What everyone already knows about groups.

(Dummit \& Foote Chapters 1-9, approximately.)
(1) Definitions. Language. Terminology, like 'order of a group or element', 'exponent of a group', 'index of a subgroup'. Notation, like $|G|, G / N,[G: H],[x, y]$. Easy syntactic results, like: the group axioms imply (i) $\left(x^{-1}\right)^{-1}=x$ and (ii) $(x y)^{-1}=y^{-1} x^{-1}$.
(2) Examples:
(a) $\mathbb{Z}, \mathbb{Z}_{n}, S_{n}, A_{n}, D_{n}, D_{\infty}, Q_{8}, \mathrm{GL}_{n}(\mathbb{F}), \mathrm{SL}_{n}(\mathbb{F}), \mathrm{PSL}_{n}(\mathbb{F}), \mathrm{O}_{n}(\mathbb{F})$.

- Know how to compute in these groups, so know modular arithmetic, cycle decomposition of permutations, matrix arithmetic.
(b) Groups of small order: know a complete list of groups of order <16.
(3) H, S, P:
(a) Homomorphisms. Inner/outer automorphisms.
(b) Subgroups/normal subgroups. Subgroups of index 2 are normal.
(c) Quotient groups.
(d) Lattices of subgroups/normal subgroups.
(e) Left invariant equivalence relations on groups. Cosets. Double cosets.
(f) Characterization of products and of semidirect products.
(4) Basic structure theorems:
(a) Cayley Representation Theorem.
(b) Noether's Isomorphism Theorems. (3)
(c) Correspondence Theorem.
(d) Jordan-Hölder Theorem.
(e) Lagrange's Theorem.
(f) Cauchy's Theorem.
(g) Sylow's Theorems.
(5) Commutator theory:
(a) Abelianness.
(b) Centralizers.
(c) Nilpotence: center, ascending/descending central series.
(d) solvability: derived group/series.
(6) Group actions:
(a) Equivalent definitions, terminology (G-set, orbit, transitive action, (semi)regular action, homomorphisms/automorphisms).
(b) Orbit-Stabilizer Theorem.
(c) Class equation.
(d) Structure Theorem.
(e) Conjugacy action on elements, subgroups. Conjugacy classes, normalizers. Conjugacy classes in $S_{n}, A_{n}, \mathrm{GL}_{n}(\mathbb{F})$.
(7) Abelian groups:
(a) Structure Theorem for f.g. abelian groups.
(b) Invariant factor form versus elementary divisor form.
(8) Infinite groups:
(a) Free groups, reduced words.
(b) Presentations. Universal property of presentations.
(c) Coproducts of groups given by presentations.

Terminology for functions.

Let A and B be sets and let $f: A \rightarrow B$ be a function from A to B. There are sets and functions related to A, B and f that have special names.

(1) The image of f is $\operatorname{im}(f)=f[A]=\{b \in B: \exists a \in A(f(a)=b)\}$. The image of a subset $U \subseteq A$ is $f[U]=\{b \in B: \exists u \in U(f(u)=b)\}$.
(2) The preimage or inverse image of a subset $V \subseteq B$ is $f^{-1}[V]=\{a \in A: f(a) \in V\}$.
(3) The preimage of a singleton $\{b\}$ is written $f^{-1}(b)$ and sometimes called the fiber of f over b. The fiber $f^{-1}(f(a))$ containing the element a is sometimes written $[a]$.
(4) The kernel of f is $\operatorname{ker}(f)=\left\{\left(a, a^{\prime}\right) \in A^{2}: f(a)=f\left(a^{\prime}\right)\right\}$, which is an equivalence relation on A.
(5) The kernel class of an element $a \in A$ is the same as the fiber [a] that contains it. It is often written $a / \operatorname{ker}(f)$ to emphasize that it is a kernel class.
(6) The coimage of f is the set

$$
\operatorname{coim}(f)=\left\{f^{-1}(b): b \in \operatorname{im}(f)\right\}=\{[a]: a \in A\}=A / \operatorname{ker}(f)
$$

of all nonempty fibers.
(7) The natural map is $\nu: A \rightarrow \operatorname{coim}(f): a \mapsto[a]$. (More generally, for any equivalence relation E on A, the natural map is $\nu: A \rightarrow A / E: a \mapsto a / E$.)
(8) The inclusion map is $\iota: \operatorname{im}(f) \rightarrow B: b \mapsto b$. (More generally, for any subset S of B, the inclusion map is $\iota: A \rightarrow B: b \mapsto b$.)
(9) The induced map is $\bar{f}: \operatorname{coim}(f) \rightarrow \operatorname{im}(f):[a] \mapsto f(a)$.

Some facts:
(1) The natural map is surjective.
(2) The inclusion map is injective.
(3) The induced map is bijective.
(4) $f=\iota \circ \bar{f} \circ \nu$. (This is the canonical factorization of f.)

