
Exercise 7. (Chriestenson, Tuley, Wane) Show that

(1) the only idempotents of a local ring are 0 and 1.
(2) there are nonlocal rings whose only idempotents are 0 and 1.
(3) if R is Artinian and its only idempotents are 0 and 1, then R

is local. Conclude that an Artinian ring is a finite product of
local rings.

Proof. To begin let R be a local ring with unique maximal ideal m.
Recall that ever element not in m is a unit and if r ∈ m then 1− r is a
unit. Let e ∈ R such that e2 = e then 0 = e2 − e = e(e − 1). If e ∈ m

then 1− e is a unit and hence not a zero divisor. Thus e = 0. If e /∈ m

then e is a unit and hence not a zero divisor. Thus 1 − e = 0 and so
e = 1.

Let R = Z. All idempotents of R satisfy the equation x2 − x = 0.
Thus the only idempotents of R are 0 and 1. Hence the only idempo-
tents of R are 0 and 1. However since every prime p ∈ R generates a
maximal ideal we have that R is not a local ring. Hence nonlocal rings
having only 0 and 1 as idempotents do exist.

Let R be an Artinian ring whose only idempotents are 0 and 1. Let
r ∈ R be a non unit element. Then (r) ⊇ (r)2 ⊇ (r)3 ⊇ · · · . This
is a descending chain of ideals so there exists k ∈ Z≥0 such that for
all l ∈ Z≥0 we have that (r)k = (r)k+l. In particular (r)k = (r)2k =
(r)k(r)k which implies I = (r)k is an idempotent ideal. Since I is
the finite product of finitely generated ideals it is finitely generated
hence it is generated by one idempotent element. Therefore I = (0)
or I = (1) = R. Since r is a non unit (r)k 6= R, and hence we must
have I = (0). Thus every non unit in R generates a nilpotent ideal
and hence is nilpotent. Therefore every non unit in R is in Nil(R), and
thus every element not in Nil(R) is a unit. Therefore R is a local ring
with Nil(R) as its maximal ideal.

Let R be an Artinian ring. For clarity we will state a few facts.

(1) If R is a commutative ring and e, f ∈ R are two idempotent
elements such that (e) = (f) then e ∈ (f) and f ∈ (e). Note
that for each r ∈ (e) and s ∈ (f) we have that (1 − e)s = 0
and (1 − f)r = 0. Thus we get 0 = (1 − e)f = f − ef and
0 = (1 − f)e = e − fe. This gives e − ef = f − ef so e = f .
Hence elements generating the same idempotent ideal are equal.

(2) If R is Artinian and r ∈ R is not nil then (r) ⊇ (r2) ⊇ · · · does
not become zero and eventually becomes constant. Hence there
is a k ≥ 0 such that (rk) = (r2k) = (rk)2. Thus the ideal (rk) is
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idempotent. Since it it finitely generated there is an idempotent
element s ∈ R such that (s) = (rk). Therefore s = rk.

(3) If R is Artinian the set of ideals generated by idempotent ele-
ments is a subset of Ideal(R) and thus has a minimal element,
(e).

(4) The element e gives us that R ∼= R/(1 − e) × R/(e).
(5) Since R ∼= (e) ⊕ (1 − e) we have that each coset of (1 − e) in

R/(1 − e) can be represented by an element of (e). Hence we
may assume elements of R/(1 − e) have the form er + (1 − e)
for r ∈ R. In particular 1 + (1 − e) = e + (1 − e).

(6) If π : R → R/(1 − e) is the canonical projection we know that
π(Nil(R)) ⊆ Nil(R/(1 − e)). Hence if er + (1 − e) is not nil in
R/(1 − e) then er is not nil in R.

Let er + (1 − e) be not nilpotent in R/(1 − e). Then by above er is
not nilpotent in R. Also by above there exists an idempotent element
s ∈ R and an integer k ≥ 0 such that s = (er)k. This implies that e|s
so (s) ⊆ (e). Since (s) is generated by a idempotent element our choice
of (e) gives us that either (s) = (0) or (s) = (e). Since (er)k 6= 0 we
have that (s) 6= (0). Thus we must have that ((er)k) = (s) = (e). This
means (er)k = e, giving us that erk = ekrk = (er)k = e. Hence rk acts
as the identity on e. Thus rk +(1−e) = 1+(1−e), and r+(1−e) is a
unit in R/(1− e). Hence so is er + (1− e). We have shown that every
element of R/(1 − e) not in Nil(R/(1 − e)) is a unit, hence R/(1 − e)
is a local ring with maximal ideal Nil(R/(1 − e)).

This shows that we have a decomposition of R into R ∼= R1 ⊕ S1

where R1
∼= R/(1 − e) is local and S1

∼= R/(e). Since quotients of
Artinian rings are again Artinian we have that S1 is Artinian. Hence
we can repeat this process with S1 to get S1 = R2 × S2 where R2 is
local. We can continue decomposing R in this manner. Note that for
each i ≥ 1 we have the projection map pi from R onto R1 × · · · × Ri,
and Ker(p1) ⊇ Ker(p2) ⊇ · · · . Thus for some k large enough we have
Ker(pk) = Ker(pk+l), for all l ≥ 0. This implies that R ∼= R1 × R2 ×
· · · × Rk and each Ri is local. Hence R is a finite product of local
rings. �


