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We know what “homomorphism, kernel, image, coimage, subring, and
quotient ring” should mean.
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Homomorphisms

Recall that a function ϕ : G→ H between additive groups is a
homomorphism iff it preserves addition. Preservation of − and 0 are
automatic. No extra automatic preservation for a ring homomorphism
ϕ : R→ S: must check that 1, ·,+ are preserved. Homomorphisms preserve
multiplicative inverses, when they exist.

Examples.

1 − : C→ C : a + bi 7→ a− bi is a homomorphism. (auto-)
Verify by checking 1̄ = 1, w · z = w · z, w + z = w + z.

2 For any ring R, there is a unique homomorphism ι : Z→ R.
Determined by 1Z 7→ 1R. Z is the free ring over X = ∅.

3 For any field F, there is at most one homomorphism ϕ : Q→ F.
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Kernels

Any kernel of a map ϕ : R→ S is a congruence on the ring R, hence on the
group 〈R; +,−, 0〉. Beyond being a group congruence it must be compatible
with · and 1. Any equivalence relation is compatible with 1. For an
equivalence relation θ to be compatible with F(x1, . . . , xn), it suffices for θ to
be compatible with all unary “basic translations”: F(r1, . . . , x, . . . , rn)
=Fi,r(x).

For F(x, y) = x · y this means a ≡ b (mod θ) implies ra ≡ rb (mod θ) and
as ≡ bs (mod θ) for all r, s ∈ R.

Moving everything to one side and writing i for a− b, this condition is:
i ≡ 0 (mod θ) implies ri ≡ 0 (mod θ) and is ≡ 0 (mod θ) for all r, s ∈ R.

Df. A left ideal of a ring R is an additive subgroup I ≤ R such that RI ⊆ I.
(Right ideal, 2-sided ideal, I C R.)

So, I C R iff ∃S,∃ϕ(ϕhom : R→ S) such that I = ϕ−1(0).
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Examples

1 The set I of matrices of the form
[

0 ∗
0 ∗

]
is a left ideal that is not a

right ideal in M2(R).

But I is a 2-sided ideal of the subring of upper
triangular matrices of M2(R)!

2 Given n ∈ Z, the set I = {m | n divides m} of multiples of n is an ideal.
(2-sided)

3 If R = C([0, 1]) = {f : [0, 1]→ R | f continuous} and x0 ∈ [0, 1], then
the set I = {f | f (x0) = 0} of functions that vanish at x0 is an ideal.
(2-sided)

Generally, if X ⊆ R, then the ideal generated by X is the set (X) or 〈X〉 of all
elements of the form

r1x1s1 + r2x2s2 + · · ·+ rkxksk

where ri, si ∈ R and xi ∈ X. (X) is principal if X = {x}.
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Ideal lattices.

From now on, rings are commutative, but please ask about the differences for
noncommutative rings.
The lattice of ideals of a ring is modular (no pentagons). The least and largest
ideals are (0), the trivial ideal, and (1) = R, the improper ideal. The lattice
operations are I ∨ J = I + J, I ∧ J = I ∩ J, but there is a third important
operation, ideal product: IJ = 〈{i · j | i ∈ I, j ∈ J}〉.

Ideal product is a direct analogue of the group commutator, and therefore has
predictable properties, e.g.:

1 IJ = JI ⊆ I ∩ J,
2 I(J + K) = IJ + IK.

Furthermore, ideals under product forms a commutative monoid with unit
(1) = R.
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The ideal lattice of Z = subgroup lattice of Z

rrrr r r rr����� �
��

@@
@@��

(1)=Z

(2) (3) (5)
(4) (6) (15)

(0)

1 ∀I C Z, I = (n) for some n ∈ Z≥0
2 Inclusion order is reverse of divisibility: (n) ⊆ (m) iff m divides n.
3 Maximal ideals are (p) for p prime.
4 (m) + (n) = (d) for d = gcd(m, n).
5 (m) ∩ (n) = (`) for ` = lcm(m, n).
6 (m) · (n) = (mn).
7 (m) and (n) comaximal

df⇐⇒ (m) + (n) = (1)⇐⇒ gcd(m, n) = 1.

Modern Algebra 1 (Fall 2016) Rings, ideals 7 / 9



The ideal lattice of Z = subgroup lattice of Z

rrrr r r rr����� �
��

@@
@@��

(1)=Z

(2) (3) (5)
(4) (6) (15)

(0)

1 ∀I C Z, I = (n) for some n ∈ Z≥0

2 Inclusion order is reverse of divisibility: (n) ⊆ (m) iff m divides n.
3 Maximal ideals are (p) for p prime.
4 (m) + (n) = (d) for d = gcd(m, n).
5 (m) ∩ (n) = (`) for ` = lcm(m, n).
6 (m) · (n) = (mn).
7 (m) and (n) comaximal

df⇐⇒ (m) + (n) = (1)⇐⇒ gcd(m, n) = 1.

Modern Algebra 1 (Fall 2016) Rings, ideals 7 / 9



The ideal lattice of Z = subgroup lattice of Z

rrrr r r rr����� �
��

@@
@@��

(1)=Z

(2) (3) (5)
(4) (6) (15)

(0)

1 ∀I C Z, I = (n) for some n ∈ Z≥0
2 Inclusion order is reverse of divisibility: (n) ⊆ (m) iff m divides n.

3 Maximal ideals are (p) for p prime.
4 (m) + (n) = (d) for d = gcd(m, n).
5 (m) ∩ (n) = (`) for ` = lcm(m, n).
6 (m) · (n) = (mn).
7 (m) and (n) comaximal

df⇐⇒ (m) + (n) = (1)⇐⇒ gcd(m, n) = 1.

Modern Algebra 1 (Fall 2016) Rings, ideals 7 / 9



The ideal lattice of Z = subgroup lattice of Z

rrrr r r rr����� �
��

@@
@@��

(1)=Z

(2) (3) (5)
(4) (6) (15)

(0)

1 ∀I C Z, I = (n) for some n ∈ Z≥0
2 Inclusion order is reverse of divisibility: (n) ⊆ (m) iff m divides n.
3 Maximal ideals are (p) for p prime.

4 (m) + (n) = (d) for d = gcd(m, n).
5 (m) ∩ (n) = (`) for ` = lcm(m, n).
6 (m) · (n) = (mn).
7 (m) and (n) comaximal

df⇐⇒ (m) + (n) = (1)⇐⇒ gcd(m, n) = 1.

Modern Algebra 1 (Fall 2016) Rings, ideals 7 / 9



The ideal lattice of Z = subgroup lattice of Z

rrrr r r rr����� �
��

@@
@@��

(1)=Z

(2) (3) (5)
(4) (6) (15)

(0)

1 ∀I C Z, I = (n) for some n ∈ Z≥0
2 Inclusion order is reverse of divisibility: (n) ⊆ (m) iff m divides n.
3 Maximal ideals are (p) for p prime.
4 (m) + (n) = (d) for d = gcd(m, n).

5 (m) ∩ (n) = (`) for ` = lcm(m, n).
6 (m) · (n) = (mn).
7 (m) and (n) comaximal

df⇐⇒ (m) + (n) = (1)⇐⇒ gcd(m, n) = 1.

Modern Algebra 1 (Fall 2016) Rings, ideals 7 / 9



The ideal lattice of Z = subgroup lattice of Z

rrrr r r rr����� �
��

@@
@@��

(1)=Z

(2) (3) (5)
(4) (6) (15)

(0)

1 ∀I C Z, I = (n) for some n ∈ Z≥0
2 Inclusion order is reverse of divisibility: (n) ⊆ (m) iff m divides n.
3 Maximal ideals are (p) for p prime.
4 (m) + (n) = (d) for d = gcd(m, n).
5 (m) ∩ (n) = (`) for ` = lcm(m, n).

6 (m) · (n) = (mn).
7 (m) and (n) comaximal

df⇐⇒ (m) + (n) = (1)⇐⇒ gcd(m, n) = 1.

Modern Algebra 1 (Fall 2016) Rings, ideals 7 / 9



The ideal lattice of Z = subgroup lattice of Z

rrrr r r rr����� �
��

@@
@@��

(1)=Z

(2) (3) (5)
(4) (6) (15)

(0)

1 ∀I C Z, I = (n) for some n ∈ Z≥0
2 Inclusion order is reverse of divisibility: (n) ⊆ (m) iff m divides n.
3 Maximal ideals are (p) for p prime.
4 (m) + (n) = (d) for d = gcd(m, n).
5 (m) ∩ (n) = (`) for ` = lcm(m, n).
6 (m) · (n) = (mn).

7 (m) and (n) comaximal
df⇐⇒ (m) + (n) = (1)⇐⇒ gcd(m, n) = 1.

Modern Algebra 1 (Fall 2016) Rings, ideals 7 / 9



The ideal lattice of Z = subgroup lattice of Z

rrrr r r rr����� �
��

@@
@@��

(1)=Z

(2) (3) (5)
(4) (6) (15)

(0)

1 ∀I C Z, I = (n) for some n ∈ Z≥0
2 Inclusion order is reverse of divisibility: (n) ⊆ (m) iff m divides n.
3 Maximal ideals are (p) for p prime.
4 (m) + (n) = (d) for d = gcd(m, n).
5 (m) ∩ (n) = (`) for ` = lcm(m, n).
6 (m) · (n) = (mn).
7 (m) and (n) comaximal

df⇐⇒ (m) + (n) = (1)⇐⇒ gcd(m, n) = 1.

Modern Algebra 1 (Fall 2016) Rings, ideals 7 / 9



Some properties of comaximal (= “relatively prime”) pairs

Fact. If I, J C R are comaximal, then I ∩ J = IJ.

Proof. IJ ⊆ (I ∩ J) = R(I ∩ J) = (I + J)(I ∩ J) = I(I ∩ J) + J(I ∩ J) ⊆ IJ. �

Fact. If I, J,K C R are pairwise comaximal, then I ∩ J and K are comaximal.

Proof. R = RR = (I + K)(J + K) = IJ + (IK + JK) ⊆ IJ + K. So
R = IJ + K = (I ∩ J) + K. �

CRT. Assume I, J C R are comaximal. For any a, b ∈ R there is an r ∈ R such
that x = r is a solution to the system

x ≡ a (mod I),
x ≡ b (mod J).

Proof. (Same as before.) Since a− b ∈ R = I + J, a− b = i + j with i ∈ I
and j ∈ J. Choose r = a− i = b + j. �

Can extend to more congruences using above Facts.
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Simple commutative rings = fields

Df. An element of a ring with a 2-sided inverse is called a unit. A nontrivial
commutative ring in which all nonzero elements are units is called a field.
(nontrivial⇔ |R| > 1⇔ 0R 6= 1R)

Observation. If R is commutative and u ∈ R, then u is a unit iff (u) = R.

Thm. A nontrivial commutative ring is simple iff it is a field.

Proof. R is simple iff its only ideals are (0) and R iff R is a field. �

Related terminology.

1 zero divisor
2 integral domain

Fact. R is a subring of a field iff R is an integral domain. Proof?
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