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Left and right invariant equivalence relations on groups.

Definition 1. An equivalence relation θ on a groupG is left invariant (LI ) if for all a, b, c ∈ G

a ≡ b (mod θ) implies ca ≡ cb (mod θ).

The concept of right invariance is defined the same way, but with c appearing on the right.

We proved the following in class:

Theorem 2. An equivalence relation θ on a group is the kernel of a homomorphism iff it is
left and right invariant. 2

So now let’s understand which equivalence relations are left invariant. First, for a subgroup
H ≤ G define Hθ = {(a, b) ∈ G2 | a−1b ∈ H}.

Theorem 3. For any H ≤ G, the relation Hθ is a left invariant equivalence relation on G.
Moreover, the Hθ-class of 1 is H itself.

Proof. Hθ is

(1) (reflexive) (a, a) ∈ Hθ iff a−1a ∈ H. !
(2) (symmetric) If (a, b) ∈ Hθ, then x = a−1b ∈ H, so x−1 = b−1a ∈ H, so (b, a) ∈ Hθ.

!
(3) (transitive) If (a, b), (b, c) ∈ Hθ, then x = a−1b, y = b−1c ∈ H, so xy = a−1c ∈ H, so

(a, c) ∈ Hθ. !
(4) (left invariant) If (a, b) ∈ Hθ, then a−1b ∈ H, so (ca)−1(cb) = a−1b ∈ H, so (ca, cb) ∈

Hθ. !

Now observe that the Hθ-class of 1 is just the set of all b ∈ G such that (1, b) ∈ Hθ, which is
the set of b such that 1−1b = b ∈ H. This shows that 1/Hθ = H. �

Theorem 4. If θ is any left invariant equivalence relation on G, then the θ-class of 1 is a
subgroup H ≤ G, and θ = Hθ.

Proof. Let H = 1/θ = {a ∈ G | a ≡ 1 (mod θ)}. This set

(1) (contains 1) since 1 ≡ 1 (mod θ). !
(2) (closed under inverse) since a ≡ 1 (mod θ) implies a−1a ≡ a−11 (mod θ) or just

1 ≡ a−1 (mod θ). !
(3) (closed under product) If a ≡ 1 (mod θ) and b ≡ 1 (mod θ), then ab ≡ a1 = a ≡ 1

(mod θ), so ab ≡ 1 (mod θ). !

Finally, (a, b) ∈ θ iff a ≡ b (mod θ) iff 1 = a−1a ≡ a−1b (mod θ) iff a−1b ∈ H iff (a, b) ∈
Hθ. �
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These theorems have consequences, for example:

(1) The maps θ 7→ 1/θ, H 7→ Hθ are inverse isomorphisms between the lattice of left
invariant equivalence relations on G and the lattice of subgroups of G.

(2) If a ∈ G, then the Hθ-class of a is aH, which is notation for {ah | h ∈ H}.
(3) A left invariant equivalence relation on a group is uniform: all classes have the same

size. This is because the function λba−1 : aH → bH : x 7→ ba−1x is a bijection with
inverse λab−1 .

(4) If [G : H] represents the number of classes of Hθ, then |G| = [G : H]|H|. This is
called Lagrange’s Theorem, and it is a consequence of the uniformity of Hθ. [G : H]
is called the (left) index of H in G.

Everything said about left invariant equivalence relations holds for right invariant equiv-
alence relations, but one should replace Hθ with θH = {(a, b) ∈ G2 | ab−1 ∈ H}. The fact
that (aH)−1 = Ha−1 can be used to show that the left index of H in G equals the right
index of H in G.

Normal subgroups.
We have argued that (i) a kernel of a group homomorphism is an equivalence relation, say

θ, that is both left and right invariant, and (ii) left invariant equivalence relations have the
form Hθ for H = 1/θ and right invariant equivalence relations have the form θH for H = 1/θ.
So a kernel of a group homomorphism must have the form Hθ = θH for some H ≤ G, and
conversely if H ≤ G is such that Hθ = θH , then θH is LI+RI and therefore is the kernel of a
group homomorphism.

But Hθ may not equal θH for some H ≤ G. These are equal iff their equivalence classes
are equal, and by the second consequence above this happens exactly when aH = Ha for all
a ∈ G. We call H a normal subgroup of G and write H �G if any of the properties of the
next exercise hold for H.

Exercise 5. The following are equivalent.

(1) Hθ = θH .
(2) aH = Ha for all a ∈ G.
(3) aHa−1 = H for all a ∈ G.
(4) H = a−1Ha for all a ∈ G.
(5) aHa−1 ⊆ H for all a ∈ G.
(6) H ⊆ a−1Ha for all a ∈ G.
(7) (aH)(bH) = abH for all a, b ∈ G.

If θ = θH is a kernel of a homomorphism, then the classes of the quotient G/θ (i.e.,
the classes of θ) are the sets of the form aH = Ha. The quotient group operations on
{aH | a ∈ G} are: 1G/θ = 1/θ = H, (aH)−1 = a−1H, (aH)(bH) = abH.

Exercise 6. In the sublattice of G, the meet and join of normal subgroups is again normal.
Moreover, if at least one of H,K ≤ G is normal, then H ∨K = HK.


