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The radical relation

Let R be a commutative ring and let L = Ideal(R) be its ideal lattice. Define
an equivalence relation ρ on L by

I ≡ J (mod ρ) ⇐⇒
√

I =
√

J.

Facts.
• ρ is compatible with finite meet and arbitrary join. Hence ρ-classes are
convex intervals with a top element (= ‘teardrop’ shape) with the radical
ideals being the top elements of each class.
• Therefore the natural map L → L/ρ is a homomorphism with respect to
finite meet and complete join and the quotient lattice L/ρ is a complete lattice.
• L/ρ satisfies the complete distributive law:

x ∩
(∑

yi

)
=

∑
x ∩ yi,

making it a completely distributive lattice.
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Frames

There are different types of morphisms naturally definable for completely
distributive lattices, and depending on the choice of morphism one may call
these objects ‘frames’, ‘locales’, or ‘complete Heyting algebras’.

One uses the name ‘frame’ when one takes as the morphisms the functions
ϕ : L → K that preserve finite meet and arbitrary join.
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Frames encode topological spaces I:
Topological spaces yield frames

If 〈X; T 〉 is a topological space, then the lattice of open sets under inclusion
〈T ;

⋃
,∩〉 is a frame. The lattice of open sets of a topological space is

complete: infinitary join is equal to ‘set-theoretic union’, finitary meet is
equal to ‘set-theoretic intersection’, and infinitary meet is equal to ‘interior of
set-theoretic intersection’.
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Frames encode topological spaces II:
Frames yield topological spaces

If one thinks about how to recover a space from its frame one is led to the
following definitions. (Explanation given in class.)

Defns. Let L = 〈L;
∑
,∩〉 be a frame.

• A point of L is a meet-irreducible element. (That is, an element p ∈ L such
that a ∩ b = p implies a = p or b = p.) Let P be the set of points of L.

• For each a ∈ L, let V(a) = {p ∈ P | p ≥ a} and let D(a) = P \ V(a).

• The spectrum of L is Spec(L) = 〈P; {D(a) | a ∈ L}〉

Of course, it must be proved that Spec(L) is a topological space (i.e., the set
of sets of the form D(a) is closed under finite intersection and arbitrary
union). This is usually done by showing that V(a) ∪ V(b) = V(a ∩ b) and⋂

V(ai) = V(
∑

ai). (The first follows from the distributivity of L and the
meet-irreducibility of each point, while the second is trivial.)
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Frames encode topological spaces III:
How exact is the correspondence?

Given a space X we may construct its frame L(X) from which we may
construct a space Spec(L(X)). There is a natural function
ϕ : X → Spec(L(X)) which maps a point x ∈ X to the point p = X \ cl(x) ∈ L.
ϕ is continuous. If ϕ is surjective, then it is a closed mapping, hence ϕ is a
homeomorphism iff it is a bijection.

• Injectivity of ϕ: The function x 7→ X \ cl(x) is injective iff distinct points
have distinct closures, i.e. X is a T0 space.

• Surjectivity of ϕ: ϕ is surjective iff each meet-irreducible open set has the
form X \ cl(x) for some x ∈ X, equivalently every join-irreducible closed set
is the closure of a point.
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Sober spaces, spatial frames

Defns.
• A point x of a space X is a generic point for a closed set C ⊆ X if C = cl(x).

• A space X is sober if every join-irreducible closed set has a unique generic
point.

Thm. The natural map X → Spec(L(X)) is a homeomorphism iff X is sober.

Defn.
• A frame L is spatial if whenever x 6≤ y there is meet-irreducible p ∈ L such
that p ≥ y and p 6≥ x. (Equivalently, every element is a meet of
meet-irreducibles.)

Thm. Let L be a frame and let F(Spec(L)) be the frame of its spectrum.
There is a natural function ψ : L → F(Spec(L)) : a 7→ D(a), which is an
isomorphism iff L is spatial.

Thm. The category of spatial frames with frame homomorphisms is dually
equivalent to the category of sober spaces with continuous maps.
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Back to commutative rings

We have a sequence of constructions:

R Ideal(R) Ideal(R)/ρ Spec(Ideal(R)/ρ)

which produces a topological space Spec(R). We can omit the intermediate
steps by observing:

• The meet-irreducibles of Ideal(R)/ρ are in 1-1 correspondence with the
meet-irreducible radical ideals of Ideal(R).

• The meet-irreducible radical ideals of R are exactly the prime ideals.

• Thus Spec(R) can be constructed on the set of points
P = {p ∈ Ideal(R) | p is prime} using the topology {D(a) | a ∈ Ideal(R)}
where D(a) = P− V(a) and V(a) = {b ∈ P | a ≤ b} = V(

√
a).

The facts that (i) all closed sets have the form V(
√

a) and (ii) radical ideals
are intersections of the primes that lie above them imply that the frame
Ideal(R)/ρ is spatial. Spec(R) is sober by construction.
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Hochster’s Theorem

Thm. A topological space is homeomorphic to Spec(R) (R commutative) iff it
is compact and sober.

Proof: (Of the easy direction: Spec(R) is compact.)
Recall: A space is compact iff every open cover has a finite subcover iff the
intersection of any set of closed sets having the finite intersection property
(FIP) is nonempty.

A system of closed sets {V(ai) | i ∈ I, ai ∈ Ideal(R)} has the FIP iff the set
{ai | i ∈ I} has the property that any finite subset generates a proper ideal.
One must show that any such set of ideals generates a proper ideal. By
contradiction: if 1 ∈ 〈{ai | i ∈ I}〉, then there would be a finite subset I0 ⊆ I
such that 1 ∈ 〈{ai | i ∈ I0}〉.
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Some interesting facts about Spec(R)

Thm. R is directly decomposable iff R has complementary ideals a, bC R iff
Spec(R) has complementary closed sets V(a) and V(b) iff Spec(R) is
disconnected. Moreover, Spec(R× S) is (homeomorphic to) the disjoint union
of Spec(R) and Spec(S).

Thm. If aCR, then Spec(R/a) is homeomorphic to the closed subspace V(a).

Thm. If R is Noetherian, then every closed subset of Spec(R) is a union of
finitely many irreducible closed sets.

Exercise. Describe Spec(Z[x]).
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