Commutative Algebra Homework 8

Batchelder, Jones

4) Characterizing maximal chains of primes: Let (X; <) be a linearly ordered set. Let X
be a basis for a free abelian group F = €, .y Zx. Order F lexicographically. Let R be
a valuation ring whose value group is isomorphic to (F’;+,—,0,<) (the previous problem
guarantees that R exists).

a) Show that the chain of prime ideals of R is isomorphic to the lattice of order ideals of

(X;<).

b) Show conversely that any maximal chain of primes in a commutative ring is isomorphic
to the lattice of order ideals of some linearly ordered set.

Solution

a) Recall that there is a correspondence between prime ideals of R and convex subgroups
of F' given by the map ¢ defined by

op) ={g€ F:Vzep,lg| <v(z)}

where v is the valuation for R. This correspondence is a order-reversing bijection, as
clearly if p C q, then

{fge F:Voep gl <v(@)} D{ge F:Voeq,|g] <v(x)}

For each g € (®ye.Zx)", define LSupp(g) to be the least element of the support of
g. We note that for g € (®,e,Zx)", the convex subgroup generated by g contains
1LSupp(g) as either —|g| < 1LSupp(g) < |g| or —|g| < —1LSupp(g) < |g|. Suppose
g, h € (PresZz)*. It LSupp(g) < LSupp(h), then we have —1 - LSupp(g) < h <
1-LSupp(g), so h lies in the convex subgroup generated by g. If LSupp(g) > LSupp(h),
then for all positive integers n, we have —|h| < —n - LSupp(g) and |h| > n - LSupp(g),
so h is not in the convex subgroup generated by g. If LSupp(g) = LSupp(h), then
setting n = |hrsupp(n)|, we have —(n + 1) LSupp(g) < h < (n+1)LSupp(g). Hence, we
have shown that h is in the convex subgroup generated by ¢ iff LSupp(g) < LSupp(h).
In particular, we have that the convex subgroup generated by ¢ is equal to the convex
subgroup generated by 1 - LSupp(g).

We'll show that the convex subgroups of F' = @, .y Zx are of the form @, ., Zx
where Y is an order filter (i.e. if y € Y, then z € Y for all z € X with x > y).
Suppose Y is an order filter on X. Let g € F'\ @,y Zz. Then LSupp(g) ¢ Y, so
LSupp(g) < y for all y € Y. It follows that for all h € @,y Zx, h < |g|. Therefore,
@.cy Zx is a convex subgroup of F. Conversely, let G is a convex subgroup of F.



Then, by the previous paragraph, we have that GG is the convex subgroup generated by
{1 - LSupp(g)|g € G*}. Also by the previous paragraph, we have {LSupp(g)|g € G*}
is an order filter in X, and hence G = @ ¢ (5upp(g)|gec+) LT

If Y1 C Y3 are two order filters of X, then B, .y, Zr C ,y, Zr. Hence, we have an
order preserving bijection between the chain of convex subgroups of F' and the order
filters of X. Composing this bijection with ¢, we get an order-reversing bijection from
the chain of prime ideals of R to the lattice of order filters of (X; <). Finally, we note
that the complement map that takes a set Y C X to X \ Y induces an order-reversing
bijection from lattice of order filters of (X; <) to the lattice of order ideals of (X; <),
and so it follows that there exists an order-preserving bijection from the chain of prime
ideals of R to the lattice of order filters of (X; <).

Let S be a commutative ring and let P be a maximal chain of primes in S. For any
s € |JP let ps be the intersection of all primes in P containing s; that is, ps = [({p €
P|s € p}. We'll show that py is the least p € P containing s. For this, it suffices to
show that pg is prime, and then show that ps € P.

Suppose that pg is not prime. Then there exists z,y € S\ ps with zy € ps. Since
z,y & ps = (){p € P|s € p}, there exists some a,b € P such that s € a, s € b but
x ¢ aand y ¢ b. Since P is a chain, we either have a C b or b C a. Without loss of
generality, suppose a C b. Since we have s € a € P, we have p; C a. Hence, since
Ty € ps, xy € a. Since a is prime and x ¢ a, we must have y € a C b. However, this
contradicts our choice that y ¢ b. Therefore, are assumption that p; is not prime is
false, so p, is prime.

Next, we’ll show that ps € P. Let q € P. If s ¢ q, then, since P is a chain, we have
that g lies below all primes in P that contain s, and hence q C (\{p € P|s € p} = p..
Conversely, if s € ¢, then we have p; = ({p € P|s € p} C q. Hence we have that all
primes in P either lie completely in p, or completely contain ps. Since p, is prime and
P is a maximal chain of primes, we must have p, € P.

Let X = {ps|s € |JP} ordered by inclusion. Note that for all primes p, the set
{ps|s € p} is an order ideal of (X; <). Define the map ¢ from (P;C) to the lattice of
ideals of (X; C) by

e(p) = {psls € p}.

This map is clearly order preserving. Further, define an inclusion-preserving map
from the lattice of ideals of (X; C) to P by ¥/(O) = |JO. To show that 1 is well-defined
(i.e. that the image of ¢ is indeed in P), Let I = {p;|t € T} be an ideal in (X;C).
Since p, € P for all ¢ € T and since P is a chain, we have (1) = (J,or bt is an ideal.
Let x,y € S such that zy € (J,cr 9+ Then xy € p, for some ¢ € T'. Since p, is prime,
either x € p; C U,cp 9t or y € p¢ C U, op bt s0 we have that (J,., p; is prime. Since P
is a maximal chain of primes in S, we have that ( J,., p: € P.



For all primes p C .S, we have

Yop(p) =14 ({pls€p}) = Jps =p.

sep

Let I = {p;|t € T'} be an ideal of (X;C). We note that if s € (J,.; ps, then s € p; for
some t, which implies that p, C p; € I. Since [ is an order ideal, we have p;, € [ =
{p:|t € T'}, and therefore p; = p;, for some t; € T. Hence,

pot(l (Um) Z{pSISGUpt}z{pt|teT}:].

teT teT

Therefore, 1 is the inverse of ¢, and so ¢ is an isomorphism.



