
Unique factorization

Modern Algebra 1

Fall 2016

Modern Algebra 1 (Fall 2016) Unique factorization 1 / 5



Factorization in Z[x] and Q[x]

Recall that if α is algebraic over Q, then Q[α] is isomorphic to Q[x]/(p(x))
where p(x) ∈ Q[x] is a monic irreducible polynomial.

(p(x) = minα,Q(x).)
How do we recognize such p?

Df. An integral domain is a unique factorization domain (UFD) if every
nonzero nonunit has a finite factorization into irreducible elements,
a = q1 · · · qk, and the irreducible factors qi are unique up to associates and
order. (Any field is a UFD!)

Thm. Z is a UFD iff (i) Z has ACC on principal ideals and (ii) irreducible
elements are prime.

Thm. Every PID is a UFD. (Z,Z[i],F[x])

Gauss’ Lemma. If Z is a UFD and Q = FracField(Z), then any primitive
p(x) ∈ Z[x] is irreducible in Z[x] iff it is irreducible in Q[x].

Thm. If Z is UFD then Z[x] is a UFD. (Z[x],F[x, y, z] = ((F[x])[y])[z])
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Characterization of UFDs

Thm. Z is a UFD iff (i) Z has ACC on principal ideals and (ii) irreducible
elements are prime.

[UFD⇒ (i)] Suppose Z contains a = q1 · · · qk and (a) ( (b). There is a
nonunit c such that a = bc = [b][c] = [r1 · · · rm][s1 · · · sn] = q1 · · · qk. For
each rj there is a qij such that (rj) = (qij), so (b) = (r1) · · · (rm)
= (qi1) · · · (qim) is a subproduct of (a) = (q1) · · · (qk). There can be only
finitely many choices for (b).

[UFD⇒ (ii)] Suppose that q | ab, say qc = ab. Equate factorizations and
learn that (q) = (p) for some irreducible factor of a or b. Thus q | a or q | b.

[(i)&(ii)⇒ UFD] ACC on principal ideals implies each nonunit has a finite
factorization into irreducibles. Finite factorizations into primes are unique up
to associates and order. �
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[UFD⇒ (ii)] Suppose that q | ab, say qc = ab.

Equate factorizations and
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PIDs are UFDs (*)

Proof of (*):

(i) If I0 < I1 < · · · is any strictly increasing ω-chain of ideals in a ring, then
I =

⋃
Ij cannot be finitely generated. Hence (a0) < (a1) < · · · is impossible

in a PID.

(ii) q is irreducible iff (q) is maximal among principal ideals. In a PID, this
means (q) is a maximal ideal, hence prime. Therefore q is prime. �
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Irreducibility in Q[x] vs Z[x]

Fact. Z a UFD⇒ primitive f (x) ∈ Z[x] is irred. in Q[x] iff irred. in Z[x].

Irreducibility tests. f (x) ∈ Z[x], Z a UFD, Q = fraction field.

1 Root Theorem.
f (r) = 0 iff f (r) = (x− r)g(x). E.g., x5 + x3 − x2 − 1 is reducible.

2 Rational Root Theorem.
If r = s/t is a root of anxn + · · ·+ a0, (s, t) = 1, then s | a0 and t | an.

3 Reduction modulo a prime ideal.
If f (x) = g(x)h(x), then f (x) ≡ g(x)h(x) (mod P).
E.g. 301x3 + 202x2 + 103x + 9999 is irred in Z[x].

4 Eisenstein’s Criterion.
p prime. If p 6 | an; p|am, m < n; p2 6 | a0, then a0xn + · · ·+ a0 irred.
E.g., x5 + 2x4 − 4x + 2 is irreducible.

5 Shifting. f (x) = g(x)h(x) iff f (x + a) = g(x + a)h(x + a).
E.g., Φp(x) = (xp − 1)/(x− 1) = xp−1 + · · ·+ 1 is irred, by E’s Crit
applied to Φp(x + 1) = xp−1 +

( p
p−1

)
xp−2 + · · ·+

(p
2

)
x +

(p
1

)
.
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