Assignment 1, problem 1: The decomposition of nilpotent non-abelian
groups
Jordan DuBeau and Brendt Gerics

Suppose that G is a non-abelian nilpotent group and fix g € G. Then the nilpotent class of
G = (g9,G") = (g, |G, G]) is smaller than that of G. Further, G can be expressed as a product

of normal subgroups of smaller class.

Proof. If g € G', then 11G = G = G = 42 G, and thus the nilpotent class of G is exactly 1 less than
that of G and we are done.

Thus suppose g € G'. We first show that ’)’Qé C v3G. Let w € G = *ygé. Since G’ is a normal
subgroup of G, we may rewrite (g, G') = (¢)G’ = G'(g), so every z € G can be written either as 9ty
or as y2g®? for some e, es € Z and y1,yo € G'. We use this fact to rewrite w = [§1, §2] = [¢}9°, ' 9h]
for some s,t € Z and ¢}, g5 € G'. If s = 0, then w = [¢}, ¢'gh] € [G’,G] = v3G. Similarly, if ¢t = 0,
then we have w = [¢}¢°, g4] € [G,G'] = [G', G] = v3G. Hence, w € 3G for all w = [g1g°, g'gh] € .G
with min{|s|, |¢|} = 0. This forms the base case of our inductive argument.

Now, for the inductive step, suppose that we have [g1g°, g'g4] € [G', G] whenever min{|s|, |t|} = k.
Let w = [¢}g" T, g'gb] for some g}, g4 € G’ and for some ¢ with |t| > k + 1. Then, we have the

following:

w = [g1g"*, ' gh]
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Now, we note that [g, g3] € [G,G'] = [G', G]. Furthermore, by the inductive hypothesis, [g] g%, g'g5] €
[G’, G]. Thus, since [G’, G] = 743G is a normal subgroup of G, we also have g~ '[¢}¢", g'ghlg € [G', G,
and thus w € [G', G] = 13G.

An entirely similar argument would show that the element w’ := [¢]g~"

~1 glgh] is an element of
713G, so we can conclude that every element of the form [g}g®, g'g], where |s| = k + 1 and [t| > |s],
is an element of 13G. We now let w = [g]g°, g*1gh], where |s| > k + 1, and again show w € [G, G].
Again, this is sufficient to show that every element of the form [g]¢%, g'g5], with |s| > k + 1 and
|t| = k + 1, belongs to v3G. Hence, showing that w € y3G will complete the proof of our claim for



min{|s|, [t|} = k + 1. We prove w € 3G as follows:
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Note that the last equality holds because v4G C 3G, and because [G,G'] = [G’, G] = 73G. Now, by
the induction hypothesis, we have [g} g*t, gkg’Q] € 713G, and thus we have w € y3G. This completes
our inductive proof that 726 C 7G.

Now that we have shown v2G C 3G, we can write 735G = [’yzé, 6’] C [v3G, G] = v4G. Continuing
this process inductively we get yié C 7;+1G, so that the nilpotent class of G is at least one less
than that of G.

Finally, to show that G can be expressed as a product of normal subgroups of smaller nilpotent

class, we note that G is normal, since for all h € G,
hG = hig)G' = hg)G'G = (h&)((9)G) = (9)G)(hG') = ((9)G')(G'h) = (9)G'h = Gh.
The step marked with ! requires some justification, but ultimately follows from the normality of G’:
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a€g(g)

— | (@) (aG)

a€g(g)

= | (@) (nc)

a€(g)
= (| & (nG")
a€(g)

= ((9)G")(hG").



Now that we have that G = ()G’ is normal, it follows that G can be written as \/ (9)G' = H (9)&,

geG geG
and hence is a product of normal subgroups of smaller nilpotent class. ]



Assignment 1, problem 2: Unitriangular matrices form a Sylow p-subgroup.

Jordan DuBeau and Brendt Gerics

Prove that U(n,p) is a Sylow p-subgroup of GL(n,p). Deduce that every finite p-group is

isomorphic with a subgroup of some U(n, p).

Proof. O
n—1 '
It is known that the size of GL(n,p) is given by H (p" —p’). We now show that we can rewrite
j=0
n(n—1) .
this as p~ 2 : H(p7 —1). We proceed by induction. When n = 2, we have
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so the base case has been shown. Now assume |GL(k,p)| = pk tR H(pk —1). Then
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Hence, we have |GL(n,p)| =p 2 (p’ — 1). Furthermore, in Robinson p. 128, it is shown that
=1

J
n(n—1) .

U(n,p) has order p~— 2 . Since none of the factors (p’ — 1) of |GL(n,p)| are divisible by p, we
therefore have that U(n,p) is a Sylow p-subgroup of GL(n,p).

Now, by Cayley’s Representation Theorem, every finite group (in particular, every p-group) is
isomorphic to a subgroup of some S,,. We now show that S,, can be embedded into GL(n,p), and

hence every p-group is isomorphic to a subgroup of some GL(n,p). To do this, we note that S, is



generated by a transposition (1 2) and a cycle (12 ... n). Hence, we can define an embedding on

the generators of S,, by

01 00 0
1000 0
0010 0
(12)+— = A
00 01 0
0000 1
and _ -
00 0 1
0 0 0
(12 n)— (0 1 0 0 =B
00 10
These matrices have the effect of permuting the entries of vectors exactly as the elements of the
1 Zo
X9 1
symmetric group permute the indices of those entries. That is to say, A |z3 x3|, and
Tn T
I Iy
xI9 I
B| | = | . Hence, we have described an embedding of \S,, into GL(n,p). It follows that
T, Tn—1

every p-group is isomorphic to a subgroup of GL(n,p), and by the Sylow Theorems, every p-group is

isomorphic to a subgroup of some Sylow p-subgroup of GL(n,p), which in turn must be isomorphic

to U(n,p), as every Sylow p-subgroup of GL(n,p) is the image of U(n,p) under conjugation by

some group element. This completes the proof.
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