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Ass(M)

Defn. An associated prime of a module M 6= (0) is a prime annihilator,
p = (0 : m). Ass(M) is the set of them.

• p ∈ Ass(M) iff ∃m(p = (0 : m)) iff R/p ∼= 〈m〉 ≤ M.

• All nonzero cyclic submodules of R/p are isomorphic, since all nonzero
elements have annihilator equal to p. Hence Ass(R/p) = {p}.

• Cyclic modules of the form R/p behave like the more specialized modules
S = R/m (m maximal), which are typical simple modules. It is not
unreasonable to think of associated primes as specifying a kind of torsion in
M: p ∈ Ass(M) iff p = (0 : m) for some m ∈ M, so m is an “exact p-torsion”
element.
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Existence of Associated Primes

Thm. Let M 6= (0) be an R-module.

(1) Every maximal element of S = {(0 : m) | m ∈ M \ {0}} is in Ass(M).

(2) If R is Noetherian, then

(a) Ass(M) 6= ∅, and

(b) the set of zero divisors on M is
⋃

Ass(M).

Proof. (1) Assume that (0 : m) is maximal in S, rs ∈ (0 : m), but s /∈ (0 : m).
Then rs ∈ (0 : m) iff rsm = 0 iff (0 : sm) ⊇ {r} ∪ (0 : m). Since sm 6= 0, the
maximality of (0 : m) in S implies that {r} ∪ (0 : m) = (0 : m), or
r ∈ (0 : m).

(2a) S is nonempty since M \ {0} is nonempty. Hence if R is Noetherian,
every ideal in S is contained in an ideal that is maximal in S.

(2b) The set of zero divisors on M is
⋃

m∈M\{0}(0 : m), which by (2a) is the
union

⋃
Ass(M) of the maximal ideals in S.
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Exact Sequences

Thm. If 0 → L α→ M
β→ N → 0 is exact, then

Ass(L) ⊆ Ass(M) ⊆ Ass(L) ∪ Ass(N).

Proof. If R/p ↪→ L and L ↪→ M, then R/p ↪→ M. Hence Ass(L) ⊆ Ass(M).

If R/p ∼= 〈m〉 ≤ M, then either there is a nonzero n in α(L) ∩ 〈m〉 (in which
case R/p ∼= α−1(〈n〉) ≤ L) or else there is no such n (in which case
R/p ∼= β(〈m〉) ≤ N). Hence Ass(M) ⊆ Ass(L) ∪ Ass(N).

Example. If 0 → Z α→ Z2 × Z β→ Z2 × Z3 → 0 is exact, where
α(m) = (0, 3m), then Ass(L) = {(0)}, Ass(M) = {(0), (2)}, and
Ass(N) = {(2), (3)}. Thus none of the inclusions need be equality.
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Ass(M) is a Finite Set

Thm. If M is a nonzero f.g. module over a Noetherian ring R, then M has a
finite filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M

such that Mi+1/Mi ∼= R/pi+1, pi+1 prime, for each i.

Proof. Ass(M) 6= ∅, so ∃M1 ≤ M such that M1 ∼= R/p1. Repeat with M/M1
to obtain a filtration 0 = M0 ⊆ M1 ⊆ · · · of the desired type, which must be
finite since M is Noetherian.

Cor. If M is a finitely generated module over a Noetherian ring R, then
Ass(M) is a finite set.

Sketch of proof. The theorem on exact sequences implies that every associated
prime of M must arise as a factor in any filtration of M with factors of the
form R/p. Now apply the above theorem.
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Associated Primes Under Localization, I

Here we consider the effect on associated primes of restriction of scalars
along R → RS. (R → RS induces a continuous injection Spec(RS) → Spec(R),
which we treat as inclusion.)

Thm. If M is an RS-module, then AssR(M) = AssRs(M).

Proof. If m ∈ M, then (0 : m)R = (0 : m)RS ∩ R. Hence if p ∈ AssRs(M) we
have p|R ∈ Ass(M).

Conversely if m ∈ M \ {0} and p = (0 : m)R ∈ AssR(M), then p∩ S = ∅ (else
m = 0), so pRs is prime. We claim that pRs = (0 : m)RS , so that
pRs ∈ AssRS(M). To see this, note that r/s ∈ (0 : m)RS iff ∃t ∈ S(trm = 0) iff
∃t ∈ S(tr ∈ (0 : m)R = p) iff r ∈ p.
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Associated Primes Under Localization, II

Now we consider extension of scalars along R → RS.

Thm. If R is Noetherian and M is an R-module, then AssRs(MS) =
AssR(M) ∩ Spec(RS).

Proof. If p ∈ AssR(M) ∩ Spec(RS), then p = (0 : m)R for some m ∈ M \ {0}
and p is disjoint from S. Now (r/s)m = 0 iff ∃t ∈ S(trm = 0). Since tr ∈ p

and t /∈ p, must have (r/s) ∈ pRS, so pRS = (0 : m)RS implying that
pRS ∈ AssRS(MS).

Conversely, if P ∈ AssRS(MS), then P = (0 : m)RS for some m ∈ M \ {0}. If
p = P ∩ R, then P = pR. If p = (a1, . . . , an), then the fact that aim = 0 in MS

means ∃ti ∈ S such that tiaim = 0 in M. For t = t1t2 · · · tn we have
p = (0 : tm)R, so p ∈ AssR(M)
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Relationship Between Ass(M) and Supp(M)

Thm. If M is a finitely generated module over a Noetherian ring R, then
Supp(M) is the order filter in 〈Spec(R);⊆〉 generated by Ass(M).

Proof.

• Ass(M) ⊆ Supp(M): If p ∈ Ass(M), then 0 → R/p ↪→ M is exact, hence
0 → Rp/pRp ↪→ Mp is exact, hence Mp 6= 0 (since Rp/pRp = κ(p) 6= 0).

• If p ∈ Supp(M), then there is a prime p′ ⊆ p such that p′ is minimal in
Supp(M): by HWV(3b), the set Supp(m) (= primes where m 6= 0) is closed.
If M is generated by m1, . . . , mk, then Supp(M) =

⋃k
i=1 Supp(mi) is closed,

hence Supp(M) = V(I) for some ideal I. But any prime p ⊇ I contains a
minimal prime p ⊇ p′ ⊇ I by HWII(5).

• Any minimal p ∈ Supp(M) is in Ass(M): p ∈ Supp(M), so Mp 6= (0), so

∅ 6= AssRp(Mp) = AssR(M) ∩ Spec(Rp) ⊆ Supp(M) ∩ Spec(Rp) = {p}.
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Primary Submodules

Defn. A submodule N � M is primary if for all r ∈ R the map
λr : M/N → M/N : m → rm is injective or nilpotent.

As in the case of ideals, when N � M is primary:

• the set p of r ∈ R where λr is not injective is a prime ideal. (N is p-primary.)

• A finite intersection of p-primary submodules is p-primary.

• If N � M is p-primary and m ∈ M \ N, then (N : m) is a p-primary ideal.
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Connection Between Associated Primes and Primary
Submodules, I

Assume that R is Noetherian and M is a f.g. R-module.

Thm. If N � M is p-primary, then Ass(M/N) = {p}.

Proof. There is some q ∈ Ass(M/N) because R is Noetherian. Every r ∈ q is
a zero divisor on M/N, so λr is nilpotent, so r ∈

√
(N : M). Hence

q ⊆
√

(N : M). On the other hand, q = (N : m) ⊇ (N : M) for some
m ∈ M \ N, so q =

√
(N : M). Since q is describable in terms of M and N,

Ass(M/N) = {q}. Now r ∈ p iff λr is noninjective on M/N iff
r ∈

√
(N : M) = q, so p = q.
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Connection Between Associated Primes and Primary
Submodules, II

Assume that R is Noetherian and M is a f.g. R-module.

Thm. If Ass(M/N) = {p}, then N is p-primary.

Proof. If Ass(M/N) = {p}, then
⋂

Supp(M/N) = p. But Supp(M/N)
consists of the primes containing (N : M) when M is f.g., so p =

√
(N : M).

Now if r is a zero divisor on M/N, then r ∈
⋃

Ass(M/N) = p, so
p =

√
(N : M) forces λr to be nilpotent. This proves that N is (p-)primary.
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Primary Decomposition For Modules

Thm. If Q � M is a meet-irreducible R-submodule, then Ass(M/Q) has at
most one element. If also R is Noetherian and M is f.g., then Ass(M/Q) has
exactly one element, and Q is primary.

Proof. If Ass(M/Q) = {p, q, . . .} has more than one element, then M/Q has
nonisomorphic submodules N1 ∼= R/p and N2 ∼= R/q. These would have to be
disjoint, contradiction. The second statement follows from the first and the
previous theorem.

Thm. If N = Q1 ∩ · · · ∩ Qk then Ass(M/N) ⊆
⋃

Ass(M/Qi). When R is
Noetherian, equality holds provided N = Q1 ∩ · · · ∩ Qk is an irredundant
representation and each Qi is primary. If N = Q1 ∩ · · · ∩ Qk is a minimal
representation, then the associated primes of the factors are uniquely
determined.
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The Second Uniqueness Theorem

Thm. Suppose R is Noetherian, M is f.g., and N � M. If p is minimal in
Ass(M/N), then the p-primary component of N in any minimal primary
decomposition is Nec along M → Mp.

Proof. If N = Q1 ∩ · · · ∩ Qn is a minimal primary decomposition with p

associated to M/Q1, then Np = (Q1)p ∩ · · · ∩ (Qn)p (check).
Minimality of p implies that every other q ∈ Ass(M/N) meets R − p. But
q =

√
(Q : M) when Q is q-primary, so (M/Qi)p = 0 if i > 1. Hence

(Qi)p = Mp if i > 1. Hence Np = (Q1)p, so Nec = Qec
1 =

⋃
s/∈p(Q1 : s) = Q1.
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The Krull Intersection Theorem

Krull Intersection Thm. If R is Noetherian, I � R and J =
⋂

n<ω In, then
there exists a ∈ I such that (1 − a)J = 0. Hence if I is a proper ideal, then⋂

n<ω In = (0) in the following cases:

(a) I ⊆ rad(R).

(b) R is a local ring.

(c) R is an integral domain.

Sketch of proof.

Write IJ = Q1 ∩ · · · ∩ Qr ∩ Qr+1 ∩ · · · ∩ Qk, where Qi is pi-primary, pi ⊇ I
for 1 ≤ i ≤ r and pj 6⊇ I for r < j ≤ k. If yj ∈ I \ pj for r < j ≤ k, then x ∈ J
implies xyj ∈ IJ implies xyj ∈ Qj implies x ∈ Qj. Thus J ⊆ Qr+1 ∩ · · · ∩ Qk.
Also, since I ⊆ pi for 1 ≤ i ≤ r, we have Im ⊆ Q1 ∩ · · · ∩ Qr. Since J ⊆ Im

we have J ⊆ Q1 ∩ · · · ∩ Qk = IJ, hence IJ = J. Now apply NAK.
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