
Examples, Properties, Applications

Math 6270

1 k2 · · · kr

G 1 g2 · · · gr

χ1 1 1 · · · 1
χ2 d2 χ2(g2) · · · χ2(gr)
...

...
...

. . .
...

χr dr χr(g2) · · · χr(gr)

Each di divides |G| = 12 + d2
2 + · · ·+ d2

r
Each kj divides |G| = 1 + k2 + · · ·+ kr
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Character tables of abelian groups

1 1
Z2 0 1
ξ1 1 1
ξ2 1 −1

1 1 1
Z3 0 1 2
χ1 1 1 1
χ2 1 ω ω2

χ2
2 1 ω2 ω

1 1 1 1
Z4 0 1 2 3
χ1 1 1 1 1
χ2 1 i −1 −i
χ2

2 1 −1 1 −1
χ3

2 1 −i −1 i

1 1 1 1
Z2 × Z2 (0, 0) (0, 1) (1, 0) (1, 1)
ξ1(x)ξ1(y) 1 1 1 1
ξ2(x)ξ1(y) 1 1 −1 −1
ξ1(x)ξ2(y) 1 −1 1 −1
ξ2(x)ξ2(y) 1 −1 −1 1
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Completing a table from partial information

Let G be a nonabelian group of order 8. Necessarily G/Z(G) ∼= Z2 × Z2, so
inflation gives us partial information about the character table.

1 1 2 2 2
G 1 g2 g3 g4 g5

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 ? ? ? ? ?

The entries in the last row can be determined by:
(i) finding the missing irrep, (ii) column orthogonality, (iii) row orthogonality,
(iv)

∑
i diχi(h) = χreg(h), ETC.

Math 6270 Examples, Properties, Applications



Completing a table from partial information

Let G be a nonabelian group of order 8. Necessarily G/Z(G) ∼= Z2 × Z2, so
inflation gives us partial information about the character table.

1 1 2 2 2
G 1 g2 g3 g4 g5

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 ? ? ? ? ?

The entries in the last row can be determined by:
(i) finding the missing irrep, (ii) column orthogonality, (iii) row orthogonality,
(iv)

∑
i diχi(h) = χreg(h), ETC.

Math 6270 Examples, Properties, Applications



Completing a table from partial information

Let G be a nonabelian group of order 8. Necessarily G/Z(G) ∼= Z2 × Z2, so
inflation gives us partial information about the character table.

1 1 2 2 2
G 1 g2 g3 g4 g5

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 ? ? ? ? ?

The entries in the last row can be determined by:
(i) finding the missing irrep, (ii) column orthogonality, (iii) row orthogonality,
(iv)

∑
i diχi(h) = χreg(h), ETC.

Math 6270 Examples, Properties, Applications



Completing a table from partial information

Let G be a nonabelian group of order 8. Necessarily G/Z(G) ∼= Z2 × Z2, so
inflation gives us partial information about the character table.

1 1 2 2 2
G 1 g2 g3 g4 g5

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 ? ? ? ? ?

The entries in the last row can be determined by:

(i) finding the missing irrep, (ii) column orthogonality, (iii) row orthogonality,
(iv)

∑
i diχi(h) = χreg(h), ETC.

Math 6270 Examples, Properties, Applications



Completing a table from partial information

Let G be a nonabelian group of order 8. Necessarily G/Z(G) ∼= Z2 × Z2, so
inflation gives us partial information about the character table.

1 1 2 2 2
G 1 g2 g3 g4 g5

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 ? ? ? ? ?

The entries in the last row can be determined by:
(i) finding the missing irrep,

(ii) column orthogonality, (iii) row orthogonality,
(iv)

∑
i diχi(h) = χreg(h), ETC.

Math 6270 Examples, Properties, Applications



Completing a table from partial information

Let G be a nonabelian group of order 8. Necessarily G/Z(G) ∼= Z2 × Z2, so
inflation gives us partial information about the character table.

1 1 2 2 2
G 1 g2 g3 g4 g5

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 ? ? ? ? ?

The entries in the last row can be determined by:
(i) finding the missing irrep, (ii) column orthogonality,

(iii) row orthogonality,
(iv)

∑
i diχi(h) = χreg(h), ETC.

Math 6270 Examples, Properties, Applications



Completing a table from partial information

Let G be a nonabelian group of order 8. Necessarily G/Z(G) ∼= Z2 × Z2, so
inflation gives us partial information about the character table.

1 1 2 2 2
G 1 g2 g3 g4 g5

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 ? ? ? ? ?

The entries in the last row can be determined by:
(i) finding the missing irrep, (ii) column orthogonality, (iii) row orthogonality,

(iv)
∑

i diχi(h) = χreg(h), ETC.

Math 6270 Examples, Properties, Applications



Completing a table from partial information

Let G be a nonabelian group of order 8. Necessarily G/Z(G) ∼= Z2 × Z2, so
inflation gives us partial information about the character table.

1 1 2 2 2
G 1 g2 g3 g4 g5

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 ? ? ? ? ?

The entries in the last row can be determined by:
(i) finding the missing irrep, (ii) column orthogonality, (iii) row orthogonality,
(iv)

∑
i diχi(h) = χreg(h),

ETC.

Math 6270 Examples, Properties, Applications



Completing a table from partial information

Let G be a nonabelian group of order 8. Necessarily G/Z(G) ∼= Z2 × Z2, so
inflation gives us partial information about the character table.

1 1 2 2 2
G 1 g2 g3 g4 g5

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 ? ? ? ? ?

The entries in the last row can be determined by:
(i) finding the missing irrep, (ii) column orthogonality, (iii) row orthogonality,
(iv)

∑
i diχi(h) = χreg(h), ETC.

Math 6270 Examples, Properties, Applications



Completing a table from partial information, Q8,D4

The table for either of D4(D8) or Q8 is:

1 1 2 2 2
G 1 g2 g3 g4 g5

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

The groups D4 and Q8 can be distinguished by the fact that
det(χQ8

5 ) = χ1 6= det(χD4
5 ).
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A4

A4/K ∼= Z3, so 3 linear characters arise from inflation. Also, A4 acts
2-transitively on S = {1, 2, 3, 4}, so χ4 = χS − χ1 is an irrep of degree 3.
This must be all.

1 3 4 4
A4 1 (1 2)(3 4) (1 2 3) (1 3 2)
χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω

χ4 3 −1 0 0

Another way to produce χ4 is to realize A4 as the rotation group of the
tetrahedron. Or use orthogonality. Or use the regular representation.
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S4

S4/K ∼= S3, so get 3 irreps by inflation. S4 acts 2-transitively on {1, 2, 3, 4},
so get a degree 3 irrep from that, χ4. By orthogonality (or by realizing S4 as
the rotation group of the cube) we get another degree 3 irrep, χ5.

1 3 8 4 4
S4 1 (1 2)(3 4) (1 2 3) (1 2) (1 2 3 4)
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 2 2 −1 0 0
χ4 3 −1 0 1 −1
χ5 3 −1 0 −1 1
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A5

A5 is the smallest nonabelian simple group, which makes it an interesting
example. χ1 is the only irrep of degree 1. A5 acts 2-transitively on
{1, 2, 3, 4, 5}, yielding an irrep of degree 4. A5 acts 2-transitively by
conjugation on its six Sylow 5-subgroups, yielding an irrep of degree 5. A5
may be realized as the rotation group of the dodecahedron, yielding an irrep of
degree 3. (Char value of a rotation in R3 through 2π/n is 1 + 2 cos(2π/n).)

1 15 20 12 12
A5 1 (1 2)(3 4) (1 2 3) (1 2 3 4 5) (1 2 3 5 4)
χ1 1 1 1 1 1
χ2 3 −1 0 φ −φ−1

χ3 3 −1 0 −φ−1 φ

χ4 4 0 1 −1 −1
χ5 5 1 −1 0 0

χ2 1 + 2 cos(0) 1 + 2 cos(π) 1 + 2 cos(2π/3) 1 + 2 cos(2π/5) 1 + 2 cos(4π/5)
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degree 3. (Char value of a rotation in R3 through 2π/n is 1 + 2 cos(2π/n).)

1 15 20 12 12
A5 1 (1 2)(3 4) (1 2 3) (1 2 3 4 5) (1 2 3 5 4)
χ1 1 1 1 1 1
χ2 3 −1 0 φ −φ−1

χ3 3 −1 0 −φ−1 φ

χ4 4 0 1 −1 −1
χ5 5 1 −1 0 0

χ2 1 + 2 cos(0) 1 + 2 cos(π) 1 + 2 cos(2π/3) 1 + 2 cos(2π/5) 1 + 2 cos(4π/5)
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Silly applications

Theorem
If |G| = p, p prime, then G is abelian.

Proof.

The first column of the character table for G consists of at most p integers
d1, . . . , dr such that (i) d1 = 1, (ii) dj|p for all j, and (iii) d2

1 + · · ·+ d2
r = p. It

must be that d1 = · · · = dr = 1, so G is abelian.

Theorem
Any group of order < 6 is abelian.

Proof.

Same idea. The smallest number n that is a sum of squares d2
1 + · · ·+ d2

r
where d1 = 1, some dj > 1, and all dj divide n is 6.
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More silly applications

Theorem

If |G| = p2, p prime, then G is abelian.

Proof.

Each degree dj must be 1, p or p2. The choices dj = p or p2 are too big if
12 + d2

2 + · · ·+ d2
r = p2.

Theorem
If |G| = pq, q < p primes, and G is nonabelian, then p ≡ 1 (mod q).

Proof.
Possible degrees are dj ∈ {1, q}, and some dj = q. Assume that there are m
degrees satisfying dj = q. The number of dj equal to 1 is
n := [G : G′] ∈ {1, q, p}. We have pq = d2

1 + · · ·+ d2
r = mq2 + n. From this,

q|n, so q = n. Dividing pq = mq2 + q by q we get p = mq + 1.
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Unsilly applications

Theorem

A finite nonabelian simple group G has no conjugacy class hG of prime power
size other than the class {1}.

Proof.

If χ ∈ Irr(G) is not the principal character, then Kχ = Zχ = {1}, since these
are proper normal subgroups. If p is the prime of the theorem, then p 6 | χ(1)
implies χ(h) = 0 for any such χ. Column orthogonality, applied to the
columns of 1 and h, yields 1 + χ2(1)χ2(h) + · · ·+ χr(1)χr(h) = 0, hence

(χ2(1)χ2(h))/p + · · ·+ (χr(1)χr(h))/p = −1/p.

Each summand on the left is an algebraic integer, but −1/p is not.
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Unsilly applications

Theorem
If G is a finite nonabelian simple group and H is a subgroup of prime power
index, then H is centerless.

(This is a restatement of the previous theorem in the language of subgroups
instead of conjugacy classes.)

Let’s see:
If H is a subgroup of G of p-power index with a nontrivial central element h,
then hG is a conjugacy class of G of p-power size. Conversely if hG is a
conjugacy class of G of p-power size, then CG(h) is a subgroup of G of
p-power index with a nontrivial central element h.
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p-power index with a nontrivial central element h.
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Burnside’s paqb Theorem

Theorem

There is no nonabelian simple group G such that |G| = paqb, p, q primes.

Proof.

Apply the preceding theorem to H ∈ Sylp(G) to derive a contradiction.

Corollary

If |G| = paqb, p, q primes, then G is solvable.

Proof.

If |G| = paqb and G is not solvable, then it must have a nonabelian simple
section G′ whose order divides paqb. There is no such group.
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A theorem about simple groups

Theorem
If G is a nonabelian simple group and some irreducible character degree is a
prime p, then the Sylow p-subgroups of G have order p.

Recall, as an example:

1 15 20 12 12
A5 1 (1 2)(3 4) (1 2 3) (1 2 3 4 5) (1 2 3 5 4)
χ1 1 1 1 1 1
χ2 3 −1 0 φ φ−1

χ3 3 −1 0 φ−1 φ

χ4 4 0 1 −1 −1
χ5 5 1 −1 0 0
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Preliminaries

Let G be a nonabelian simple group with irreducible character ψ of degree p.
If ρ : G→ GLp(C) affords ψ, then ρ is faithful. In fact, Kψ = Zψ = {1}.

Let P be a Sylow p-subgroup of G. Choose any z ∈ Z(P) \ {1}. [G : CG(z)]
divides [G : P], hence zG has size prime to p. Thus ψ(z) = 0 for any
z ∈ Z(P) \ {1}.

What we are seeing here is important: a character is vanishing on the
nonidentity elements of a subgroup, Z(P).
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Recognizing multiples of the regular representation

Lemma
Let ρ : H → GLn(C) be a (not necessarily irreducible) representation of a
finite group, and let ψ be the character afforded by ρ. If ψ vanishes on
H \ {1}, then |H| divides ψ(1).
Thus, ψ is a multiple of the regular character, and so ρ is a multiple of the

regular representation.

Proof.
Compare χ1 and ψ:

1 k2 · · · kr

H 1 a2 · · · ar

χ1 1 1 · · · 1
ψ ψ(1) 0 · · · 0

.

〈χ1, ψ〉 = ψ(1)
|H| must be an integer. Now use that representations are

determined by their characters.
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Proof of theorem

To be proved: If there is an irreducible representation ρ : G→ GLp(C)
(affording ψ) then a Sylow p-subgroup P ≤ G has order p.

Proof.
We have shown that ψ vanishes on the nonidentity elements of Z(P), so
|Z(P)| = p. Moreover, ρZ(P) is the regular representation of Z(P), so if
z ∈ Z(P) is a generator, then ρ(z) has distinct e-values. It follows that
CGLp(C)(z) consists of diagonal matrices, hence is abelian. A fortiori, CG(z) is
abelian. Thus, P = Z(P), which has order p.

The converse is false. PSL2(q) has Sylow 3-subgroups of size 3 for infinitely
many prime powers q, but only PSL2(5) and PSL2(7) have irreps of degree 3.
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