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Section 3.4, 1→ N → G→ S→ 1

Assume G is finite, S is a simple quotient, and N is the kernel of a map onto S.
Then |N| < |G|, so we may try to understand finite groups inductively by

1 solving the extension problem, and
2 classifying the finite simple groups.

Thinking this way leads to the concepts of subnormal subgroup, composition
series, and composition factor.
It is a nontrivial fact, due to Helmut Wielandt, that in a group G with a
composition series the subnormal subgroups comprise a sublattice of Sub(G).
This sublattice is lower semimodular:
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Jordan-Hölder Theorem
Any two composition series have the same composition factors.

Proof by induction on |G|:
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The classification of finite simple groups (CFSG)

1

1

0, C1, Z1

A5

60

A1(4), A1(5)

A6

360

A1(9), B2(2)′

A7

2 520

A8

20 160

A3(2)

A9

181 440

An
n!
2

A1(7)

168

A2(2)

A1(8)

504

G2
2(3)′

A1(11)

660

A1(13)

1 092

A1(17)

2 448

An(q)
qn(n+1)/2

(n+1,q−1)

n

∏
i=1

(qi+1 − 1)

PSLn+1(q), Ln+1(q)

B2(3)

25 920

A2
3(4)

B2(4)

979 200

B3(2)

1 451 520

B2(5)

4 680 000

B2(7)

138 297 600

Bn(q)
qn2

(2, q − 1)

n

∏
i=1

(q2i − 1)

O2n+1(q), Ω2n+1(q)

C3(3)

4 585 351 680

C3(5)
228 501

000 000 000

C4(3)
65 784 756

654 489 600

C3(7)
273 457 218
604 953 600

C3(9)
54 025 731 402

499 584 000

Cn(q)
qn2

(2, q − 1)

n

∏
i=1

(q2i − 1)

PSp2n(q)

D4(2)

174 182 400

D4(3)

4 952 179 814 400

D5(2)

23 499 295 948 800

D4(5)
8 911 539 000

000 000 000

D5(3)
1 289 512 799

941 305 139 200

Dn(q)
qn(n−1)(qn−1)

(4,qn−1)

n−1

∏
i=1

(q2i − 1)

O+
2n(q)

E6(2)
214 841 575 522
005 575 270 400

E6(3)

7 257 703 347 541 463 210
028 258 395 214 643 200

E6(4)
85 528 710 781 342 640

103 833 619 055 142
765 466 746 880 000

E6(q)
q36(q12 − 1)(q9 − 1)(q8 − 1)
(q6 − 1)(q5 − 1)(q2 − 1)

(3, q − 1)

E7(2)
7 997 476 042

075 799 759 100 487
262 680 802 918 400

E7(3)
1 271 375 236 818 136 742 240

479 751 139 021 644 554 379
203 770 766 254 617 395 200

E7(4)
111 131 458 114 940 385 379 597 233
477 884 941 280 664 199 527 155 056
307 251 745 263 504 588 800 000 000

E7(q)
q63

(2, q − 1)

9

∏
i=1

i 6=2,8

(q2i − 1)

E8(2)
337 804 753 143 634 806 261

388 190 614 085 595 079 991 692 242
467 651 576 160 959 909 068 800 000

E8(3)
18 830 052 912 953 932 311 099 032 439

972 660 332 140 886 784 940 152 038 522
449 391 826 616 580 150 109 878 711 243
949 982 163 694 448 626 420 940 800 000

E8(4)
191 797 292 142 671 717 754 639 757 897
512 906 421 357 507 604 216 557 533 558
287 598 236 977 154 127 870 984 484 770
345 340 348 298 409 697 395 609 822 849
492 217 656 441 474 908 160 000 000 000

E8(q)
q120(q30 − 1)(q24 − 1)

(q20 − 1)(q18 − 1)(q14 − 1)
(q12 − 1)(q8 − 1)(q2 − 1)

F4(2)
3 311 126

603 366 400

F4(3)
5 734 420 792 816

671 844 761 600

F4(4)

19 009 825 523 840 945
451 297 669 120 000

F4(q)

q24(q12 − 1)(q8 − 1)
(q6 − 1)(q2 − 1)

G2(3)

4 245 696

G2(4)

251 596 800

G2(5)

5 859 000 000

G2(q)

q6(q6 − 1)(q2 − 1)

A2
2(9)

6 048

G2(2)′

A2
2(16)

62 400

A2
2(25)

126 000

A2
3(9)

3 265 920

A2
2(64)

5 515 776

A2
n(q2)

qn(n+1)/2

(n+1,q+1)

n+1

∏
i=2

(qi − (−1)i)

PSUn+1(q)

D2
4(22)

197 406 720

D2
4(32)

10 151 968 619 520

D2
5(22)

25 015 379 558 400

D2
4(42)

67 536 471
195 648 000

D2
4(52)

17 880 203 250
000 000 000

D2
n(q2)

qn(n−1)(qn+1)

(4,qn+1)

n−1

∏
i=1

(q2i − 1)

O−
2n(q)

D3
4(23)

211 341 312

D3
4(33)

20 560 831 566 912

D3
4(43)

67 802 350
642 790 400

D3
4(q3)

q12(q8 + q4 + 1)
(q6 − 1)(q2 − 1)

E2
6(22)

76 532 479 683
774 853 939 200

E2
6(32)

14 636 855 916 969 695 633
965 120 680 532 377 600

E2
6(42)

85 696 576 147 617 709
485 896 772 387 584
983 695 360 000 000

E2
6(q2)

q36(q12 − 1)(q9 + 1)(q8 − 1)
(q6 − 1)(q5 + 1)(q2 − 1)

(3, q + 1)

B2
2(23)

29 120

B2
2(25)

32 537 600

B2
2(27)

34 093 383 680

B2
2(22n+1)

q2(q2 + 1)(q − 1)

F2
4(2)′

17 971 200

Tits∗

F2
4(23)

264 905 352 699
586 176 614 400

F2
4(25)
1 318 633 155

799 591 447 702 161
609 782 722 560 000

F2
4(22n+1)

q12(q6 + 1)(q4 − 1)
(q3 + 1)(q − 1)

G2
2(33)

10 073 444 472

G2
2(35)

49 825 657
439 340 552

G2
2(37)

239 189 910 264
352 349 332 632

G2
2(32n+1)

q3(q3 + 1)(q − 1)

M11

7 920

M12

95 040

M22

443 520

M23

10 200 960

M24

244 823 040

J1

175 560

J(1), J(11)

J2

604 800

H J

J3

50 232 960

H JM

J4
86 775 571 046

077 562 880

HS

44 352 000

McL

898 128 000

He

4 030 387 200

F7, HHM, HT H

Ru

145 926 144 000

Suz

448 345 497 600

Sz

O’N

460 815 505 920

O’NS, O–S

Co3

495 766 656 000

·3

Co2

42 305 421 312 000

·2

Co1
4 157 776 806

543 360 000

·1

HN
273 030

912 000 000

F5, D

Ly
51 765 179

004 000 000

LyS

Th
90 745 943

887 872 000

F3, E

Fi22

64 561 751 654 400

M(22)

Fi23
4 089 470 473

293 004 800

M(23)

Fi′24
1 255 205 709 190

661 721 292 800

F3+, M(24)′

B

4 154 781 481 226 426
191 177 580 544 000 000

F2

M
808 017 424 794 512 875
886 459 904 961 710 757
005 754 368 000 000 000

F1, M1

C2

2

C3

3

C5

5

C7

7

C11

11

C13

13

Cp

p

Zp

The Periodic Table Of Finite Simple Groups

Dynkin Diagrams of Simple Lie Algebras

An
1 2 3 n

Bn
1 2 3 n

〈

Cn
1 2 3 n

〉

Dn
3 4 n

1

2

E6,7,8
1 2 3 5 6 7 8

4

F4
1 2 3 4

〉

G2
1 2

〉

Alternating Groups
Classical Chevalley Groups
Chevalley Groups
Classical Steinberg Groups
Steinberg Groups
Suzuki Groups
Ree Groups and Tits Group∗

Sporadic Groups
Cyclic Groups

Symbol

Order‡

Alternates†

∗The Tits group F2
4(2)′ is not a group of Lie type,

but is the (index 2) commutator subgroup of F2
4(2).

It is usually given honorary Lie type status.

†For sporadic groups and families, alternate names
in the upper left are other names by which they
may be known. For specific non-sporadic groups
these are used to indicate isomorphims. All such
isomorphisms appear on the table except the fam-
ily Bn(2m) ∼= Cn(2m).

‡Finite simple groups are determined by their order
with the following exceptions:

Bn(q) and Cn(q) for q odd, n > 2;
A8

∼= A3(2) and A2(4) of order 20160.

The groups starting on the second row are the clas-
sical groups. The sporadic suzuki group is unrelated
to the families of Suzuki groups.

Copyright c© 2012 Ivan Andrus.
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(q2i − 1)

PSp2n(q)

D4(2)

174 182 400

D4(3)

4 952 179 814 400

D5(2)

23 499 295 948 800

D4(5)
8 911 539 000

000 000 000

D5(3)
1 289 512 799
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Dn(q)
qn(n−1)(qn−1)

(4,qn−1)

n−1

∏
i=1

(q2i − 1)

O+
2n(q)
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E6(3)
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E7(q)
q63

(2, q − 1)

9

∏
i=1

i 6=2,8

(q2i − 1)
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671 844 761 600

F4(4)

19 009 825 523 840 945
451 297 669 120 000

F4(q)
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4 245 696
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G2(q)

q6(q6 − 1)(q2 − 1)

A2
2(9)

6 048

G2(2)′

A2
2(16)

62 400

A2
2(25)

126 000

A2
3(9)

3 265 920

A2
2(64)

5 515 776

A2
n(q2)

qn(n+1)/2

(n+1,q+1)

n+1

∏
i=2

(qi − (−1)i)

PSUn+1(q)

D2
4(22)

197 406 720

D2
4(32)

10 151 968 619 520

D2
5(22)

25 015 379 558 400

D2
4(42)

67 536 471
195 648 000

D2
4(52)

17 880 203 250
000 000 000

D2
n(q2)

qn(n−1)(qn+1)

(4,qn+1)

n−1

∏
i=1

(q2i − 1)

O−
2n(q)

D3
4(23)

211 341 312

D3
4(33)

20 560 831 566 912

D3
4(43)

67 802 350
642 790 400

D3
4(q3)

q12(q8 + q4 + 1)
(q6 − 1)(q2 − 1)

E2
6(22)

76 532 479 683
774 853 939 200

E2
6(32)

14 636 855 916 969 695 633
965 120 680 532 377 600

E2
6(42)

85 696 576 147 617 709
485 896 772 387 584
983 695 360 000 000

E2
6(q2)

q36(q12 − 1)(q9 + 1)(q8 − 1)
(q6 − 1)(q5 + 1)(q2 − 1)

(3, q + 1)

B2
2(23)

29 120

B2
2(25)

32 537 600

B2
2(27)

34 093 383 680

B2
2(22n+1)

q2(q2 + 1)(q − 1)

F2
4(2)′

17 971 200

Tits∗

F2
4(23)

264 905 352 699
586 176 614 400

F2
4(25)
1 318 633 155

799 591 447 702 161
609 782 722 560 000

F2
4(22n+1)

q12(q6 + 1)(q4 − 1)
(q3 + 1)(q − 1)

G2
2(33)

10 073 444 472

G2
2(35)

49 825 657
439 340 552

G2
2(37)

239 189 910 264
352 349 332 632

G2
2(32n+1)

q3(q3 + 1)(q − 1)

M11

7 920

M12

95 040

M22

443 520

M23

10 200 960

M24

244 823 040

J1

175 560

J(1), J(11)

J2

604 800

H J

J3

50 232 960

H JM

J4
86 775 571 046

077 562 880

HS

44 352 000

McL

898 128 000

He

4 030 387 200

F7, HHM, HT H

Ru

145 926 144 000

Suz

448 345 497 600

Sz

O’N

460 815 505 920

O’NS, O–S

Co3

495 766 656 000

·3

Co2

42 305 421 312 000

·2

Co1
4 157 776 806

543 360 000

·1

HN
273 030

912 000 000

F5, D

Ly
51 765 179

004 000 000

LyS

Th
90 745 943

887 872 000

F3, E

Fi22

64 561 751 654 400

M(22)

Fi23
4 089 470 473

293 004 800

M(23)

Fi′24
1 255 205 709 190

661 721 292 800

F3+, M(24)′

B

4 154 781 481 226 426
191 177 580 544 000 000

F2

M
808 017 424 794 512 875
886 459 904 961 710 757
005 754 368 000 000 000

F1, M1

C2

2

C3

3

C5

5

C7

7

C11

11

C13

13

Cp

p

Zp

The Periodic Table Of Finite Simple Groups

Dynkin Diagrams of Simple Lie Algebras

An
1 2 3 n

Bn
1 2 3 n

〈

Cn
1 2 3 n

〉

Dn
3 4 n

1

2

E6,7,8
1 2 3 5 6 7 8

4

F4
1 2 3 4

〉

G2
1 2

〉

Alternating Groups
Classical Chevalley Groups
Chevalley Groups
Classical Steinberg Groups
Steinberg Groups
Suzuki Groups
Ree Groups and Tits Group∗

Sporadic Groups
Cyclic Groups

Symbol

Order‡

Alternates†

∗The Tits group F2
4(2)′ is not a group of Lie type,

but is the (index 2) commutator subgroup of F2
4(2).

It is usually given honorary Lie type status.

†For sporadic groups and families, alternate names
in the upper left are other names by which they
may be known. For specific non-sporadic groups
these are used to indicate isomorphims. All such
isomorphisms appear on the table except the fam-
ily Bn(2m) ∼= Cn(2m).

‡Finite simple groups are determined by their order
with the following exceptions:

Bn(q) and Cn(q) for q odd, n > 2;
A8

∼= A3(2) and A2(4) of order 20160.

The groups starting on the second row are the clas-
sical groups. The sporadic suzuki group is unrelated
to the families of Suzuki groups.

Copyright c© 2012 Ivan Andrus.
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PSL(V), An(q) = PSLn+1(q) = PSL(Fn+1
q )

Let V be a finite dimensional F-space. Let G = GL(V). det : GL(V)→ F× is
surjective with abelian image and kernel SL(V) = [G,G]. GL(V) (and hence
SL(V)) acts on the subspace lattice of V with kernel Z(G) = scalar matrices.
Image of action is called PGL(V) PSL(V). PSLn(q) is simple, except∗

PSL2(2) ∼= S3 and PSL2(3) ∼= A4.

Sketch of proof∗ that the center Z of SL(V) is a maximal normal subgroup.

(a) Show that the normal subgroup generated by any noncentral element
contains a transvection.

(b) Show that the transvections form a conjugacy class.

(c) Show that SL(V) is generated by transvections.
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The simplicity of An, n ≥ 5, Section 4.5, 4.6

1 Show A5 is simple.

(|A5| = 60.)

(a) A subgroup N is normal iff it is a union of conjugacy classes.
(b) The conjugacy classes of A5 have sizes 1, 12, 12, 15, 20.
(c) No sum of these numbers divides 60 except 1 and 60.

2 Show An is simple, 5 < n < ω. (Induction on n.)

(a) If N contains a nonidentity element with a fixed point, then it contains all
elements with fixed points.

(b) If σ = (i j · · · ) · · · (· · · ), then τ−1σ 6= 1 and fixes i for τ = (i j k), some
choice of k. Thus, τ, τ−1σ ∈ N, so σ ∈ N.

3 Aω is simple too.
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