
ALGEBRA TEST #1

This exam is due Monday, October 17. Do two of the problems. You may use your
book, but you may not communicate with others concerning the exam. In order to
receive full credit your answer must be complete, legible and correct.

I have neither given nor received aid on this exam.
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1. Draw a regular 4-gon and label the vertices with the numbers 1, 2, 3, 4.
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(a) Write the cycle decomposition of each element ofD4 = {1, r, r2, r3, f, rf, r2f, r3f}.

1 = 1 f = (1 2)(3 4)
r = (1 2 3 4) rf = (1 3)
r2 = (1 3)(2 4) r2f = (1 4)(2 3)
r3 = (1 4 3 2) r3f = (2 4)

(b) Is it possible to label the edges with 1, 2, 3, 4 so that the cycle decomposition
of each permutation in D4 is the same as it was in (a)? (Show or explain.)

No. Depending on the axis you choose for the flip f , either f fixes a vertex
and no edge or it fixes an edge but no vertex. Either way, f will have 1-cycles
under one of its actions but not under the other action.

(c) For which m (if any) do there exist labelings of the vertices and the edges of
a regular m-gon with 1, . . . ,m so that the cycle decomposition of any permu-
tation relative to the vertex labeling is the same as the cycle decomposition
relative to the edge labeling?

If m is even, then the axis of the flip f either passes through two opposite
vertices or pierces the middle of two opposite sides. If it passes through
opposite vertices, then it fixes two vertices and no sides. If the axis pierces
opposite sides, then it fixes two sides and no vertices. In either case, the
number of fixed points ( = 1-cycles) of f differs, so the cycle types differ.

But if m is odd, then the vertices and edges can be labeled so that the cycle
types of all rigid motions are the same with repect to the two labelings: just
label so that each edge label matches the label on the opposite vertex.
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2. If G is a group and m,n ∈ G, then the commutator of m and n is [m,n] :=
m−1n−1mn. If M and N are subgroups, the commutator of M and N is subgroup
generated by {[m,n] | m ∈M,n ∈ N}.

(a) Show that [M,N ] = {1} iff every element of M commutes with every element
of N .

[M,N ] = {1} iff each of its generators equals 1 iff m−1n−1mn = [m,n] = 1
when m ∈M and n ∈ N iff mn = nm when m ∈M and n ∈ N .

(b) Show that a subgroup N ≤ G is normal iff [G,N ] ⊆ N .

N / G iff for all g ∈ G and n−1 ∈ N it is the case that g−1n−1g ∈ N . But
since n, n−1 ∈ N , we have g−1n−1g ∈ N iff g−1n−1gn ∈ N . Thus, N / G iff
[g, n] ∈ N for all n ∈ N and g ∈ G. The result now follows from the fact that
[G,N ] ⊆ N iff the generators of [G,N ] lie in N .

(c) Show that if N is a normal subgroup of Sn, then either [Sn, N ] = {1} or N
contains an element that is a product of exactly two transpositions. (Use the
fact that Sn is generated by transpositions.)

The problem should have said “exactly two distinct transpositions”, other-
wise the problem is trivial.

If [Sn, N ] 6= {1}, then some τ ∈ Sn fails to commute with some ν ∈ N .
We may assume that τ is a transposition, since the transpositions generate
Sn, and if ν commutes with a set of generators of Sn it commutes with every
element of Sn. Hence 1 6= [τ, ν] ∈ [Sn, N ] ⊆ N , implying that N contains
τ−1ν−1τν 6= 1. But τ−1 · (ν−1τν) is a product of two transpositions, since in-
verses and conjugates of transpositions are transpositions. The transpositions
are distinct since their product is not 1.

(d) Show that if N is a normal subgroup of Sn, n > 4, and N contains an element
that is a product of exactly two transpositions, then N contains a 3-cycle.

N contains a product of two distinct transpositions, so contains an element
whose cycle decomposition is (a b)(c d) or else is (a b)(b c) = (a b c). In the
latter case there is nothing to prove, while in the former case we can choose
e /∈ {a, b, c, d} (since n > 4) and form the commutator [(d e), (a b)(c d)] =
[(d e), (c d)] = (c d e) which is a 3-cycle in N .
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3. Suppose that N1 �G1 and N2 �G2.

(a) Show that the composite homomorphisms G1×G2
π1→ G1

ν1→ G1/N1 and G1×
G2

π2→ G2
ν2→ G2/N2 induce a homomorphism G1 ×G2 → (G1/N1)× (G2/N2)

with kernel N1 ×N2.

We have seen that the product of maps νi ◦ πi : G1 ×G2 → Gi/Ni,

((ν1 ◦ π2)× (ν2 ◦ π2))(g1, g2) = (ν1(g1), ν2(g2)) = (g1N1, g2N2),

with a common domain is a homomorphism from the domain group G1 ×G2

into the product (G1/N1) × (G2/N2). Its kernel consists of those (g1, g2) ∈
G1 ×G2 such that (g1N1, g2N2) ∈ N1 ×N2, namely it is N1 ×N2.

(b) Show that the homomorphism in (a) induces an isomorphism from
(G1 ×G2)/(N1 ×N2) to (G1/N1)× (G2/N2).

The image of the map in (a) consists of the set of all (g1N1, g2N2) with
(g1, g2) ∈ G1×G2, namely it is (G1/N1)×(G2/N2). By the First Isomorphism
Theorem we have (G1 ×G2)/(N1 ×N2) ∼= (G1/N1)× (G2/N2).

(c) (This part is unrelated to (a) and (b).) Explain how the universal property
of products establishes G1 ×G2

∼= G2 ×G1.

G1×G2 comes equipped with projection maps; the first projection π1 is onto
G1 and the second projection π2 is onto G2. G2×G1 Also comes equipped with
projection maps; the first projection p1 is onto G2 and the second projection
p2 is onto G1. The u.p. of products applied to the pair (p2, p1) induce a map
ϕ : G2 ×G1 → G1 ×G2 such that π1 ◦ ϕ = p2 and π2 ◦ ϕ = p1. Similarly, the
u.p. yields a map ψ : G1×G2 → G2×G1 such that p1◦ϕ = π2 and p2◦ψ = π1.

The composition θ = ϕ ◦ ψ : G1 × G2 → G1 × G2 satisfies πi ◦ θ = πi,
i = 1, 2. The identity function ι : G1×G2 → G1×G2 also satisfies πi ◦ ι = πi,
i = 1, 2. The uniqueness part of the u.p. for products implies that θ =
ϕ ◦ψ = ι. Similarly, ψ ◦ϕ is the identity function. Hence ϕ and ψ are inverse
isomorphisms between G1 ×G2 and G2 ×G1.

Remark: In this problem you shold avoid using the theorem that, for groups,
a homomorphism is an isomorphism iff it is bijective. The problem is about
the u.p. for products, and it is true even in categories where bijective homo-
morphisms need not be isomorphisms. (Or even in situations where ‘bijective’
doesn’t make sense.)



5

4. In a HW problem (HW IV.4) you proved that any finite abelian group is a
product of groups of prime power order. These factors of prime power order are
called the primary components of the group. (A primary component of p-power
order is called a p-primary component.)

This problem investigates the structure of the primary components of a finite
abelian group.

(a) (Cyclic subgroups of maximal order split off.) Suppose A is finite, abelian,
and of prime power order. Let z ∈ A have maximal order, and let C = 〈z〉.
Let H ≤ A be a subgroup maximal for the property that H ∩C = {0}. Show
that H is a complement of C.

The order |z| = pk must be the least power of p such that pkA = 0.
We have C ∩H = {0} by choice, so if H fails to be a complement of C it

is because C + H 6= A. Assume that this is the case and choose an element
a ∈ A − (C + H) of least possible order. Assuming the group is written
additively, we get that a /∈ C + H but pa ∈ C + H, say pa = mz + h. Now
0 = pk−1(pa) = pk−1mz + pk−1h, so pk−1mz = −pk−1h ∈ C ∩ H = {0},
so pk−1m is a multiple of the order of z, so p divides m. Choose n so that
pn = m. The element b = a− nz ∈ C + A has the following properties:
(a) b /∈ C +H. (Since 〈C ∪ {a}〉 = 〈C ∪ {b}〉 and a /∈ C +H.)
(b) pb = h ∈ H. (Since pb = pa− pnz = pa−mz = h.)
(c) H ′ := 〈H ∪ {b}〉 properly extends H, but H ′ ∩ C = {0}. (The first part

follows from b /∈ H, proved in (a). We proceed to prove the second part:)
To prove the second part of (c), assume instead that there exist h′ ∈ H,

c ∈ C and r ∈ Z such that h′ + rb = c 6= 0. It cannot be that p divides
r, since then the left hand side belongs to H and the element c belongs to
C − {0}, while H ∩ C = {0}. Thus, r is relatively prime to p, and we may
multiply h′ + rb = c by some number s such that sr ≡ 1 (mod |A|) to obtain
sh′ + b = sc 6= 0. This expresses b as sc− sh′ ∈ C +H, contrary to (a). This
contradiction completes the proof. (What we have shown is that if C+H 6= A,
then H was not truly maximal among subgroups disjoint from C.)

(b) Deduce from (a) that A is a product of cyclic groups.

Applying the Characterization of Products to the result in (a) proves that
A ∼= C ×H. Applying the argument repeatedly allows us to further factor H
until we have a complete factorization of A into cyclic groups.
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(c) Let A[p] = {a ∈ A | pa = 0} be the annihilator of p in A. (A is considered as
an additive group.) Show that if A ∼= Zpe1 × · · · × Zpek with 1 ≤ e1 ≤ e2 ≤
· · · ≤ ek, then |A[p]| = pk and A/A[p] ∼= Zpe1−1 × · · · × Zpek−1 .

An element in Zpe1 × · · · × Zpek is annihilated by p iff it is annihilated
coordinatewise, so A[p] ∼= pe1−1Zpe1 × · · · × pek−1Zpek ∼= Zkp. This shows that

|A[p]| = pk. By problem 2(a),

A/A[p] ∼= (Zpe1 × · · · × Zpek )/(pe1−1Zpe1 × · · · × pek−1Zpek )
∼= Zpe1−1 × · · · × Zpek−1 .

(d) Deduce from (c) that if A is factored into cyclic subgroups, then the number
of factors of order at least p is uniquely determined. Then explain why the
number of factors of order at least p2 is uniquely determined. Then explain
why the numbers ei from (c) are uniquely determined.

As we see, the number of cyclic factors of A ∼= Zpe1 × · · · ×Zpek of order at
least p is k = logp |A[p]|. It is not hard to see by induction, using (c), that the
number of cyclic factors of A of order at least pr+1 is logp |A[pr+1]|−logp |A[pr]|.
These numbers are independent of any chosen factorization, since annihilators
are defined without reference to any factorization, and they allow us to recover
the ei’s from (c), so the ei’s are uniquely determined.


