
Assignment 1, problem 1: The decomposition of nilpotent non-abelian

groups

Jordan DuBeau and Brendt Gerics

Suppose that G is a non-abelian nilpotent group and fix g ∈ G. Then the nilpotent class of

G̃ := 〈g,G′〉 = 〈g, [G,G]〉 is smaller than that of G. Further, G can be expressed as a product

of normal subgroups of smaller class.

Proof. If g ∈ G′, then γ1G̃ = G̃ = G′ = γ2G, and thus the nilpotent class of G̃ is exactly 1 less than

that of G and we are done.

Thus suppose g 6∈ G′. We first show that γ2G̃ ⊆ γ3G. Let w ∈ G̃′ = γ2G̃. Since G′ is a normal

subgroup of G, we may rewrite 〈g,G′〉 = 〈g〉G′ = G′〈g〉, so every x ∈ G̃ can be written either as ge1y1

or as y2g
e2 for some e1, e2 ∈ Z and y1, y2 ∈ G′. We use this fact to rewrite w = [g̃1, g̃2] = [g′1g

s, gtg′2]

for some s, t ∈ Z and g′1, g
′
2 ∈ G′. If s = 0, then w = [g′1, g

tg′2] ∈ [G′, G] = γ3G. Similarly, if t = 0,

then we have w = [g′1g
s, g′2] ∈ [G,G′] = [G′, G] = γ3G. Hence, w ∈ γ3G for all w = [g′1g

s, gtg′2] ∈ γ2G̃
with min{|s|, |t|} = 0. This forms the base case of our inductive argument.

Now, for the inductive step, suppose that we have [g′1g
s, gtg′2] ∈ [G′, G] whenever min{|s|, |t|} = k.

Let w = [g′1g
k+1, gtg′2] for some g′1, g

′
2 ∈ G′ and for some t with |t| ≥ k + 1. Then, we have the

following:

w = [g′1g
k+1, gtg′2]

= g−k−1(g′1)
−1(g′2)

−1g−tg′1g
k+1gtg′2

= g−1g−k(g′1)
−1(g′2)

−1g−tg′1g
kgtg′2g[g, g′2]

= g−1[g′1g
k, gtg′2]g[g, g′2]

Now, we note that [g, g′2] ∈ [G,G′] = [G′, G]. Furthermore, by the inductive hypothesis, [g′1g
k, gtg′2] ∈

[G′, G]. Thus, since [G′, G] = γ3G is a normal subgroup of G, we also have g−1[g′1g
k, gtg′2]g ∈ [G′, G],

and thus w ∈ [G′, G] = γ3G.

An entirely similar argument would show that the element w′ := [g′1g
−k−1, gtg′2] is an element of

γ3G, so we can conclude that every element of the form [g′1g
s, gtg′2], where |s| = k + 1 and |t| ≥ |s|,

is an element of γ3G. We now let w = [g′1g
s, gk+1g′2], where |s| ≥ k + 1, and again show w ∈ [G′, G].

Again, this is sufficient to show that every element of the form [g′1g
s, gtg′2], with |s| ≥ k + 1 and

|t| = k + 1, belongs to γ3G. Hence, showing that w ∈ γ3G will complete the proof of our claim for
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min{|s|, |t|} = k + 1. We prove w ∈ γ3G as follows:

w = g−s(g′1)
−1(g′2)

−1g−k−1g′1g
sgk+1g′2

= g−s(g′1)
−1(g′2)

−1g−1g−kg′1g
s+1gkg′2

= g−s(g′1)
−1[g′2, g]g−1(g′2)

−1g−kg′1g
s+1gkg′2

= g−s
[
g′1, [g, g

′
2]
]
[g′2, g](g′1)

−1g−1(g′2)
−1g−kg′1g

s+1gkg′2

=
[
gs,
[
[g, g′2], g

′
1

]][
g′1, [g, g

′
2]
]
g−s[g′2, g](g′1)

−1g−1(g′2)
−1g−kg′1g

s+1gkg′2

=
[
gs,
[
[g, g′2], g

′
1

]][
g′1, [g, g

′
2]
][
gs, [g, g′2]

]
[g′2, g]g−s(g′1)

−1g−1(g′2)
−1g−kg′1g

s+1gkg′2

=
[
gs,
[
[g, g′2], g

′
1

]][
g′1, [g, g

′
2]
][
gs, [g, g′2]

]
[g′2, g]g−s[g′1, g]g−1(g′1)

−1(g′2)
−1g−kg′1g

s+1gkg′2

=

∈ [G,[G′,G]] = γ4G︷ ︸︸ ︷[
gs,
[
[g, g′2], g

′
1

]] ∈ [G,G′]︷ ︸︸ ︷[
g′1, [g, g

′
2]
] ∈ [G,G′]︷ ︸︸ ︷[
gs, [g, g′2]

] ∈ [G′,G]︷ ︸︸ ︷
[g′2, g]

∈ [G,G′]︷ ︸︸ ︷[
gs, [g, g′1]

] ∈ [G′,G]︷ ︸︸ ︷
[g′1, g] g−s−1(g′1)

−1(g′2)
−1g−kg′1g

s+1gkg′2

= (an element of γ3G)[g′1g
s+1, gkg′2]

Note that the last equality holds because γ4G ⊆ γ3G, and because [G,G′] = [G′, G] = γ3G. Now, by

the induction hypothesis, we have [g′1g
s+1, gkg′2] ∈ γ3G, and thus we have w ∈ γ3G. This completes

our inductive proof that γ2G̃ ⊆ γ3G.

Now that we have shown γ2G̃ ⊆ γ3G, we can write γ3G̃ = [γ2G̃, G̃] ⊆ [γ3G,G] = γ4G. Continuing

this process inductively we get γiG̃ ⊆ γi+1G, so that the nilpotent class of G̃ is at least one less

than that of G.

Finally, to show that G can be expressed as a product of normal subgroups of smaller nilpotent

class, we note that G̃ is normal, since for all h ∈ G,

hG̃ = h〈g〉G′ = h〈g〉G′G′ = (hG′)(〈g〉G′) !
= (〈g〉G′)(hG′) = (〈g〉G′)(G′h) = 〈g〉G′h = G̃h.

The step marked with ! requires some justification, but ultimately follows from the normality of G′:

(hG′)(〈g〉G′) = (hG′)(
⋃
a∈〈g〉

aG′)

=
⋃
a∈〈g〉

(hG′)(aG′)

=
⋃
a∈〈g〉

(aG′)(hG′)

= (
⋃
a∈〈g〉

aG′)(hG′)

= (〈g〉G′)(hG′).
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Now that we have that G̃ = 〈g〉G′ is normal, it follows that G can be written as
∨
g∈G
〈g〉G′ =

∏
g∈G
〈g〉G′,

and hence is a product of normal subgroups of smaller nilpotent class.
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Assignment 1, problem 2: Unitriangular matrices form a Sylow p-subgroup.

Jordan DuBeau and Brendt Gerics

Prove that U(n, p) is a Sylow p-subgroup of GL(n, p). Deduce that every finite p-group is

isomorphic with a subgroup of some U(n, p).

Proof.

It is known that the size of GL(n, p) is given by
n−1∏
j=0

(pn − pj). We now show that we can rewrite

this as p
n(n−1)

2

n∏
j=1

(pj − 1). We proceed by induction. When n = 2, we have

|GL(n, p)| = (p2 − 1)(p2 − p) = p4 − p3 − p2 + p = p(p3 − p2 − p+ 1) = p
2·1
2 (p− 1)(p2 − 1)

so the base case has been shown. Now assume |GL(k, p)| = p
k(k−1)

2

k∏
j=1

(pk − 1). Then

|GL(k + 1, p)| =

k∏
j=0

(pk+1 − pj)

= (pk+1 − 1) · pk
k−1∏
j=1

(pk − pj)

= (pk+1 − 1) · p
k(k+1)

2

k∏
j=1

(pj − 1)

= p
k(k+1)

2

k+1∏
j=1

(pj − 1)

Hence, we have |GL(n, p)| = p
n(n−1)

2

n∏
j=1

(pj − 1). Furthermore, in Robinson p. 128, it is shown that

U(n, p) has order p
n(n−1)

2 . Since none of the factors (pj − 1) of |GL(n, p)| are divisible by p, we

therefore have that U(n, p) is a Sylow p-subgroup of GL(n, p).

Now, by Cayley’s Representation Theorem, every finite group (in particular, every p-group) is

isomorphic to a subgroup of some Sn. We now show that Sn can be embedded into GL(n, p), and

hence every p-group is isomorphic to a subgroup of some GL(n, p). To do this, we note that Sn is
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generated by a transposition (1 2) and a cycle (1 2 . . . n). Hence, we can define an embedding on

the generators of Sn by

(1 2) 7→



0 1 0 0 · · · 0

1 0 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1


=: A

and

(1 2 . . . n) 7→



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0


=: B

These matrices have the effect of permuting the entries of vectors exactly as the elements of the

symmetric group permute the indices of those entries. That is to say, A



x1

x2

x3
...

xn


=



x2

x1

x3
...

xn


, and

B


x1

x2
...

xn

 =


xn

x1
...

xn−1

. Hence, we have described an embedding of Sn into GL(n, p). It follows that

every p-group is isomorphic to a subgroup of GL(n, p), and by the Sylow Theorems, every p-group is

isomorphic to a subgroup of some Sylow p-subgroup of GL(n, p), which in turn must be isomorphic

to U(n, p), as every Sylow p-subgroup of GL(n, p) is the image of U(n, p) under conjugation by

some group element. This completes the proof.
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