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Defn (Category)
A category is a 2-sorted partial algebra C = 〈O,M; ◦, id, dom, cod〉 where

(1) Ob(C) = O is a class whose members are called objects,
(2) Mor(C) = M is a class whose members are called morphisms,
(3) ◦ : M ×M → M is a binary partial operation called composition,
(4) id : O→ M is a unary function assigning to each object A ∈ O a

morphism idA called the identity of A,
(5) dom, cod : M → O are unary functions assigning to each morphism f

objects called the domain and codomain of f respectively.

The laws defining categories are:

(1) f ◦ g exists if and only if dom(f ) = cod(g).
(2) Composition is associative when it is defined.
(3) dom(f ◦ g) = dom(g), cod(f ◦ g) = cod(f ).
(4) If A = dom(f ) and B = cod(f ), then f ◦ idA = f and idB ◦ f = f .
(5) dom(idA) = cod(idA) = A.
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Functors

Since categories are algebraic structures, we immediately know the meaning
of subcategory, quotient category, etc., especially “homomorphism”:

Defn (Functor)
A functor F : C → D is a homomorphism from C to D. In detail, F is a pair of
mappings, both called F, between object classes and morphism classes,
F : Ob(C)→ Ob(D) and F : Mor(C)→ Mor(D), where

(1) F(f ◦ g) = F(f ) ◦ F(g),

(2) F(idA) = idF(A),

(3) F(dom(f )) = dom(F(f )), and

(4) F(cod(f )) = cod(F(f )).
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What is a Universal Property?

Given a functor F : C → D, a universal morphism or universal arrow from
X ∈ Ob(D) to F is a pair (A, f ) ∈ Ob(C)×Mor(D) that is “universal” among
all such pairs for the property that f : X → F(A). The universality means that
if (B, g) is another pair with g : X → F(B), then there is a unique h : A→ B
such that g = F(h) ◦ f .
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g

s
F(B)B

R∃!h RF(h)

The universal property of (A, f ) is the statement that it is a universal arrow.
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Examples

(1) Let C × C be the category whose objects are pairs (A,B) where
A,B ∈ Ob(C) and whose morphisms are pairs (f , g) where
f , g ∈ Mor(C). Now let ∆: C → C × C be the functor C 7→ (C,C),
e 7→ (e, e). For any X = (A,B) in this category, a universal morphism
from X to ∆ is a coproduct (C, (ιA, ιB)) of A and B.

(2) A universal morphism to X from ∆ is a product of A and B.

(3) If U : C → Set is the forgetful functor, then the statement that a universal
arrow (F, ι) exists from X to U is the statement that F is free over X and
ι : X → F is insertion of generators.
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Examples

(1) Every F-vector space is free over a basis in the category of F-vector
spaces. (That is, (V, ι) where ι : B → V inserts a basis is a universal
arrow.)

(2) Every set is free in the category of sets.

(3) The free topological spaces are the discrete spaces.

(4) The free ordered sets are the discrete orders.

(5) A free commutative ring over X is just the integral polynomial ring Z[X].

(6) But we want to talk about free groups and presentations.
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Presentations of groups

Groups

Set
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s
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R∃!h RU(h)

Start with a group B. Choose a generating subset G ⊆ B. Observe that
h : F(G)→ B must be surjective. Hence B ∼= F(G)/ ker(h). Let R ⊆ ker(h)
be a generating set. The notation 〈G | R〉 stands for (or “presents”) the algebra
F(G)/ ker(h) ∼= B. (This is a definition.) 〈G | R〉 is a presentation for B by
generators and relations. Presented objects are only determined up to
isomorphism.
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Examples

(1) 〈G | ∅〉 = F(G).

(2) 〈x | xn = 1〉 = F(x)/cg((xn, 1)) = Zn.

(3) 〈r, f | rn = 1, f 2 = 1, rf = fr−1〉
= F(r, f )/cg(R) = Dn, where R = {(rn, 1), (f 2, 1), (rf = fr−1)}.
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Words

Our goal is to describe F(X), and more generally anything of the form 〈X | R〉.

Give a set X of “letters”, define the set (X ∪ X−1)∗ of words over X by saying
that (X ∪ X−1)∗ is the set of finite (possibly empty) strings in the alphabet
(X ∪ X−1)∗. (X ∪ X−1)∗ is an algebraic structure under e,−1, ·. Not yet a
group.

Let C be a class of groups. If w,w′ are words over x1, . . . , xn, then w(x̄) and
w′(x̄) are equivalent with respect to C if w(ḡ) = w′(ḡ) whenever ḡ is a tuple in
an group in C. Equivalently, if the identity ∀x1 · · · ∀xn(w = w′) holds in C. For
example, words xx−1 and y−1y are equivalent group words.

(X ∪ X−1)∗/ ≡ is an group satisfying all identities that hold in C. In fact, if
(X ∪ X−1)∗/ ≡ belongs to C, then it is the free algebra over X in C.
(X ∪ X−1)∗/ ≡ will belong to C if C is definable by identities.
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Reduced words

It is standard in group theory to select one word from every equivalence class,
called a “reduced word” – that is, choose a normal form for words – and then
just deal with reduced words.

By definition, a reduced word in X is a finite, possibly empty string `1`2 · · · `k

of symbols from X ∪ X−1 such that no two consecutive letters have the form
xx−1 or y−1y for any x or y from X.

It is trivial to see that any group word is equivalent to a reduced word, after
dropping parentheses.

It is not hard to show that the set of reduced words under the obvious
operations is a group, although there are a few cases to check to verify the
associative law.

Thus the free group over X may be constructed as the set of reduced words
over X, with product defined by: “concatenate words, then reduce”. That is,
fg = h if, as reduced words, f = ws, g = s−1w′, h = ww′, and the last symbol
of w is not the inverse of the first symbol of w′.
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Example and practice

xyyz−1zx−1 is not reduced. After reduction it is xyyx−1. The square of the
reduced word xyyx−1 is xyyx−1xyyx−1 = xyyyyx−1.

Exercise: Find CF(x) where F = F(X) and x ∈ X.

If xw = wx, then by considering the number of x±1 to the left or right of each
symbol from X \ {x} in xw, we conclude that w contains no generator
different from x. Hence CF(x) = 〈x〉. In fact, you can show that any
nonidentity element of a free group has cyclic centralizer.
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The universal property of presentations

In general a presentation looks like

〈G | R〉 = 〈g1, g2 . . . | w1(ḡ) = w′1(ḡ),w2(ḡ) = w′2(ḡ), . . .〉 = F(G)/cg(R).

(Finite if. . . )

The universal property for presentations is derivable by combining the
universal property for free algebras with the universal property for quotients.
It says:

A = 〈G | R〉 is the algebra (equipped with a map f : G→ A) such that for any
set-map g : G→ B whose image satisfies the relations there is a unique
algebra homomorphism h : A→ B such that h ◦ f = g.
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Remarks

(1) If you fix an algebraic language, free algebras over any set exist as word
constructions.

But these algebras might not exist in your category. For
example, there is a free group of rank 1 in the category of all groups, but
no free group of rank 1 in the category of finite groups. There is no free
group of rank 1 in the class of all groups with morphism class restricted
to embeddings.

(2) Free algebras and presented algebras change when you alter the category,
since the notion of equivalence of words changes. So, for example, the
free group of rank 2 in the class of all groups is different from the the free
group of rank 2 in the class of abelian groups. The presentation for the
dihedral group has a different meaning in the category of abelian groups.

(3) The universal property of coproducts interacts well with the universal
property of presentations. Namely, if G1 ∩ G2 = ∅, then

〈G1 | R1〉 t 〈G2 | R2〉 = 〈G1 ∪ G2 | R1 ∪ R2〉.
Example: Z2 t Z2 = 〈x, y | x2 = 1, y2 = 1〉 ∼= D∞.
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since the notion of equivalence of words changes. So, for example, the
free group of rank 2 in the class of all groups is different from the the free
group of rank 2 in the class of abelian groups. The presentation for the
dihedral group has a different meaning in the category of abelian groups.

(3) The universal property of coproducts interacts well with the universal
property of presentations. Namely, if G1 ∩ G2 = ∅, then

〈G1 | R1〉 t 〈G2 | R2〉 = 〈G1 ∪ G2 | R1 ∪ R2〉.
Example: Z2 t Z2 = 〈x, y | x2 = 1, y2 = 1〉 ∼= D∞.
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