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Thm. Z is a UFD iff (i) Z has ACC on principal ideals and (ii) irreducible
elements are prime.

[UFD => (i)] Suppose Z contains a = g - - - gx and (a) C (b). There is a
nonunit ¢ such that a = be = [b][c] = [r1 -+ rm|[s1 -+ sa] = q1 - - - qx. For
each r; there is a g;; such that (r;) = (g;,), so (b) = (r1) -+ (¥m)

= (qi,) - - - (qi,) is a subproduct of (a) = (g1) - - - (gx). There can be only
finitely many choices for (b).

[UFD =>- (ii)] Suppose that g | ab, say gc = ab. Equate factorizations and
learn that (¢) = (p) for some irreducible factor of a or b. Thus g | a or g | b.

[(i)&(ii) = UFD] ACC on principal ideals implies each nonunit has a finite
factorization into irreducibles. Finite factorizations into primes are unique up
to associates and order. [
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- is impossible
in a PID.

(ii) g is irreducible iff (g) is maximal among principal ideals.

Modern Algebra 1 (Fall 2016)

Unique factorization



PIDs are UFDs

Proof of (*):
1) If Iy < I < --- is any strictly increasing w-chain of ideals in a ring, then

I = |JI; cannot be finitely generated. Hence (ag) < (a1) < --- is impossible
in a PID.

(ii) g is irreducible iff (g) is maximal among principal ideals. In a PID, this
means (g) is a maximal ideal, hence prime. Therefore g is prime. [J
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Irreducibility in Q[x] vs Z[x]

Fact. Z a UFD = primitive f(x) € Z[x] is irred. in Q[x] iff irred. in Z[x].

Irreducibility tests. f(x) € Z[x], Z a UFD, Q = fraction field.

@ Root Theorem.

f(r) =0iff f(r) = (x — r)g(x). E.g., x> + x> — x*> — 1 is reducible.
@ Rational Root Theorem.

If r = s/tis aroot of a,x" + - -+ aog, (s,1) = 1, then s | ap and 7 | ay,.
© Reduction modulo a prime ideal.

If f(x) = g(x)h(x), then f(x) = g(x)h(x) (mod P).

E.g. 301x% + 202x% 4 103x + 9999 is irred in Z[x].
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Irreducibility in Q[x] vs Z[x]

Fact. Z a UFD = primitive f(x) € Z[x] is irred. in Q[x] iff irred. in Z[x].
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© Rational Root Theorem.
If r = s/tis aroot of a,x" + - -+ aog, (s,1) = 1, then s | ap and 7 | ay,.
© Reduction modulo a prime ideal.
If f(x) = g(x)h(x), then f(x) = g(x)h(x) (mod P).
E.g. 301x% + 202x% 4 103x + 9999 is irred in Z[x].
@ Eisenstein’s Criterion.
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© Rational Root Theorem.
If r = s/tis aroot of a,x" + - -+ aog, (s,1) = 1, then s | ap and 7 | ay,.
© Reduction modulo a prime ideal.
If f(x) = g(x)h(x), then f(x) = g(x)h(x) (mod P).
E.g. 301x% + 202x% 4 103x + 9999 is irred in Z[x].
@ Eisenstein’s Criterion.
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