
COMMUTATIVE ALGEBRA HW 2

KELLER, LIZZI

Problem 5

Prove that the intersection of a chain of prime ideals is a prime ideal. Conclude that every ideal I
has minimal prime ideals that contain it and that

√
I is the intersection of these minimal primes.

Solution

Let {Pα} be a chain of prime ideals in a ring R, that is to say a collection of prime ideals that is
totally ordered by inclusion. Let

P =
⋂
α

Pα

be the intersection of this chain. Since 0 ∈ Pα for all α we have that 0 ∈ P and hence P is nonempty.
Let x, y ∈ P and let r ∈ R. Then for each α, since Pα is an ideal we have that x − y ∈ Pα and
rx ∈ Pα. Then x− y ∈ P and rx ∈ P . It follows that P is an ideal. Now let a, b ∈ R and suppose
that ab ∈ P and a 6∈ P . Then ab ∈ Pα for all α. Since a 6∈ P , there exists an index β such that
a 6∈ Pβ . Let Pα be an ideal in the chain. Since the chain is totally ordered by inclusion we must
have Pα ⊆ Pβ or Pβ ⊆ Pα. Suppose Pα ⊆ Pβ . Then since a 6∈ Pβ we have a 6∈ Pα. Since Pα is prime
and contains ab but not a it follows that b ∈ Pα. Now suppose instead that Pβ ⊆ Pα. Since Pβ is
prime and contains ab but not a we must have that b ∈ Pβ . Then b ∈ Pα. Since Pα was arbitrary,
it follows that b ∈ Pα for all α. Then b ∈ P and it follows that P is prime.

Now let I be an ideal and consider that the set of prime ideals that contain I forms a partially
ordered set under reverse inclusion. This set is nonempty since R is such a prime ideal. The above
argument implies that every ascending chain under this order has an upper bound, namely the
intersection of the prime ideals in the chain. Then by Zorn’s lemma there is a maximal element
under this ordering. This maximal element is a prime ideal containing I that does not properly
contain another prime ideal that contains I, and hence is a minimal prime ideal containing I.

Let I be an ideal and let {Pα} be the collection of minimal prime ideals containing I. Let P be the
intersection of these minimal prime ideals. Suppose a ∈

√
I. Then an ∈ I for some positive integer

n. Then an in Pα for every α and hence an ∈ P . Since P is prime it follows that a ∈ P . Thus√
I ⊆ P . Now suppose a ∈ P where a 6= 0 (the result is trivial if P = (0)). Let S = {a, a2, a3, . . .}.

Since S is multiplicatively closed and does not contain zero, a previous result implies that any ideal
J that is maximal such that J ∩ S = ∅ must be prime. Suppose a 6∈

√
I. Then no power of a

is contained in I and hence I ∩ S = ∅. Then the collection of ideals that are disjoint from S is
nonempty, since I is a member. We may therefore take J to be the union of all ideals disjoint from
S. Thus defined, J is maximal among ideals that are disjoint from S and hence is a prime ideal
containing I. Then J contains a minimal prime ideal that contains I. This minimal prime must
be one of the ideals Pα. This minimal ideal does not contain a since J does not contain a. Then
a 6∈ P , a contradiction. Then our supposition was false and it follows that a ∈

√
I. Then P ⊆

√
I

and hence P =
√
I as required. �
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