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Problem #2

(a) Suppose that the commutative ring R is a UFD. Then a prime ideal in R is generated by some set of
irreducible elements.

(b) Suppose that R = S[x] where S is a PID. Then any prime ideal of R is generated by at most two
irreducible elements. Further, if a prime ideal I requires two irreducible generators, then it has the form
I = (p, f(x)) where p is prime in S and f(x) is a monic polynomial in S[x] that is irreducible mod p.

(c) Sketch the ordered set of primes of S[x] under inclusion to the best of your ability. How long can a chain
be?

Answer.
(a): Let P be a prime ideal, and let T be the set of all irreducible elements contained in P , together with 0.
We claim that P is generated by T , proving our proposition. Clearly, the ideal (T ) is contained in P since
T , so we only need to show P is contained in (T ).

Suppose a ∈ P . If a = 0, we are done, because 0 ∈ T by construction. Otherwise, we use that R is a
UFD to write a = q1q2 · · · qn where each qi is an irreducible element. We note here that if any of the qi are
in P , then that qi ∈ T by construction. We immediately have a ∈ (T ) by definition of ideal. We only need
that one of the qi is in P .

Since P is a prime ideal, we must have either q1q2 · · · qn−1 or qn in P . If qn ∈ P , we are done. If not,
q1q2 · · · qn−1 is in P , so we again use the primality of P and find that either q1q2 · · · qn−2 or qn−1 is in P .
If the latter, we are again done. If the former, we apply this process once again. Because n is finite, we
eventually find a qi in P as needed.

Because a was chosen arbitrarily, we have that P ⊆ (T ), completing the proof. [DF04]
(b): Recall from general algebra that R = S[x] is a UFD whenever S is a PID (or a UFD, for that matter).

Let P be a prime ideal of R = S[x]. We claim that P ∩ S is a prime ideal of S. Note that P ∩ S is
exactly the constant polynomials contained in P . Also, it’s clearly an ideal of S since S ⊆ R and the sum
and product of constant polynomials is again a constant polynomial.

Suppose a(x) = b(x)c(x) is in P ∩ S. Because S is a PID and hence an integral domain, the product of
two polynomials in S[x] has degree equal to sum of the degrees of the two polynomials. Thus, as degrees
are nonnegative and the degree of a(x) is 0, so must be the degrees of b(x) and c(x), i.e. they are constant
polynomials. By the primality of P , either b(x) or c(x) is in P , say b(x). Therefore b(x) ∈ P ∩ S, as needed
for primality.

Because S is a PID, there is an element p that generates the ideal P ∩ S. Further, p is an irreducible
(equivalently, prime) element, since P ∩ S is a prime ideal, or p is zero.
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Suppose that p is not zero. Note that p is irreducible in R for the same reasoning as above, i.e. any two
elements of R whose product is constant must also be constant. From part a), we know that there is some
set T of irreducibles that generate P . From the proof, we know we can assume that p ∈ T .

Because p ∈ P , we know that pR ⊆ P . Thus we can examine the quotient P/pR in the ring R/pR.
Because P is prime in R, we know that P/pR is also prime (possibly 0) in R/pR by the one-to-one corre-
spondence between ideals of R containing pR and ideals of R/pR [DF04, Corollary 13 p 255]. If P/pR is 0,
we are done, because the P = pR and generated by a single element. Assume P/pR is not trivial.

We will show that R/pR is a PID. If that is the case, the ideal P/pR is generated by a single prime
(irreducible) element, say f(x) + pR. The correspondence theorem then states that P is the ideal generated
by p and f(x).

Because S is a PID and p is not zero, we know that pS is in fact a maximal ideal of S [DF04, Proposition
7 p 280], so S/pS is a field. Thus S/pS[x] is a PID [DF04, p 281]. It is well known that S/pS[x] is isomorphic
to S[x]/pS[x] = R/pR.

Finally, we note that we can assume that f(x) is a monic polynomial. If it is not, let c be its leading
coefficient, which is clearly nonzero. Its image under the natural map from S to S/pS is invertible because
S/pS is a field. The surjectivity of the natural map guarantees that there is an a ∈ S which is sent to that
inverse. Note that af(x) + pR generates the same ideal in R/pR as f(x) + pR does because we are simply
multiplying by a unit. Because ac = 1 (mod p), the polynomial g(x) which is identical to af(x) except at
the leading coefficient which is set to 1 is equivalent to af(x) mod p.

Thus g(x)+pR generates the same ideal in R/pR as af(x)+pR because they are in fact the same element
in R/pR. (Note that the fact it generates a prime ideal implies g(x) is prime and hence irreducible in R/pR,
which immediately implies g(x) is irreducible in R.) Thus the ideal generated by p and g(x) must be same
as that generated by p and f(x), so we can replace f by g if need be.

We have shown that P is generated by p and f(x), a monic polynomial irreducible mod p.
Now suppose the p is zero, i.e. that P contains no nonzero constant polynomials. Let f be an irreducible

polynomial in P of minimal degree. The degree of f is not 0 since it is nonconstant. Let g be any other
polynomial in P , also nonconstant. If we pass to the field of fractions of Frac(S), we know that f and g are
also polynomials in Frac(S)[x]. Because Frac(S) is a field, Frac(S)[x] is a Euclidean domain. Thus we can
apply the Euclidean algorithm to get

g = fq + r

with q, r ∈ Frac(S)[x] and the degree of r less than that of f .
We then multiply by some nonzero element s ∈ S that clears the denominators of all the coefficients in

the polynomials q and r to get
sg = sfq + sr,

a statement now true in S[x]. (We could define s to be, simple, the product of all the denominators of all
the coefficients that appear in q and r, so s exists.) Because f and g are in P , so must be sg − (sq)f = sr.

If r is a constant, then so is sr, which means sr = 0, the only constant in P . As we are in an integral
domain and s is not zero, r must be.

If r is a polynomial of positive degree, then sr is of the same degree (again because S is an integral
domain). The polynomial sr may not be irreducible, but R is a UFD, so we can write it as a product of
irreducible factors. In the normal way (see the proof of (a)), the primality of P implies one of those irreducible
factors is in P . But these factors have degree less than r which has degree less than f , contradicting the
minimality of f .

So we have that r is zero. Thus sg = sfq. Now, the right hand side of the equation is in the ideal
generated by f , since sq is in S[x]. Therefore sg ∈ (f). But f is prime, so (f) is prime, giving us that either
s or g is in (f). Clearly s is not, as s is a nonzero constant and f is not. Thus g must be. Since g was chosen
arbitrarily, we get P ⊆ (f), i.e. P = (f).
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(c): From the above, we know that any prime ideal P of S[x] has one of the following forms:

• P = (p) where p is a prime in S.

• P = (f(x)) where f(x) is a prime and nonconstant in R.

• P = (p, f(x)) where p is a prime in S and f(x) is a monic polynomial irreducible mod p

(0)

(p) · · · (q)(f(x))· · ·(g(x))

(p, f(x)) (q, f(x))(p, g(x))

In this diagram, p, q are primes in S (hence are irreducible constant polynomials in R) and f(x), g(x)
are arbitrary nonconstant monic irreducible polynomials in R. Given each pair p, f(x), we obtain a version
of the central diamond in the diagram. For any other g(x), p and g(x) form another diamond with vertices
(0), (p), (g(x)), and (p, g(x)); likewise, for any other prime q, we obtain a diamond with vertices (0), (q),
(f(x)) and (q, f(x)). The longest chain length of nontrivial prime ideals is 2.
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