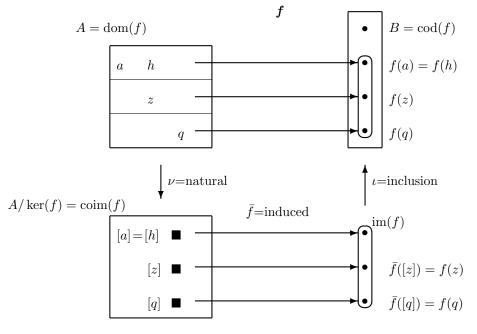
What everyone already knows about groups.

(Dummit & Foote Chapters 1-9, approximately.)

- Definitions. Language. Terminology, like 'order of a group or element', 'exponent of a group', 'index of a subgroup'. Notation, like |G|, G/N, [G : H], [x, y]. Easy syntactic results, like: the group axioms imply (i) (x⁻¹)⁻¹ = x and (ii) (xy)⁻¹ = y⁻¹x⁻¹.
- (2) Examples:
 - (a) Z, Z_n, S_n, A_n, D_n, D_∞, Q₈, GL_n(F), SL_n(F), PSL_n(F), O_n(F).
 Know how to compute in these groups, so know modular arithmetic, cycle decomposition of permutations, matrix arithmetic.
 - (b) Groups of small order: know a complete list of groups of order < 16.
- (3) H, S, P:
 - (a) Homomorphisms. Inner/outer automorphisms.
 - (b) Subgroups/normal subgroups. Subgroups of index 2 are normal.
 - (c) Quotient groups.
 - (d) Lattices of subgroups/normal subgroups.
 - (e) Left invariant equivalence relations on groups. Cosets. Double cosets.
 - (f) Characterization of products and of semidirect products.
- (4) Basic structure theorems:
 - (a) Cayley Representation Theorem.
 - (b) Noether's Isomorphism Theorems. (3)
 - (c) Correspondence Theorem.
 - (d) Jordan-Hölder Theorem.
 - (e) Lagrange's Theorem.
 - (f) Cauchy's Theorem.
 - (g) Sylow's Theorems.
- (5) Commutator theory:
 - (a) Abelianness.
 - (b) Centralizers.
 - (c) Nilpotence: center, ascending/descending central series.
 - (d) solvability: derived group/series.
- (6) Group actions:
 - (a) Equivalent definitions, terminology (G-set, orbit, transitive action, (semi)regular action, homomorphisms/automorphisms).
 - (b) Orbit-Stabilizer Theorem.
 - (c) Class equation.
 - (d) Structure Theorem.
 - (e) Conjugacy action on elements, subgroups. Conjugacy classes, normalizers. Conjugacy classes in S_n , A_n , $\operatorname{GL}_n(\mathbb{F})$.
- (7) Abelian groups:
 - (a) Structure Theorem for f.g. abelian groups.
 - (b) Invariant factor form versus elementary divisor form.
- (8) Infinite groups:
 - (a) Free groups, reduced words.
 - (b) Presentations. Universal property of presentations.
 - (c) Coproducts of groups given by presentations.

Terminology for functions.

Let A and B be sets and let $f: A \to B$ be a function from A to B. There are sets and functions related to A, B and f that have special names.



- (1) The image of f is $\operatorname{im}(f) = f[A] = \{b \in B : \exists a \in A(f(a) = b)\}$. The image of a subset $U \subseteq A$ is $f[U] = \{b \in B : \exists u \in U(f(u) = b)\}$.
- (2) The preimage or inverse image of a subset $V \subseteq B$ is $f^{-1}[V] = \{a \in A : f(a) \in V\}$.
- (3) The preimage of a singleton $\{b\}$ is written $f^{-1}(b)$ and sometimes called the *fiber* of f over b. The fiber $f^{-1}(f(a))$ containing the element a is sometimes written [a].
- (4) The kernel of f is ker(f) = { $(a, a') \in A^2$: f(a) = f(a')}, which is an equivalence relation on A.
- (5) The kernel class of an element $a \in A$ is the same as the fiber [a] that contains it. It is often written $a/\ker(f)$ to emphasize that it is a kernel class.
- (6) The *coimage* of f is the set

$$\operatorname{coim}(f) = \{f^{-1}(b) : b \in \operatorname{im}(f)\} = \{[a] : a \in A\} = A/\ker(f)$$

of all nonempty fibers.

- (7) The natural map is $\nu: A \to \operatorname{coim}(f): a \mapsto [a]$. (More generally, for any equivalence relation E on A, the natural map is $\nu: A \to A/E: a \mapsto a/E$.)
- (8) The inclusion map is $\iota: \operatorname{in}(f) \to B: b \mapsto b$. (More generally, for any subset S of B, the inclusion map is $\iota: A \to B: b \mapsto b$.)
- (9) The induced map is \overline{f} : $\operatorname{coim}(f) \to \operatorname{im}(f)$: $[a] \mapsto f(a)$.

Some facts:

- (1) The natural map is *surjective*.
- (2) The inclusion map is *injective*.
- (3) The induced map is *bijective*.
- (4) $f = \iota \circ \overline{f} \circ \nu$. (This is the *canonical factorization* of f.)