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It is a nontrivial fact, due to Helmut Wielandt, that in a group G with a
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Assume G is finite, S is a simple quotient, and N is the kernel of a map onto S.
Then |[N| < |G|, so we may try to understand finite groups inductively by

@ solving the extension problem, and

@ classifying the finite simple groups.
Thinking this way leads to the concepts of subnormal subgroup, composition
series, and composition factor.
It is a nontrivial fact, due to Helmut Wielandt, that in a group G with a

composition series the subnormal subgroups comprise a sublattice of Sub(G).
This sublattice is lower semimodular:
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Assume G is finite, S is a simple quotient, and N is the kernel of a map onto S.
Then |[N| < |G|, so we may try to understand finite groups inductively by

@ solving the extension problem, and

@ classifying the finite simple groups.
Thinking this way leads to the concepts of subnormal subgroup, composition
series, and composition factor.
It is a nontrivial fact, due to Helmut Wielandt, that in a group G with a

composition series the subnormal subgroups comprise a sublattice of Sub(G).
This sublattice is lower semimodular:

M

N — M/N = H/(HNN)

Modern Algebra 1 (Fall 2016) Simple groups



Jordan-Holder Theorem

Any two composition series have the same composition factors.

Modern Algebra 1 (Fall 2016)



Jordan-Holder Theorem

Any two composition series have the same composition factors.

Modern Algebra 1 (Fall 2016)



Jordan-Holder Theorem

Any two composition series have the same composition factors.

Proof by induction on |G|:

Modern Algebra 1 (Fall 2016)



Jordan-Holder Theorem

Any two composition series have the same composition factors.

Proof by induction on |G|:

Modern Algebra 1 (Fall 2016)



Jordan-Holder Theorem

Any two composition series have the same composition factors.

Proof by induction on |G|:

Modern Algebra 1 (Fall 2016)



Jordan-Holder Theorem

Any two composition series have the same composition factors.

Proof by induction on |G|:

Modern Algebra 1 (Fall 2016)



Jordan-Holder Theorem

Any two composition series have the same composition factors.

Proof by induction on |G|:

Modern Algebra 1 (Fall 2016)



Jordan-Holder Theorem

Any two composition series have the same composition factors.

Proof by induction on |G|:

Modern Algebra 1 (Fall 2016)



Jordan-Holder Theorem

Any two composition series have the same composition factors.

Proof by induction on |G|:

ra 1 (Fall 2016)



Jordan-Holder Theorem

Any two composition series have the same composition factors.

Proof by induction on |G|:

ra 1 (Fall 2016)



Jordan-Holder Theorem

Any two composition series have the same composition factors.

Proof by induction on |G|:

ra 1 (Fall 2016)



Jordan-Holder Theorem

Any two composition series have the same composition factors.

Proof by induction on |G|:

ra 1 (Fall 2016)



The classification of finite simple groups (CFSG)

Modern Algebra 1 (Fall 2016)



The classification of finite simple groups (CFSG)

The Periodic Table Of Finite Simple Groups
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surjective with abelian image and kernel SL(V) = [G, GJ.
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Let V be a finite dimensional F-space. Let G = GL(V). det: GL(V) — F* is
surjective with abelian image and kernel SL(V) = [G, G|. GL(V) (and hence
SL(V)) acts on the subspace lattice of V with kernel Z(G) = scalar matrices.
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Sketch of proof* that the center Z of SL(V) is a maximal normal subgroup.
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Let V be a finite dimensional F-space. Let G = GL(V). det: GL(V) — F* is
surjective with abelian image and kernel SL(V) = [G, G|. GL(V) (and hence
SL(V)) acts on the subspace lattice of V with kernel Z(G) = scalar matrices.
Image of action is called PGL(V) PSL(V). PSL,(q) is simple, except*
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(a) Show that the normal subgroup generated by any noncentral element
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(b) Show that the transvections form a conjugacy class.
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PSL(V), Au(q) = PSL,+1(q) = PSL(F+")

Let V be a finite dimensional F-space. Let G = GL(V). det: GL(V) — F* is
surjective with abelian image and kernel SL(V) = [G, G|. GL(V) (and hence
SL(V)) acts on the subspace lattice of V with kernel Z(G) = scalar matrices.
Image of action is called PGL(V) PSL(V). PSL,(q) is simple, except*
PSLZ(Z) = S3 and PSL2(3) = A4.

Sketch of proof* that the center Z of SL(V) is a maximal normal subgroup.

(a) Show that the normal subgroup generated by any noncentral element
contains a transvection.

(b) Show that the transvections form a conjugacy class.

(c) Show that SL(V) is generated by transvections.

Modern Algebra 1 (Fall 2016) Simple groups



The simplicity of A,,, n > 5, Section 4.5, 4.6

@ Show As is simple.

Modern Algebra 1 (Fall 2016)



The simplicity of A,,, n > 5, Section 4.5, 4.6

@ Show As is simple.

Modern Algebra 1 (Fall 2016)



The simplicity of A,,, n > 5, Section 4.5, 4.6

© Show As is simple. (|As| = 60.)

(a) A subgroup N is normal iff it is a union of conjugacy classes.

Modern Algebra 1 (Fall 2016)



The simplicity of A,,, n > 5, Section 4.5, 4.6

© Show As is simple. (|As| = 60.)
(a) A subgroup N is normal iff it is a union of conjugacy classes.
(b) The conjugacy classes of As have sizes 1, 12,12, 15, 20.

Modern Algebra 1 (Fall 2016) Simple groups



The simplicity of A,,, n > 5, Section 4.5, 4.6

© Show As is simple. (|As| = 60.)
(a) A subgroup N is normal iff it is a union of conjugacy classes.
(b) The conjugacy classes of As have sizes 1, 12,12, 15, 20.
(c) No sum of these numbers divides 60 except 1 and 60.

Modern Algebra 1 (Fall 2016) Simple groups



The simplicity of A,,, n > 5, Section 4.5, 4.6

© Show As is simple. (|As| = 60.)
(a) A subgroup N is normal iff it is a union of conjugacy classes.
(b) The conjugacy classes of As have sizes 1, 12,12, 15, 20.
(c) No sum of these numbers divides 60 except 1 and 60.

© Show A, is simple, 5 < n < w.

Modern Algebra 1 (Fall 2016) Simple groups



The simplicity of A,,, n > 5, Section 4.5, 4.6

© Show As is simple. (|As| = 60.)
(a) A subgroup N is normal iff it is a union of conjugacy classes.
(b) The conjugacy classes of As have sizes 1, 12,12, 15, 20.
(c) No sum of these numbers divides 60 except 1 and 60.

© Show A, is simple, 5 < n < w.

Modern Algebra 1 (Fall 2016) Simple groups



The simplicity of A,,, n > 5, Section 4.5, 4.6

© Show As is simple. (|As| = 60.)
(a) A subgroup N is normal iff it is a union of conjugacy classes.
(b) The conjugacy classes of As have sizes 1, 12,12, 15, 20.
(c) No sum of these numbers divides 60 except 1 and 60.

© Show A, is simple, 5 < n < w. (Induction on n.)
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© Show As is simple. (|As| = 60.)
(a) A subgroup N is normal iff it is a union of conjugacy classes.
(b) The conjugacy classes of As have sizes 1, 12,12, 15, 20.
(c) No sum of these numbers divides 60 except 1 and 60.
© Show A, is simple, 5 < n < w. (Induction on n.)
(a) If N contains a nonidentity element with a fixed point, then it contains all
elements with fixed points.
(b) fo=(ij--)-- (), thenTt o # 1 and fixes i for 7 = (i j k), some
choice of k. Thus, 7,7 'c € N,so o € N.

@ A, is simple too.
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