
Commutative Algebra Homework 8

Batchelder, Jones

4) Characterizing maximal chains of primes: Let 〈X;≤〉 be a linearly ordered set. Let X
be a basis for a free abelian group F =

⊕
x∈X Zx. Order F lexicographically. Let R be

a valuation ring whose value group is isomorphic to 〈F ; +,−, 0,≤〉 (the previous problem
guarantees that R exists).

a) Show that the chain of prime ideals of R is isomorphic to the lattice of order ideals of
〈X;≤〉.

b) Show conversely that any maximal chain of primes in a commutative ring is isomorphic
to the lattice of order ideals of some linearly ordered set.

Solution

a) Recall that there is a correspondence between prime ideals of R and convex subgroups
of F given by the map ϕ defined by

ϕ(p) = {g ∈ F : ∀x ∈ p, |g| < v(x)}

where v is the valuation for R. This correspondence is a order-reversing bijection, as
clearly if p ⊂ q, then

{g ∈ F : ∀x ∈ p, |g| < v(x)} ⊃ {g ∈ F : ∀x ∈ q, |g| < v(x)}.

For each g ∈ (⊕x∈xZx)∗, define LSupp(g) to be the least element of the support of
g. We note that for g ∈ (⊕x∈xZx)∗, the convex subgroup generated by g contains
1LSupp(g) as either −|g| ≤ 1LSupp(g) ≤ |g| or −|g| ≤ −1LSupp(g) ≤ |g|. Suppose
g, h ∈ (⊕x∈xZx)∗. If LSupp(g) < LSupp(h), then we have −1 · LSupp(g) ≤ h ≤
1·LSupp(g), so h lies in the convex subgroup generated by g. If LSupp(g) > LSupp(h),
then for all positive integers n, we have −|h| < −n ·LSupp(g) and |h| ≥ n ·LSupp(g),
so h is not in the convex subgroup generated by g. If LSupp(g) = LSupp(h), then
setting n = |hLSupp(h)|, we have −(n+ 1)LSupp(g) ≤ h ≤ (n+ 1)LSupp(g). Hence, we
have shown that h is in the convex subgroup generated by g iff LSupp(g) ≤ LSupp(h).
In particular, we have that the convex subgroup generated by g is equal to the convex
subgroup generated by 1 · LSupp(g).

We’ll show that the convex subgroups of F =
⊕

x∈X Zx are of the form
⊕

x∈Y Zx
where Y is an order filter (i.e. if y ∈ Y , then x ∈ Y for all x ∈ X with x > y).
Suppose Y is an order filter on X. Let g ∈ F \

⊕
x∈Y Zx. Then LSupp(g) /∈ Y , so

LSupp(g) < y for all y ∈ Y . It follows that for all h ∈
⊕

x∈Y Zx, h < |g|. Therefore,⊕
x∈Y Zx is a convex subgroup of F . Conversely, let G is a convex subgroup of F .



Then, by the previous paragraph, we have that G is the convex subgroup generated by
{1 · LSupp(g)|g ∈ G∗}. Also by the previous paragraph, we have {LSupp(g)|g ∈ G∗}
is an order filter in X, and hence G =

⊕
x∈{LSupp(g)|g∈G∗} Zx

If Y1 ⊂ Y2 are two order filters of X, then
⊕

x∈Y1
Zx ⊂

⊕
x∈Y2

Zx. Hence, we have an
order preserving bijection between the chain of convex subgroups of F and the order
filters of X. Composing this bijection with ϕ, we get an order-reversing bijection from
the chain of prime ideals of R to the lattice of order filters of 〈X;≤〉. Finally, we note
that the complement map that takes a set Y ⊂ X to X \ Y induces an order-reversing
bijection from lattice of order filters of 〈X;≤〉 to the lattice of order ideals of 〈X;≤〉,
and so it follows that there exists an order-preserving bijection from the chain of prime
ideals of R to the lattice of order filters of 〈X;≤〉.

b) Let S be a commutative ring and let P be a maximal chain of primes in S. For any
s ∈

⋃
P let ps be the intersection of all primes in P containing s; that is, ps =

⋂
{p ∈

P |s ∈ p}. We’ll show that ps is the least p ∈ P containing s. For this, it suffices to
show that ps is prime, and then show that ps ∈ P .

Suppose that ps is not prime. Then there exists x, y ∈ S \ ps with xy ∈ ps. Since
x, y /∈ ps =

⋂
{p ∈ P |s ∈ p}, there exists some a, b ∈ P such that s ∈ a, s ∈ b but

x /∈ a and y /∈ b. Since P is a chain, we either have a ⊂ b or b ⊂ a. Without loss of
generality, suppose a ⊂ b. Since we have s ∈ a ∈ P , we have ps ⊂ a. Hence, since
xy ∈ ps, xy ∈ a. Since a is prime and x /∈ a, we must have y ∈ a ⊂ b. However, this
contradicts our choice that y /∈ b. Therefore, are assumption that ps is not prime is
false, so ps is prime.

Next, we’ll show that ps ∈ P . Let q ∈ P . If s /∈ q, then, since P is a chain, we have
that q lies below all primes in P that contain s, and hence q ⊂

⋂
{p ∈ P |s ∈ p} = ps.

Conversely, if s ∈ q, then we have ps =
⋂
{p ∈ P |s ∈ p} ⊂ q. Hence we have that all

primes in P either lie completely in ps or completely contain ps. Since ps is prime and
P is a maximal chain of primes, we must have ps ∈ P .

Let X = {ps|s ∈
⋃
P} ordered by inclusion. Note that for all primes p, the set

{ps|s ∈ p} is an order ideal of 〈X;≤〉. Define the map ϕ from 〈P ;⊆〉 to the lattice of
ideals of 〈X;⊆〉 by

ϕ(p) = {ps|s ∈ p}.

This map is clearly order preserving. Further, define an inclusion-preserving map ψ
from the lattice of ideals of 〈X;⊆〉 to P by ψ(O) =

⋃
O. To show that ψ is well-defined

(i.e. that the image of ψ is indeed in P ), Let I = {pt|t ∈ T} be an ideal in 〈X;⊆〉.
Since pt ∈ P for all t ∈ T and since P is a chain, we have ψ(I) =

⋃
t∈T pt is an ideal.

Let x, y ∈ S such that xy ∈
⋃

t∈T pt. Then xy ∈ pt for some t ∈ T . Since pt is prime,
either x ∈ pt ⊆

⋃
t∈T pt or y ∈ pt ⊆

⋃
t∈T pt, so we have that

⋃
t∈T pt is prime. Since P

is a maximal chain of primes in S, we have that
⋃

t∈T pt ∈ P .



For all primes p ⊂ S, we have

ψ ◦ ϕ(p) = ψ ({ps|s ∈ p}) =
⋃
s∈p

ps = p.

Let I = {pt|t ∈ T} be an ideal of 〈X;⊆〉. We note that if s ∈
⋃

t∈T pt, then s ∈ pt for
some t, which implies that ps ⊂ pt ∈ I. Since I is an order ideal, we have ps ∈ I =
{pt|t ∈ T}, and therefore ps = pts for some ts ∈ T . Hence,

ϕ ◦ ψ(I) = ϕ

(⋃
t∈T

pt

)
=

{
ps|s ∈

⋃
t∈T

pt

}
= {pt|t ∈ T} = I.

Therefore, ψ is the inverse of ϕ, and so ϕ is an isomorphism.


