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We know what “homomorphism, kernel, image, coimage, subring, and
quotient ring” should mean.
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Homomorphisms

Recall that a function ¢: G — H between additive groups is a
homomorphism iff it preserves addition. Preservation of — and O are
automatic. No extra automatic preservation for a ring homomorphism

@: R — S: must check that 1, -, + are preserved. Homomorphisms preserve
multiplicative inverses, when they exist.

Examples.

Q@ :C—>C:a+bi —a— bi is a homomorphism. (auto-)
Verify by checking 1l =1, w-z=w-Z,w+z=w+2Z.

@ For any ring R, there is a unique homomorphism ¢: Z — R.
Determined by 17 +— 1. Z is the free ring over X = ().

© For any field F, there is at most one homomorphism ¢: Q — F.
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equivalence relation € to be compatible with F(xy, . .. ,x,), it suffices for 6 to
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For F(x,y) = x - y this means @ = b (mod ) implies ra = rb (mod 6) and
as = bs (mod @) for all r,s € R.
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group (R; +, —, 0). Beyond being a group congruence it must be compatible
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equivalence relation € to be compatible with F(xy, . .. ,x,), it suffices for 6 to
be compatible with all unary “basic translations™: F(ry,...,x,...,ry)
=Fl~7r(x).

For F(x,y) = x - y this means ¢ = b (mod ) implies ra = rb (mod #) and
as = bs (mod @) for all r,s € R.

Moving everything to one side and writing i for a — b, this condition is:
i =0 (mod 6) implies ri =0 (mod ¢) and is = 0 (mod ) for all r,s € R.

Df. A left ideal of aring R is an additive subgroup / < R such that Rl C I.
(Right ideal, 2-sided ideal, I <1 R.)

So, I <1 R iff 35,3 ("™ : R — S) such that I = ¢~ '(0).
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right ideal in M,(R). But I is a 2-sided ideal of the subring of upper
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@ IfR=C([0,1]) = {f: [0,1] = R | f continuous} and xo € [0, 1], then
the set I = {f | f(xo) = 0} of functions that vanish at x is an ideal.
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@ The set I of matrices of the form [ 8 : ] is a left ideal that is not a

right ideal in M,(R). But I is a 2-sided ideal of the subring of upper
triangular matrices of M,(R)!

@ Givenn € Z, the set I = {m | n divides m} of multiples of n is an ideal.
(2-sided)

@ IfR=C([0,1]) = {f: [0,1] = R | f continuous} and xo € [0, 1], then
the set I = {f | f(xo) = 0} of functions that vanish at x is an ideal.
(2-sided)

Generally, if X C R, then the ideal generated by X is the set (X) or (X) of all
elements of the form

rixi81 + roxpsy + - -+ XSk

where r;,5; € R and x; € X.
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@ The set I of matrices of the form [ 8 : ] is a left ideal that is not a

right ideal in M,(R). But I is a 2-sided ideal of the subring of upper
triangular matrices of M,(R)!

@ Givenn € Z, the set I = {m | n divides m} of multiples of n is an ideal.
(2-sided)

@ IfR=C([0,1]) = {f: [0,1] = R | f continuous} and xo € [0, 1], then
the set I = {f | f(xo) = 0} of functions that vanish at x is an ideal.
(2-sided)

Generally, if X C R, then the ideal generated by X is the set (X) or (X) of all
elements of the form

rixi81 + roxpsy + - -+ XSk

where ri,s; € Randx; € X. (X)) is principal if X = {x}.
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Ideal lattices.

From now on, rings are commutative, but please ask about the differences for
noncommutative rings.

The lattice of ideals of a ring is modular (no pentagons). The least and largest
ideals are (0), the rrivial ideal, and (1) = R, the improper ideal. The lattice
operations are I VJ =1+ J,1 ANJ = 1N J, but there is a third important
operation, ideal product: IJ = ({i-j|i € 1,j € J}).

Ideal product is a direct analogue of the group commutator, and therefore has
predictable properties, e.g.:

Q@ U=JICInJ,

Q@ IJ+K)=1+IK.

Furthermore, ideals under product forms a commutative monoid with unit
(1) =R.
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Q VI<Z,I= (n)forsomen € Zx>g
@ Inclusion order is reverse of divisibility: (n) C (m) iff m divides n.
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@ Inclusion order is reverse of divisibility: (n) C (m) iff m divides n.
© Maximal ideals are (p) for p prime.
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Q VI<Z,I= (n)forsomen € Zx>g
@ Inclusion order is reverse of divisibility: (n) C (m) iff m divides n.
© Maximal ideals are (p) for p prime.
Q@ (m)+ (n) = (d) ford = ged(m, n).
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© Maximal ideals are (p) for p prime.
Q@ (m)+ (n) = (d) ford = ged(m, n).
@ (m)N(n) = (¢) for £ = lem(m, n).
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The ideal lattice of Z = subgroup lattice of Z

()=Z
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@ © a5

)
Q VI<Z,I= (n)forsomen € Zx>g
@ Inclusion order is reverse of divisibility: (n) C (m) iff m divides n.
© Maximal ideals are (p) for p prime.
Q@ (m)+ (n) = (d) ford = ged(m, n).
@ (m)N(n) = (¢) for £ = lem(m, n).
© (m)- (n) = (mn).
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The ideal lattice of Z = subgroup lattice of Z

()=Z

)"
@ © a5

)
Q VI<Z,I= (n)forsomen € Zx>g
@ Inclusion order is reverse of divisibility: (n) C (m) iff m divides n.
© Maximal ideals are (p) for p prime.
Q@ (m)+ (n) = (d) ford = ged(m, n).
@ (m)N(n) = (¢) for £ = lem(m, n).
Q (m) - (n) = (mn).
@ (m) and (n) comaximal LN (m) + (n) = (1) <= ged(m,n) = 1.
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Some properties of comaximal (= “relatively prime”) pairs

Fact. If I,J << R are comaximal, then I NJ = 1J.

Proof. [/ C (INJ)=R(INJ)=(I+J)INJ)=IINJ)+JINJ)C1J.O
Fact. If I, J, K </ R are pairwise comaximal, then / N J and K are comaximal.
Proof. R=RR=(I+K)(J+K)=I0+ (IK+JK) CIlJ+K.So
R=IU+K=(INnJ)+K.O

CRT. Assume /,J <1 R are comaximal. For any a, b € R there is an r € R such
that x = r is a solution to the system
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Fact. If I,J << R are comaximal, then I NJ = 1J.
Proof. [/ C (INJ)=R(INJ)=(I+J)INJ)=IINJ)+JINJ)C1J.O

Fact. If I, J, K </ R are pairwise comaximal, then / N J and K are comaximal.

Proof. R = RR = (I + K)(J + K) = IJ + (IK + JK) C Il + K. So
R=IJ+K=(InJ)+K.O

CRT. Assume /,J <1 R are comaximal. For any a, b € R there is an r € R such
that x = r is a solution to the system

Proof.
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Some properties of comaximal (= “relatively prime”) pairs

Fact. If I,J << R are comaximal, then I NJ = 1J.
Proof. [/ C (INJ)=R(INJ)=(I+J)INJ)=IINJ)+JINJ)C1J.O

Fact. If I, J, K </ R are pairwise comaximal, then / N J and K are comaximal.

Proof. R = RR = (I + K)(J + K) = IJ + (IK + JK) C Il + K. So
R=IJ+K=(InJ)+K.O

CRT. Assume /,J <1 R are comaximal. For any a, b € R there is an r € R such
that x = r is a solution to the system

Proof. (Same as before.)
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Some properties of comaximal (= “relatively prime”) pairs

Fact. If I,J << R are comaximal, then I NJ = 1J.
Proof. [/ C (INJ)=R(INJ)=(I+J)INJ)=IINJ)+JINJ)C1J.O

Fact. If I, J, K </ R are pairwise comaximal, then / N J and K are comaximal.
Proof. R=RR=(I+K)(J+K)=I0+ (IK+JK) CIlJ+K.So
R=IU+K=(INnJ)+K.O

CRT. Assume /,J <1 R are comaximal. For any a, b € R there is an r € R such
that x = r is a solution to the system

a (modI),
b (mod J).

X

by
Proof. (Same as before.) Sincea—b e R=1+J,a—b=i+jwithi el
andj € J.
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Some properties of comaximal (= “relatively prime”) pairs

Fact. If I,J << R are comaximal, then I NJ = 1J.
Proof. [/ C (INJ)=R(INJ)=(I+J)INJ)=IINJ)+JINJ)C1J.O

Fact. If I, J, K </ R are pairwise comaximal, then / N J and K are comaximal.
Proof. R=RR=(I+K)(J+K)=I0+ (IK+JK) CIlJ+K.So
R=IU+K=(INnJ)+K.O

CRT. Assume /,J <1 R are comaximal. For any a, b € R there is an r € R such
that x = r is a solution to the system

a (modI),
b (mod J).

X

by
Proof. (Same as before.) Sincea—b e R=1+J,a—b=i+jwithi el
andj € J. Chooser=a—i=b+j. O

Can extend to more congruences using above Facts.
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Df. An element of a ring with a 2-sided inverse is called a unit. A nontrivial
commutative ring in which all nonzero elements are units is called a field.
(nontrivial < |R| > 1 < 0g # 1g)

Observation. If R is commutative and u € R, then u is a unit iff (u) = R.
Thm. A nontrivial commutative ring is simple iff it is a field.
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Fact. R is a subring of a field iff R is an integral domain.
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Simple commutative rings = fields

Df. An element of a ring with a 2-sided inverse is called a unit. A nontrivial
commutative ring in which all nonzero elements are units is called a field.
(nontrivial < |R| > 1 < 0g # 1g)

Observation. If R is commutative and u € R, then u is a unit iff (u) = R.
Thm. A nontrivial commutative ring is simple iff it is a field.

Proof. R is simple iff its only ideals are (0) and R iff R is a field. (J

Related terminology.

@ zero divisor

© integral domain

Fact. R is a subring of a field iff R is an integral domain. Proof?
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