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Background: Categories

A category is a 2-sorted partial algebra C = 〈O,M; ◦, id, dom, cod〉 where

(1) Ob(C) = O is a class whose members are called objects,

(2) Mor(C) = M is a class whose members are called morphisms,
(3) ◦ : M × M → M is a binary partial operation called composition,
(4) id : O → M is a unary function assigning to each object A ∈ O a

morphism idA called the identity of A,
(5) dom, cod : M → O are unary functions assigning to each morphism f

objects called the domain and codomain of f respectively.

The laws defining categories are:

(1) f ◦ g exists if and only if dom(f ) = cod(g).
(2) Composition is associative when it is defined.
(3) dom(f ◦ g) = dom(g), cod(f ◦ g) = cod(f ).
(4) If A = dom(f ) and B = cod(f ), then f ◦ idA = f and idB ◦ f = f .
(5) dom(idA) = cod(idA) = A.
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Background: Functors

A (covariant) functor F : C → D is a homomorphism from C to D. In detail,
F is a pair of mappings, both called F, between object classes and morphism
classes, F : Ob(C) → Ob(D) and F : Mor(C) → Mor(D), where

(1) F(f ◦ g) = F(f ) ◦ F(g),

(2) F(idA) = idF(A),

(3) F(dom(f )) = dom(F(f )), and

(4) F(cod(f )) = cod(F(f )).

A contravariant functor F : C → D is a homomorphism that reverses the
directions of all morphisms. Specifically,

(1) F(f ◦ g) = F(g) ◦ F(f ),

(2) F(idA) = idF(A),

(3) F(dom(f )) = cod(F(f )), and

(4) F(cod(f )) = dom(F(f )).
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Representable Functors

A functor is representable if it isomorphic to a hom functor.

That is, a covariant functor is representable if it is naturally isomorphic to a
functor of the form HomC(A, ) for some A. Here HomC(A, ) maps B to
HomC(A,B) and maps ϕ to “left composition with ϕ”.

A contravariant functor is representable if it naturally isomorphic to a functor
of the form HomC( ,B). HomC( ,B) maps A to HomC(A,B) and maps ϕ to
“right composition with ϕ”.

Examples. Um, . . . HomC(A, ) and HomC( ,B)?

Note that if A is an R-module, then HomC(A, ) may be viewed as a functor
from the category of R-modules to itself. (Addition and scalar multiplication
of elements of HomC(A, ) are performed pointwise. Same comment for
HomC( ,B).)
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Background: Additive Functors

C is preadditive if each hom-set HomC(A,B) has specified abelian group
operations such that f ◦ (g + h) = f ◦ g + f ◦ h and (f + g) ◦ h = f ◦ h + g ◦ h.

A covariant functor F : C → D between preadditive categories is additive if

F : HomC(A,B) → HomC(F(A),F(B))

is an abelian group homomorphism for all A,B ∈ Ob(C)

Examples. The category of all R-modules is preadditive. Representable
functors between module categories are additive. The composition of
covariant functors represented by R-modules is additive (and representable):
for all R-modules A and B

HomR(A,HomR(B,X)) ∼= HomR(T,X)

where T = A ⊗R B.
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Definition of A ⊗R B

The best definition of A⊗R B is: it is the module that represents the composite
functor HomR(A,HomR(B,X)). This determines A ⊗R B up to isomorphism.

But one often sees A ⊗R B defined by a presentation.
A ⊗R B = 〈A × B | R〉 where
(i) elements of A × B are usually written as a ⊗ b rather than (a, b).
(ii) R consists of the relations a ⊗ (b + b′) = a ⊗ b + a ⊗ b′,
(a + a′)⊗ b = a ⊗ b + a′ ⊗ b, r(a ⊗ b) = ra ⊗ b = a ⊗ rb.

A ⊗R B satisfies the universal property associated with this presentation: any
function f : A × B → M, where M is an R-module, such that f preserves the
relations will extend to a unique R-linear map f : A ⊗R B → M. (The f ’s that
preserve the relations are exactly the R-bilinear maps A × B → M.)
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Chain Complexes

A chain complex of R-modules is a sequence

K : · · · ∂3−→ K2
∂2−→ K1

∂1−→ K0
∂0−→ K1 ∂1

−→ K2 ∂2
−→ · · ·

such that consecutive maps compose to zero. (δn ◦ δn+1 = 0)

The nth homology module of K is Hn(K) := ker(δn)/im(δn+1).

K is exact if its homology modules are zero.

Chain complexes of R-modules form a category where a morphism α : K → L
is an indexed family of R-linear maps such that all squares are commutative
in:

· · · ∂n+1−→ Kn
∂n−→ Kn−1

∂n−1−→ · · ·
αn ↓ αn−1 ↓

· · · εn+1−→ Ln
εn−→ Ln−1

εn−1−→ · · ·
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Factoring a Complex

- - - -ppp p p pKn+1 Kn Kn−1∂n+1 ∂nr r r
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0 −→ im(∂n+1)
⊆−→ Kn

∂n−→ im(∂n) → 0

This short sequence is exact except at the middle, where the homology is the
same as in the original sequence. Thus an additive functor preserves exactness
of all exact sequences iff it preserves exactness of short exact sequences.
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Exactness

F is left exact if the exactness of 0 → A → B → C implies the exactness of
0 → F(A) → F(B) → F(C).

F is right exact if the exactness of A → B → C → 0 implies the exactness of
F(A) → F(B) → F(C) → 0.

F is exact if it is left and right exact.

A contravariant functor is left exact if the exactness of A → B → C → 0
implies the exactness of 0 → F(C) → F(B) → F(A). Etc.

Commutative Algebra (Sep 16 & 18, 2009) Exact Sequences, Hom Functors, Tensor Product, I 9 / 12



Exactness

F is left exact if the exactness of 0 → A → B → C implies the exactness of
0 → F(A) → F(B) → F(C).

F is right exact if the exactness of A → B → C → 0 implies the exactness of
F(A) → F(B) → F(C) → 0.

F is exact if it is left and right exact.

A contravariant functor is left exact if the exactness of A → B → C → 0
implies the exactness of 0 → F(C) → F(B) → F(A). Etc.

Commutative Algebra (Sep 16 & 18, 2009) Exact Sequences, Hom Functors, Tensor Product, I 9 / 12



Exactness

F is left exact if the exactness of 0 → A → B → C implies the exactness of
0 → F(A) → F(B) → F(C).

F is right exact if the exactness of A → B → C → 0 implies the exactness of
F(A) → F(B) → F(C) → 0.

F is exact if it is left and right exact.

A contravariant functor is left exact if the exactness of A → B → C → 0
implies the exactness of 0 → F(C) → F(B) → F(A). Etc.

Commutative Algebra (Sep 16 & 18, 2009) Exact Sequences, Hom Functors, Tensor Product, I 9 / 12



Exactness

F is left exact if the exactness of 0 → A → B → C implies the exactness of
0 → F(A) → F(B) → F(C).

F is right exact if the exactness of A → B → C → 0 implies the exactness of
F(A) → F(B) → F(C) → 0.

F is exact if it is left and right exact.

A contravariant functor is left exact if the exactness of A → B → C → 0
implies the exactness of 0 → F(C) → F(B) → F(A). Etc.

Commutative Algebra (Sep 16 & 18, 2009) Exact Sequences, Hom Functors, Tensor Product, I 9 / 12



Left Exactness of Hom

Thm. Hom functors are left exact (whether covariant or not).

Proof for HomR(A, ):

Assume 0 −→ L α−→ M
β−→ N is exact, and consider

0 −→ H(A,L)
α◦−→ H(A,M)

β◦−→ H(A,N).

If ϕ,ψ ∈ H(A,L) and α ◦ ϕ = α ◦ ψ, then α(ϕ(a)) = α(ψ(a)) for every
a ∈ A. Since α is 1-1, ϕ(a) = ψ(a) for every a ∈ A, i.e., ϕ = ψ.

If ϕ ∈ H(A,M) is in the kernel of β ◦ (i.e. β ◦ ϕ = 0), then
ϕ(A) ⊆ ker(β) = im(α). Since α is 1-1, α−1 ◦ ϕ ∈ H(A,L) and this is a map
which α ◦ maps to ϕ. This shows that ker(β ◦ ) = im(α ◦ ). 2
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Nonexactness of Hom, I

Example. 0 −→ Z ⊆−→ Q ν−→ Q/Z −→ 0 is an exact sequence of
Z-modules.

If you apply HomZ(Z2, ) you obtain 0 −→ 0 −→ 0 −→ Z2 −→ 0.

Defn. An R-module P is projective if it represents an exact covariant hom
functor (equivalently if HomR(P, ) maps surjections to surjections).
This means that P is projective if whenever
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Nonexactness of Hom, II

Example. 0 −→ Z ⊆−→ Q ν−→ Q/Z −→ 0 is an exact sequence of
Z-modules.

If you apply HomZ( ,Z) you obtain 0 −→ 0 −→ 0 −→ Z −→ 0.

Defn. An R-module Q is injective if it represents an exact contravariant hom
functor (equivalently if HomR( ,Q) maps injections to surjections).

Thm. (Baer’s Criterion) Q is an injective R-module iff the contravariant hom
functor it represents preserves exactness of 0 −→ I

⊆−→ R for every I � R.
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