d, v) = typ(0, 3). Let u be the pseudo-complement of § under v (Remark 5.16).
For each ¢ such that y A7n; ¢ 6, we must have y An; > p. Since g # Og and
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Mo A+ Afm—1 = Og, there is an i such that yAn; < 6. This inclusion directly implies
that
§(8/0) = §(v/8) < H(v/y Am) < #(1s/m) < |BJ.

Now let A be subdirectly irreducible and assume that the (0, 8)-minimal sets have
no tails. By Lemma 2.18, the (6, v)-minimal sets in S have no tails. Let U € Mg(4,~).
By Lemma 4.17 (applied to S|y), |U| = 2, say U = {0,1} where (0,1) € v — §. Now
again choose i such that yAn; < 6. Then clearly 6|y V7;lu = idy. Since |y is a lattice
homomorphism, it follows that (0,1) ¢ § V #;. Thus v £ 6 V 7, implying that 7; < é
since A is subdirectly irreducible. (If x > §, x € Con S, then x > «.) Finally, n; < 6
implies that A = S/6 is a homomorphic image of S/n;, where S/n; is isomorphic to
a subalgebra of B. (]

THEOREM 14.5. Let V =V(B) where B is a finite algebra.

(1) V has, up to isomorphism, only a finite set of finite simple algebras of types
1,2,3,4.

(2) If 5 ¢ typ{V}, then every simple non-Abelian algebra in V belongs to HS(B),
and every simple Abelian algebra in V is a homomorphic image of Fy (k)
where k = |Fy(2)|.

PROOF. Almost every assertion in this theorem is already covered by Theorem 14.3
or Corollary 5.17. All that remains to be shown is that if V has an infinite simple
algebra then 5 € typ{V}.

Suppose that S is an infinite simple algebra in V. By Theorem 14.3, S is non-
Abelian. Choose any finite non-Abelian subalgebra S; in S with |S;| > |B|. (V is
locally finite.) There must exist a finite algebra Sz, S; C S C S, such that for
all {z,y,u,v} C S1, u # v implies (z,y) € Og,(u,v) (since S is simple). Let a be
any maximal member of the set {§ € Con S, : §|s, = 0s,}; and choose a cover
B > a in Con S;. Now S; is contained in one (-equivalence class, and a|s, = 0g,,
implying that §(8/a) > |Si| > |B| and (e, B) is non-Abelian. It follows now from
Lemma 14.4 (applied to A = S3/a and its minimal congruence 8/a) that typ(a, 8) =
typ(0, 8/a) ¢ {3,4}. Since (a, B) is non-Abelian, its type can only be 5. (]

In varieties omitting both the unary and the semilattice type, we have a strong
result virtually identical to what was known for congruence modular varieties.

THEOREM 14.6. Suppose that typ{V}N{1,5} = @ and that B is a finite algebra
in 'V, where V is locally finite.

(1) For every A € V(B) and a < B in Con A we have §(8/a) < |B|.
(2) If A, and A, are finite simple algebras in V then

V(A;) =V(A;) implies A; = A,.
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PROOF. As we have seen in the proof of 14.1, to prove (1), it will suffice to prove
it for finite algebras in V(B). By Theorem 0.2, we need only consider subalgebras of
finite powers of B, since every finite algebra in V(B) is a homomorphic image of such
an algebra. So let A C B™ and a < 8 in Con A. If (a,8) is non-Abelian, then we
have the desired result from Lemma 14.4 (after passing to the algebra A/a). Assume
now that (o, 3) is Abelian. Let T be any (-equivalence class. By Theorem 7.12, there
is a term operation p(z,y, z) of A such that T is closed under this operation and for
all z,y € T, we have p(z,y,y) =z = p(y,y,z) (mod a) and p(z,z,z) = z.

Now let K be the set of all sets of the form e(T") where e € E(A), e(T) C T, and
e(z) = z (mod a) for all z € T. Let S = e(T) be a minimal member of K, where e
satisfies the conditions just laid down.

Claim. A|s is Mal’cev.

To prove this claim, let f(x,y,z) = ep(er,ey,ez). Notice that f(T%) C S and
f(z,y,y) = f(y,y,2) = = (mod ) for all z,y € T. For every a € S, the function
h(z) = f(a,a,z) has a power h™ which is idempotent, and h™(z) = h(z) = =
(mod a) for all z € T while h™ = eh™e. By the minimality of S, we have h™(T) = S
and so h™(z) = z for z € S. Proceeding as in the proof of 4.20 (Claim 3 there),
we can construct a polynomial f' of A such that f(T3) C S and f'(z,z,y) = y
for all z,y € S while f'(z,y,y) = z (mod «) for all z,y € T. Finally, proceeding
through the proof of Claim 4 in 4.20, we can construct a polynomial d(z,y, 2) such
that d(T3) = S and d|s is Mal’cev. Thus our claim is true.

Now let S = A|s and let no,...,n,—1 be the restrictions to S of the kernels of the
projections of B" onto B. Henceforth, we consider only congruences in S. Letting
o' = alg, we have |S/a’| = |T'/a|, and we wish to prove that this number is < |B|.
Notice that o' < 15 in Con S, §(1s/m;) < |B| for all 4, and A{n; : i < n} = 0s. The
argument from this point is the same as the one that was used in [10].

Namely, we find a system {n{} = {ng,n},...,mh_1} such that 5} > #; for all ¢,

Ani < o, and where this fails to be true for any {7/} that has n} > 5 for some i

- 1
and 7}’ > 7} for all i < n. We can assume that ny # 1s. Then 7/ =n{ A--- Anj_, is
not < o' (else 7g could have been replaced by 15). If nj < o’ we are done, f(1s/a’) <
#(1s/mp) < |B|; so we assume ny £ o, 7' £ o'. Now (pV(a’ AR ))AniA-+Anj,_; £ o,
by the modularity of Con S; hence a’ A#j’ < 7 by the choice of the system {n}}. We
now have the picture in Figure 36 (which is not claimed to represent a sublattice of

Con S). Note that o’ V' = 15 because o’ < 1.

The algebra S is Mal’cev, so its congruences permute. Thus by Exercise 14.9(7),
#(v/A) = t(e/6) whenever I[A,v] and I[6,¢] are projective intervals in Con S. So we
have f(1s/a’) = §(7 /7 A np) = §(7' V 1mo/m5) < #(1s/mp), and this finishes our proof
of (1).
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Figure 36

To prove (2), let A; and A, be finite simple algebras in V such that V(A,) =
V(A3). In Theorem 14.8, we prove that A; and A; have the same type, and are
isomorphic unless the type is 1, 2, or 5. Using that, we can assume that typ(A;) =
typ(A2) = 2. Now by Theorems 7.6 and 7.11, A; and A3 belong to the variety of
locally solvable algebras in V, which is a congruence permutable variety. Hence they
are isomorphic, by [11, Theorem 10.10). 0

Before continuing to our last theorem, we note one further result along the lines
of 14.1, 14.2, 14.4. Since it remains in the nature of an isolated curiosity, we shall
merely outline the proof.

THEOREM 14.7. Let A and B be finite algebras, A € V(B), and let 0 < 3
in Con A and N be any (0, 3)-trace. The cardinality of N is no greater than the
maximum cardinality of a subgroup of the semigroup (Pol;B, o) (or 2, whichever is
greater).

PRroOF. We consider the group P = (II,o) of non-constant unary polynomials
of A|ny. This group is in HS((Pol;A,0)); and it is easy to see that (Pol;A,o) is
in the variety of semigroups generated by (Pol;B,0). (Consider any equation that
fails to hold in the first semigroup.) It can be proved that when C and D are finite
semigroups, and C € V(D), then every subgroup of C lies in the variety generated by
the subgroups of D. Let Gy, ..., Gy, be the subgroups of (Pol; B, o), and let II’ be a
minimal normal subgroup of P. Since P € V(Gy,...,G,), it follows from a refined
version of Theorem 14.6 that |II'| < max(|G,},...,|Gxl)-

Now the relation

{{z,y) € N*:y = f(z) for some f € '} =0

is easily seen to be a non-zero congruence of the algebra (N,H). Since (N,II) is
simple (polynomially equivalent to A|x), we have § = N2. Thus IT’ is transitive on
N and |N| < |IT'|. (We ignored the case IT = {id}, where |N| = 2.) O

THEOREM 14.8. Suppose that A and B are finite simple algebras and V(A) =
V(B). Then typ(A) = typ(B); and A = B if this type is 3 or 4.

PROOF. If either of A or B has type 1, then V = V(A) = V(B) is locally strongly
solvable (Corollary 7.6); then typ{V} = {1} and both simple algebras have type 1.



188 DAVID HOBBY AND RALPH McKENZIE

If one of them has type 2, then V is locally solvable, typ{V} C {1,2}, and so both
have type 2 since neither has type 1. If {typ(A), typ(B)} C {3,4}, then A € HS(B)
and B € HS(A) by 5.17, hence A = B.

It remains only to reject the possibility that one of the types is 5 and the other
is 3 or 4. So assume that typ(A) = 5 and typ(B) € {3,4}. There is an integer m,
an algebra S C B™, and a congruence 6 on S with S/ = A. We assume that m
is minimal. By 5.17, B € HS(A), leading to an algebra S; C S with a congruence
§ > 0|s, such that S;/6 = B. Now § < 1s, and typ(d,1s,) = typ(B); hence, as in
the proof of 5.17, there i8 ¢ < m such that #;|s, < 6, where 5; is the kernel of the i th
projection of B™ to B. We shall assume that ¢ = 0.

Now S1/(nols, ) is isomorphic to a subalgebra of B™ /7o = B, and S;/6 & B, while
Mols, < 6; so we have § = no|s, since B is finite. Since [B™/no| = |S1/(nols, )|, we
have that for all z € B™, z/no N Sy # 0. Thus S/(nols) = S1/(nols,) = B. Let us
summarize and reformulate what we have learned.

(14.8.1) 6 <1s, typ(d,1s) =5 (= typ(A));
81C 8, bls, < mols, < 1s,, typ(mols,» 1s,) = typ(B) € {3,4};
z/noNS; #0 foreachz € S.

We denote A{n; : i > 0} by fo. Since m was minimal, 7lo|s £ 6. Then by 2.8(4)
we deduce

(14.8.2) every U € Mg(8, 15), satisfies fo|ly ¢ 6|u-

Now we choose any U; € Mg, (1o|s,,1s,). It is easy to see that there is e € E(S)
with e(S;) = U and e|s, € E(S;). We choose such an e with e(S) minimal (under
inclusion) among all sets f(S) where f € E(S), fls, € E(S1), and f(S;) = U;. Since
0ls, < nols,, we have e(ls) € 6; hence by 2.8 (6) and 2.8 (3), e(S) contains some
member U of Mg(8, 15); and from (14.8.2) we get that there is (u,v) € (7o — 6) NUZ.
By (14.8.1) there is u; € Si, u; = u (mod 7). Then u = e(u) = e(u;) (mod 7).
Thus, changing notation, (u,u;) € ng, u; € U;. Similarly, we have some v, € U,
(v,v1) € . Now by 4.17, U; is a two-element set, say U; = {0,1}. Since (u,v) €
flo — Os, (u,v) € mo; hence {u;,v,} = {0,1}. Changing notation, (exchanging u, v if
necessary) we now have

(14.8.3) e € E(S), elsl € E(S]), e(Sl) =U;, = {0,1} € M51(170|sl, IS));
e(S) 2 U € Mg(9,15s), (u,v) € Molu — b)u, (u,0) € no and (v,1) € 7.

Since typ(nols,, 1s,) € {3,4}, there is ¢; € Pol,S;, and hence g € Pol;S, such that
q|s, € Pol3S,; and ¢(0,1) = ¢(1,0) = ¢(1,1) = 1, ¢(0,0) = 0. Letting h(z) = eq(z, ),
and taking ¢'(z,y) = h"~'¢(z,y) where h™ = h?", then ¢’ has the properties assumed
of ¢; and moreover, the minimality of e implies that h™(S) = e(S), and hence that
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q'(u,u) = h™(u) = u and ¢'(v,v) = v. Furthermore,
q’(u’v) = q'(v,v) =v (mOd 770) )

q'(u,v) =¢'(0,1) =1=v (mod 7).

Since o N 7jp = id, we have ¢'(u,v) = v. Likewise, we have ¢'(v,u) = v. A simi-
lar argument applied to a meet operation on {0,1} completes the derivation of the
following assertion.

(14.8.4) S|{u,v} has the operations of a two-element lattice.

Now by 4.15, since typ(#,1s) = 5, U is the disjoint union of u/(8|y) and v/(8|v).
Since U is the range of some member of E(S), we easily conclude from (14.8.4) that
(S|v)/(6]v) is a two-element algebra having at least the operations of a lattice. This
contradicts our assumption that typ(8,1s) = 5. The proof is finished. m]

Exercises 14.9

(1) Suppose that V is a locally finite variety and that A is a finite simple algebra
of type 3 or 4 belonging to V. Show that there is an equation € satisfying
BrFeeo A¢HSB) &« A¢V(B)forall BeV.

(2) Let V =V(B,,...,B,) and assume that V is congruence modular and By, ...,
B, are finite. Let k be the maximum of §(v/6) with (6, ~) ranging over prime
quotients of the B;. Show that §(8/a) < k whenever A € V and @ < 8 in
Con A. (Can congruence modularity be relaxed to: typ{V} N {1,5} = 0?7 We
do not know the answer to this.)

—
w
=

Let G be a finite simple group with maximal subgroups Ho, H;. Show that
({zH; : z € G}, fr(A € G)) = A; are simple algebras of type 1, where
fr(zH;) = AzH;. Show also that Ay = A, iff Hy and H, are conjugate
subgroups. Taking G to be the alternating group on five letters, prove in
this way that there are two non-isomorphic simple algebras of type 1 which
generate the same variety. (Do there exist examples like this one, except that
the algebras have type 2? We do not know.)

(4) Here is an example due to C. Shallon of a four-element simple algebra whose
variety has simple algebras of every cardinality > 4 (finite and infinite). For
finite n > 4, let S, = ({0,...,n —1}, :) wherez -y =z if £ # 0 # y and
|z —y| <1, and z -y = 0 otherwise. These algebras are simple, and S; is a
subalgebra of S; when ¢ < j. Show that S, € HS(S}) for each n, and conclude
that V(S,) = V(S,) for all n.

(5) Let R be a symmetric, irreflexive relation on a set X (so that (X , R) is a

graph), and put A = (X U {e},) wheree ¢ X and z-y =z if (z,y) € Ror

z =y, and = e otherwise. Show that A belongs to the variety generated by S4
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(from the last exercise). Show that A is simple iff X # @, R is connected on
X, and for every = # y in X there is z € X such that (z,z) € R < (y,2) ¢ R.

(6) By Theorems 14.3 and 14.8, the algebras S, of the last Exercise must be of
type 5. By Theorem 13.6, they must be “orderable”. Verify both of these
properties; and find the minimal, non-trivial, admissible orderings of Sy,.

(7) Let A be an algebra with congruences a, (3, ¥ and §, where a and é permute.
Suppose that I[a, 8] projects down to I[y, 6] (ie., a A6 =~y and aVé = §).
Prove that §(8/a) = §(6/7).



PROBLEMS

. Is it true that if A is an Abelian algebra and there is an equation in the
language of lattices that is valid in the congruence lattice of every algebra
in V(A), and fails to be valid in some lattice, then A must be polynomially
equivalent to a module? (Yes, if V(A) is locally finite.)

. A variety V is called Abelian iff all its algebras are Abelian, and Hamiltonian iff
every subalgebra of an algebra A in V is a full equivalence class of a congruence
on A. Is every locally finite Abelian variety Hamiltonian? (It is known that
every Hamiltonian variety is Abelian.)

. If A is a finite Abelian algebra of finite type, is V(A) finitely axiomatizable?

. Let A be a finite algebra with congruence lattice L. Suppose that L has an
M, (n > 3) as a sublattice in which the 0 and 1 are the same as in L. Is A
Abelian? [This problem has been solved by Ross Willard at the University of
Waterloo, Ontario. The answer is “not necessarily”.]

. If A is a finite algebra, must there exist an integer n such that if 8 is a minimal
congruence in an algebra of V(A), and if 6 is Abelian but not strongly Abelian,
then every f-equivalence class has at most n elements?

. Suppose that L is a finitely projective finite lattice. Does there exist a (locally
finite) variety W with the property that for every locally finite variety V we
have: V satisfies some idempotent Mal’cev condition not satisfied by W iff L
is not isomorphic to a sublattice of the congruence lattice of any algebra in
V? (If congruence modularity turns out to be a “prime” Mal’cev condition,
then this is true for L = Nj, although it may be that the variety W cannot
be locally finite.)

. Let L be the congruence lattice of a finite algebra. Find interesting conditions
under which the maximal intervals in L that omit type 4 are the equivalence
classes of a congruence on L. (Consider, for instance, these conditions: (1)
The algebra belongs to a variety that omits types 1 and 5. (2) The algebra
belongs to a variety in which type 4 minimal sets have empty tails.)

. Investigate minimal tolerances in finite algebras.
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10.

11.

12.

13.

14.

15.

16.

17.
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. Apply tame congruence theory to the study of minimal locally finite varieties.

(Note that the finite free algebras in these varieties, when all endomorphisms
are adjoined as operations, become simple algebras.)

Describe all finite simple algebras that generate minimal varieties and possess
no nontrivial subalgebras.

Prove or disprove: If A is a finite algebra such that V(A) admits no finite
bound for the cardinals of its simple algebras, then this class of cardinals is
not bounded by any cardinal.

The same problem as the above, for subdirectly irreducible algebras in place
of simple algebras.

Does there exist a locally finite variety that omits types 1 and 5 and whose
class of congruence lattices obeys no nontrivial lattice equation?

Prove or disprove: If V is a locally finite variety, the class of congruence lattices
of algebras in V obeys some nontrivial lattice equation iff V omits types 1 and
5, and also the type 4 minimal sets in V have empty tails.

Investigate (0, a)-minimal sets for Abelian minimal congruences a of finite
groups. Do the same for rings.

Let A be an E-minimal algebra with congruence lattice L. Is it true that L
obeys every lattice equation that holds in all subgroup lattices of finite Abelian
groups? The question is open for finite groups in place of E-minimal algebras,
and more generally, it is open for finite algebras in congruence-modular vari-
eties. (If the answer is yes for E-minimal algebras, then the other questions
have positive answers.) Concerning this question for finite groups, see Exer-
cise 8.8 (4).

Explain why it happens that Mal’cev properties involving congruences almost
invariably are expressible with operations of just three variables.



An appendix added in July, 1996

In this second printing of this book, the bibliography has been expanded to
include fifty-one new items, numbered [35]-[85]. With only a few exceptions, each
of these papers applies, or extends, the theory presented in this book, or makes
a contribution toward the solution of one of the open problems listed on the pre-
ceeding pages. Many of the papers manage to extend results of this book, in some
fashion, to algebras and varieties that are not assumed to be locally finite. What
follows is a brief commentary on some of these papers.

Among the seventeen open problems listed on the preceeding pages, Problems
1, 2,3, 4,9, 10, 11, 12, 14 and 16 have now been solved.

Problem 1 was solved by K. Kearnes and A. Szendrei [67]. They proved
that every Abelian algebra in a variety which satisfies some idempotent Maltsev
condition that fails to hold in the variety of semilattices, is an affine algebra.

Problem 2 asked if every locally finite variety of Abelian algebras is Hamil-
tonian. E. W. Kiss and M. Valeriote [60] have shown that this is indeed the case,
and the result has been extended in [54] and [64]. Very recently, K. Kearnes and
R. Willard (unpublished) have shown that every locally finite variety of Abelian
algebras is generated by one finite algebra and they produced a negative answer to
Problem 3.

Problem 4 was solved by R. Willard [83]. He constructed, for every n > 2,
a finite, non-Abelian algebra A, having a copy of M, as a {0, 1}-sublattice of
its congruence lattice. He proved also that if Con A contains a {0, 1}-sublattice
isomorphic to M,, where n > 2 and if A belongs to a variety that omits type 1
then A is Abelian. K. Kearnes [50] improved the latter result. He proved that
if A is a finite algebra and Con A contains a {0, 1}-sublattice isomorphic to M,,
where n > 2 then A is left-nilpotent; and if in addition, A omits type 1, then A is
Abelian.

Problems 9 and 10 have been largely solved, through the combined efforts of
K. Kearnes, E. W. Kiss, A. Szendrei and M. Valeriote. These problems basically
ask for a characterization or classification of all minimal locally finite varieties via
the classification of the strictly simple algebras that generate them. (An algebra
is “strictly simple” if it is finite, simple, and has no subalgbras besides itself and
possibly some one-element subalgebras.) K. Kearnes, A. Szendrei [56] contains
this result: A strictly simple algebra generates a minimal variety iff it is either
non-Abelian or has a one-element subalgebra, and in addition, satisfies a certain
Maltsev condition. Their result leaves room for improvement but, for Abelian
algebras, it refines to the following: A strictly simple algebra of type 1 generates a
minimal variety iff it is term-equivalent to a matrix power of a two-element algebra
with no operations except possibly one constant; a strictly simple algebra of type 2
generates a minimal variety iff it has a one-element subalgebra and is polynomially
equivalent to a cyclic module over a finite simple ring with unit.

In A. Szendrei’s papers [73]-[76] can be found results determining all the
finite strictly simple algebras whose operations are idempotent, all the finite simple
Abelian algebras whose basic operations are surjective, all the finite simple algebras
having just one basic operation, and all the finite term-minimal algebras.

Problem 12 was solved by R. McKenzie [66]. He exhibited varieties, each of
them generated by a four-element algebra, which are precisely residually < A where
A is any finite cardinal > 4, or any of w, wy, (2*)*. M. Valeriote [82] adapted
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the constructions of [66] to produce an eight-element algebra of finite type which
generates a semi-simple variety whose largest simple (or equivalently, subdirectly
irreducible) algebra is denumerably infinite. This solved Problem 11.

Problem 14 was solved by M. Valeriote in collaboration with K. Kearnes (un-
published). They disproved the statement by exhibiting a counter-example which
is a reduct of Polin’s variety.

Problem 16 was solved by P. P. P4lfy and Cs. Szabo [71]. They exhibited an
equation which is valid in the lattice of subgroups of every Abelian group, but is
not valid in the lattice of normal subgroups of a certain finite group of order 21°.
The equation has eight variables and the group that falsifies it is the free group on
five generators in the variety generated by the eight-element quaternion group.

J. Berman [39] shows that, where A is any finite simple algebra, the system of
cardinalities of the free algebras in V(A) almost determines the type of A.

How difficult is it to determine the type set of a finite algebra A, or of the
variety generated by A? These questions are addressed in [37], [42] and [70]. R.
McKenzie [70] proved that there is no algorithm (that could be expressed by a
recursive function) to determine if the Boolean type appears in the type-set of
V(A), where A is an arbitrary finite algebra of finite similarity type. This result—
as well as other undecidability results for finite algebras appearing in [67] — [70],
[84] and [85] and proved by the same method—was a serendipitous byproduct of
the resolution of Problem 12. Tame-congruence theoretic ideas lie behind these
discoveries, although the results and their proofs do not easily reveal that fact.

The papers [38], [46] and [77] contain an alternative development of tame con-
gruence theory based on “subtraces”. Those papers and [61] provide shorter routes
to many of the results in Chapters 4, 5 and 6.

Theorem 9.19 in this book has been generalized by P. Lipparini [63]. He
proved that for each integer n > 2, any variety with n-permuting congruences
is congruence-¢ for some nontrivial lattice equation €. The open problem in Exer-
cise 8.8.1 has been solved by M. Valeriote and R. Willard [81]. They proved that
a locally finite variety has permuting congruences iff its finite algebras satisfy the
conditions (i) and (ii) of the exercise. K. Kearnes [49] found a tame-congruence
theoretic criterion for a locally finite variety to have 3-permuting congruences and
indicated that in a certain sense, no such criterion can exist for n-permuting con-
gruences for any fixed n > 3.

Theorem 7.7 in this book has been strengthened by R. Freese, J. B. Nation and
K. Kearnes [40]. They proved that for any finite algebra A, the lattice (Con A)/ &
is an upper-bounded homomorphic image of a free lattice.

Our theory has become the essential tool for the investigation of decidable lo-
cally finite varieties and quasi-varieties. R. McKenzie, M. Valeriote [65] proved
that every decidable locally finite variety decomposes as the varietal product of
three very special decidable varieties: S, a variety of strongly Abelian algebras; A,
an affine variety; and D, a discriminator variety. This result was a precursor to
a beautiful result of B. Hart, S. Starchenko, M. Valeriote [41] according to which
any variety of countable type that has fewer than continuum many non-isomorphic
countable members decomposes as the varietal product of a strongly Abelian and
an affine variety. Following the path pioneered in [65], several researchers are cur-
rently studying the characteristic algebraic properties of locally finite varieties for
which the theory of their finite members is decidable. Current work in this area is
represented by the papers [43], [44], [45], [80].
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Several commutator theories for varieties that are not assumed to be congruence
modular have been studied in [52], [53], [57] and [62] and some impressive results
have been obtained.
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group of all permutations of M, 47
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type set of an interval, 71

type set of an algebra, 71

type set of a variety, 100
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a¥ converse of a binary relation o, 8
ogop relational product of o and p, 8
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w the set of natural numbers, 8
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14 largest equivalence relation on A, 8
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3 Boolean type, 53

4 lattice type, 53

5 semilattice type, 53

< any partial ordering, 9
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A meet, 10

V join of a set, 11
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sd
A< H{A,- :1€l} subdirect product, 11

A=B isomorphism, 7
B~C polynomial isomorphism, 28
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is identically equal to, 13
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satisfies, 13
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is solvably congruent to, 114
is strongly solvably congruent to, 114
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