COMMUTATIVE ALGEBRA HOMEWORK VI

JONES, KELLER, LI

Problem 3 Throughout this problem R is Noetherian, M is a f.g. R-module and N is an arbitrary
R-module and N is an arbitrary R-module.

(a) Assume in addition that R is local with maximal ideal m. Show that m € Ass(Hompg (M, N))
iff M # 0 and m € Ass(N).
(b) Now drop the assumption that R is local. Use part (a) and localization to prove that

Ass(Homp(M, N)) = Supp(M) N Ass(N).

Solution

(a) Suppose that m € Ass(Hompg(M, N)). Then we have an R-module isomorphism:
R/m = () < Hompg(M, N)

for some homomorphism ¢ € Hompg (M, N). Since R/m is a ring (indeed, a field) it contains
1. Since m # R, it follows that 1 # 0 in R/m. Then by the above isomorphism, (¢) contains
a nonzero element and hence ¢ itself must be nonzero. If M = 0 then there could be no
such nonzero homomorphism ¢: M — N, so we must have M # 0. By an alternative
characterization of associated primes we have that m = (0: ¢). Suppose z € m. Since ¢(M)
is nonzero, there exists n € (M) with n # 0. Choose m € M so that ¢(m) = n. Then we
have
zn = a(p(m)) = (w9)(m) = 0

since zp is the zero map in Hompg (M, N). Then =z € (0: n) and hence m C (0: n). But
(0: n) # R since 1 € R acts on N as the identity endomorphism, so that 1n = n # 0. Then
we must have m = (0: n) by the maximality of m. Then m € Ass(N).

Now begin with the supposition that M # 0 and m € Ass(N). Since M # 0 there exists
m € M with m # 0. Since M is finitely generated, we may choose a minimal generating set
B = {mg,m1,ma,...,mi} where m = my. Since B is a generating set, a map ¢: B — N
will extend linearly to a homomorphism ©: M — N provided that
app(m) +a1p(ma) + -+ - + agp(mg) = 0

in N whenever

apgm + aimy + - - + apmy =0
in M, where a; € R. We define a map ¢: B — N as follows. First choose n € N so that
m = (0: n), possible since m € Ass(/N). Then n # 0. Then define p(m) = n and p(m;) =0
fori=1,2,...,k. Suppose there exist a; such that

aom +aymy + -+ apmg = 0.
Then we have

app(m) + arp(mi) + -+ + agp(my) = agp(m) = agn.



Then ¢ will extend to a homomorphism @: M — N if agn = 0. Suppose ag is a unit. Then
m can be expressed in terms of the other k — 1 generators via

m = (ao)_l(—alml —agmg — -+ - — agmy,)

contradicting the minimality of B. Then ag is not a unit and hence (ag) <R is a proper ideal.
Since R is a local ring, (ag) must be contained in the unique maximal ideal m = (0: n).
Then agn = 0 as required. Then % is a nonzero element of Homp (M, N) with image (n).
Then the ideal (0: ¢) is precisely the ideal (0: n) and hence m = (0: ¢) and we have
m € Ass(Homp(M, N)) as required. This completes the proof. O

We require two preliminary results, which we will prove before the main result:

Claim 1 Let R be a Noetherian ring and M an R-module. Then p € Ass(M) iff p, €
Ass(My).

Proof. Suppose p € Ass(M). Then p = (0: m) for some element m € M. Let p/s € p,
where p € p and s € S = R — p. Then we have
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Then p/s € (0: m/1). Then p, C (0: m/1) Q R,. Suppose m/1 = 0/1. Then there exists
t € S such that tm = 0. But this is a contradiction, since ¢  p = (0: m). Then m/1 is not
annihilated by 1 = 1/1 € R, and therefore (0: m/1) is a proper ideal. But pj is maximal in
the local ring Ry, so we must have p, = (0: m/1). Then p, € Ass(M,).

Now suppose that p ¢ Ass(M) and that p, € Ass(My). Then p, = (0: m/s) where m € M
and s € S. Since p ¢ Ass(M) we have that p # (0: m). We consider several cases:

Case 1: (0:m) Z p
In this case, choose s’ € S such that s'm = 0. Then we compute

s m sm 0
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and hence s'/1 € p, = (0: m/s). Then s'/1 = p/s” for some p € p and s” € S. Then there
exists t € S such that
t(s's" —p)=0
and hence
s's" =tp e p,

's" € S, a multiplicatively closed set.

a contradiction since s
Case 2: (0: m) Cp
Since R is noetherian, p is finitely generated. Let {pi1,p2,...,pr} be a generating set for p.
Since (0: m) is properly contained in p, some of the generators may lie in (0: m), but not
all of them. Relabel the generators so that the first ¢ generators lie in m. Then 0 < ¢ < k.
For each generator p; with ¢ > ¢ we have that
pi m
2.
1 s
since p, = (0: m/s), so there exists s; € S such that s;pyjm = 0. Then s; € (0: pym).
Suppose that
A= ﬂ(O: pim) C p.
>0
Then in particular we have
Hsi € H(O: pim) C ﬂ(O: pim) Cp
>/ >0 >0
which is a contradiction, since S is multiplicatively closed.



It follows that there exists s € A such s € p. Then sp; annihilates m for all i > ¢ and
p; annihilates m for all ¢ < ¢. It follows that sp € (0: m) for all p € p. Equivalently,
p € (0: sm) (we cannot have equality here since we have assumed p ¢ Ass(M). Then
choose x € (0: sm) — p. Then (xzs)m = 0, hence zs € (0: m) C p, contradicting the
primality of p.

In both cases we reach a contradiction. Then p ¢ Ass(M) implies p, ¢ Ass(M,), thus
establishing our claim. O

Claim 2 If M, N are isomorphic R-modules then Ass(M) = Ass(N).

Proof. Let o: M — N be an R-module isomorphism and suppose that p <R is an associated
prime of M. Then p = (0: m) for some m # 0 in M. Then pm = 0 for all p € p. Then we
have

pe(m) = (pm) = ¢(0) =0
s0 p C (0: ¢p(m)). On the other hand, if s & p then sm # 0 and hence

sip(m) = plsm) # 0

since ¢ is injective. Then s & (0: ¢(m)). Then we have p = (0: ¢(m)) and hence p €
Ass(N).

Now suppose p € Ass(N). Then p = (0: n) for some n # 0 in N. Since ¢ is surjective, there
exists m # 0 in M such that ¢(m) =n. Then p = (0: p(m)). Let p € p. Then we have

e(pm) = pp(m) =0
so pm = 0 since ¢ is injective. Then p C (0: m). On the other hand, if s & p then

p(sm) = sip(m) £ 0
so sm # 0 since ¢ is injective. Then s ¢ (0: m). Thus p = (0: m) and hence p € Ass(M).
This establishes our claim. O

We now prove the main result. Suppose p € Ass(Homp(M,N)). By claim 1 above, this
occurs if and only if p, € Ass(Homp (M, N),). We have an R-module isomorphism

Hompg(M, N), = Hompg, (My, Ny)

since R is Noetherian and M is finitely generated (see Lemma 11.32, Rotman’s Advanced
Modern Algebra). Then by claim 2, our hypothesis is equivalent to p € Ass(Hompg, (M, Np)).
Since py is the unique maximal ideal of the local ring R,, we may use part (a) to conclude
that our hypothesis is equivalent to the statement M, # 0 and p, € Ass(Np). But M, # 0
if and only if p € Supp(M), by definition, and by claim 1 we have that p, € Ass(NN,) if and
only if p € Ass(N). Then our hypothesis is equivalent to the statement that p € Supp(M)
and p € Ass(N), that is, p € Supp(M) N Ass(N). This completes the proof. O



