Proof writing strategies.

A formal proof of a sentence f is a sequence of sentences oy, ag, ..., a, where (i) 5 = «,
and (ii) each «; is deducible from earlier sentences via an accepted rule of deduction. A
disproof of 3 is a proof of —f.

An informal proof of § is an explanation of why £ is true that contains all of the essential
details of a formal proof, but which is more understandable to humans. This note contains
terminology and hints about writing informal proofs.

Theorems. A statement (3 that has a proof is called a Theorem. Theorems sometimes
go by other names, such as Proposition, Lemma, Corollary. From a mathematical
perspective, these all mean “theorem”, but from a human perspective they communicate
a little bit more. It has been said that “a theorem is a proposition you are proud of!” A
lemma is (usually) a theorem proved as a step toward proving a more substantial theorem.
A corollary is a theorem that is an immediate consequence of a substantial theorem.

The Deduction Theorem. Most theorems have the structure “Theorem. H — C”
(hypotheses imply conclusions).! Since = (H — C) is equivalent to H = C, proof systems
are constructed so that = (H — C') is equivalent to H = C. The statement that, for a given
proof system, = (H — C') is equivalent to H + C' is called The Deduction Theorem for that
proof system. It reduces a proof aq,...,(H — C) of the theorem H — C to a deduction
H,...,Cof C from H.

Direct versus indirect proof.

(H— C), ((-C) — (=H)), and ((H A (=C)) — False) are all equivalent as propositions.
Coupled with The Deduction Theorem this suggests some basic strategies for proving H —
C.

(1) Direct proof: H,...,C.
(2) Proof of the contrapositive: (=C'),..., (=H).
(3) Proof by contradiction: H,(—=C),..., False.

Theorems with multiple hypotheses or conclusions can be approached with more complex
strategies. For example, a statement ((H; A He) — C) with two hypotheses could be proved
by the mixed strategy Hy, (=C),...,(—Ha2).

If and only if. A theorem statement of the form “P iff Q" means “(If P, then @) and
(if @, then P)”. Two proofs are required, one for P — @ and one for ) — P. These are
sometimes written as follows:

ISometimes the hypotheses are not explicitly stated, so the theorem reads “Theorem. C” (some conclusion
is true). Here the unwritten hypotheses are: anything about the subject that has already been established!
For example, the unwritten hypotheses of “Theorem. There are infinitely many primes” are: any statements
about arithmetic that have already been established. These types of theorems are best proved indirectly.
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Theorem. P iff Q).
Proof.
(P—Q] P,...,Q.
Q— P]Q,...,P. O
A slightly different way to write the proof is:

Proof.
=] P,...,Q.
<] Q,...,P. O

A more elaborate version of “iff” is a statement of the form “P iff @) iff R”. This might
be written:

Theorem. The following are equivalent. (Or just “TFAE”.)
(1) P
(2) Q
(3) R

Proof.
[(D=2)] P,....Q.
[(2)=03)Q,....R.
[(3)=M] R,....P. O
(

Note: such cycles can be longer.)

Case division. Suppose we want to prove H — C via a deduction that starts with H
and ends with C. Suppose your proof has reached a stage that looks like H,..., PV Q
(Le., H proves that either P or @ holds.) If you also have proofs P,...,C and Q
then it is possible to combine these proof fragments (i) H,..., PV Q, ( ) .., C and (111)
Q,...,C into a proof that H implies C.

Formally, the reason this is possible is that the proposition (P — C) A (Q — C) is
logically equivalent to ((PV Q) — C), so by introducing the proper tautologies and using
The Deduction Theorem we can arrange fragments (ii) and (iii) into a proof PV @, ..., C.
This can be appended to the proof fragment (i) to obtain a proof H,..., PV Q,...,C

Informally, the strategy we use is to argue by cases. If you can prove from H that P or
@ must be true, then you write the deduction H, ..., (P V @) and follow it with

Case 1. P holds.
In this case, P,...,C.

Case 2. @ holds.
In this case, @Q,...,C.

Since we reach the conclusion in either case, we are done. O

(Note: there can be more than two cases.)



3

Quantifiers. Suppose you are writing a proof H,...,3xP(x),...,Q,..., R where at
sentence () you need to make use of the fact, established earlier, that there is some element
that satisfies P(x). Suppose that further on, at sentence R, you also need to make use of
the fact that some element satisfies P(x). Moreover, suppose that you need the element
referred to at sentence R to be the same element referred to at sentence ). What do you
do?

Formally, there is a nontrivial, but mechanical trick to handle this situation. Informally,
we handle this in an obvious way: At sentence 3z P(x) we introduce a name (like a) for an
element that satisfies P(x). Then at later stages we refer to the name a when we need to
refer to the element.

To prove that VaxP(x) holds we may introduce a new symbol, say y, and prove that
P(y) holds when y is arbitrary. For example, the statement that sets AN (B U C) and
(AN B)U(ANC) are equal is a universally quantified statement:

Ve((zre (AN(BUCQ))) < (z e (ANB)U(ANC))))
To prove it we may select an arbitrary y and show that
ye(AN(BUQO) < ye(ANB)U(ANQ)).

(Establishing that this holds requires two proofs: y € (AN(BUC)) — y € ((ANB)U(ANC))
andy € (ANB)U(ANC)) »ye (AN(BUC)).)

Examples and counterexamples. To prove an existential sentence 3xC'(x) it is enough
to give an example. That is, exhibiting an element x = a for which C'(a) holds suffices to
prove that 3zC(x) is true. On the other hand, to prove a universal sentence YzC'(x) it is
not enough to give an example.

To disprove a universal sentence VzC(z) you must show that its negation is true. Since
the negation is equivalent to the existential sentence Jz(—C(x)), it is enough to give an
example to establish the falsity of VzC(x). That is, to disprove VzC(x) it is enough to
exhibit some a such that =C'(a) holds or, equivalently, such that C(a) fails. Examples used
to disprove universal sentences are called counterexamples. (If C'(z) = “if = is odd, then
x is prime”, then VzC(z) is false. You can disprove it by exhibiting the counterexample
r=09.)

What to do when you don’t know what to do. There is no algorithm to discover
the proof of a statement, but there is always something you can do when you are stuck.
Here are three suggestions:

(1) Draw a picture.
(2) Write out the definitions.
(3) Work from both ends.
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Exercises.

1. Consider the following statement about the real numbers: If 0 < 2 < 1, then 2? < x.
Give a direct proof, proof of the contrapositive, and a proof by contradiction.

Solution to Exercise 1.

Direct proof. Choose x arbitrarily so that the hypothesis holds, i.e., so that 0 < x < 1.
Then x is positive and x < 1. We can multiply an inequality, like x < 1, by the positive
value z and maintain the inequality. Hence -z < x - 1, or 22 < z, as desired.

Proof of the contrapositive. Choose x arbitrarily so that the conclusion fails, i.e., so that
2? £ x. Then x < 2%, s0 0 < x? —x. Upon factoring we find that 0 < z(x —1). This implies
that z and  — 1 have the same sign (although one could be zero). Since z — 1 < x, this
implies that either 0 <z — 1 or x < 0.

Case1l. 0 <z —1.

In this case, 1 < z, so the hypothesis 0 < x < 1 fails.
Case 2.  <0.

Again the hypothesis 0 < z < 1 fails.

Cases 1 and 2 exhaust all cases, so we are done.

Proof by contradiction. Choose z arbitrarily so that 0 < # < 1 and 22 £ 2. As in the
proof by contradiction, the second assumption leads to 0 < z(x — 1). The first assumption
yields that x is positive and (z — 1) is negative, so 0 < x(z — 1) = (positive)(negative) =
negative < 0. This yields 0 < 0, a contradiction.

Write proofs of the following statements, and then identify any of the proof writing strate-
gies from this document that you used.

2. A C B is equivalent to both AN B=Aand AUB = B.

3. If f and ¢ are real functions such that f is bounded above and ¢ is bounded below,
then f — ¢ is bounded above.

4. If f is a positive increasing function, then f? is also a positive increasing function.



