
Unitriangular matrices form a Sylow p-subgroup

Assignment 1

Jordan DuBeau and Brendt Gerics

Prove that U(n, p) is a Sylow p-subgroup of GL(n, p). Deduce that every finite p-group is

isomorphic with a subgroup of some U(n, p).

Proof.

It is known that the size of GL(n, p) is given by

n−1∏
j=0

(pn − pj). This can be rewritten as

p
n(n−1)

2

n∏
j=1

(pj − 1). Furthermore, in Robinson p. 128, it is shown that U(n, p) has order p
n(n−1)

2 .

Since none of the factors (pj − 1) of |GL(n, p)| are divisible by p, we therefore have that U(n, p) is a

Sylow p-subgroup of GL(n, p).

Now, by Cayley’s Representation Theorem, every finite group (in particular, every p-group) is

isomorphic to a subgroup of some Sn. We now show that Sn can be embedded into GL(n, p), and

hence every p-group is isomorphic to a subgroup of some GL(n, p). To do this, we note that Sn is

generated by a transposition (1 2) and a cycle (1 2 . . . n). Hence, we can define an embedding on

the generators of Sn by

(1 2) 7→



0 1 0 0 · · · 0

1 0 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1


=: A

and

(1 2 . . . n) 7→



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0


=: B

These matrices have the effect of permuting the entries of vectors exactly as the elements of the

1



symmetric group permute the indices of those entries. That is to say, A



x1

x2

x3
...

xn


=



x2

x1

x3
...

xn


, and

B


x1

x2
...

xn

 =


xn

x1
...

xn−1

. Hence, we have described an embedding of Sn into GL(n, p). It follows that

every p-group is isomorphic to a subgroup of GL(n, p), and by the Sylow Theorems, every p-group is

isomorphic to a subgroup of some Sylow p-subgroup of GL(n, p), which in turn must be isomorphic

to U(n, p), as every Sylow p-subgroup of GL(n, p) is the image of U(n, p) under conjugation by

some group element. This completes the proof.
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