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Proposition. Let φ : R → S be a surjective homomorphism of commutative rings. Then we have that
φ(nil(R)) ⊆ nil(S) and φ(rad(R)) ⊆ rad(S). Under the additional hypothesis that ker φ is nil, we find
φ(rad(R)) = rad(S). Further, the hypothesis ker φ is nil is not trivial.

Proof.
First we show that φ(nil(R)) ⊆ nil(S).

Suppose that s ∈ φ(nil(R)). Then there exists an r ∈ R such that φ(r) = s and an n ∈ Z+ such that
rn = 0. Because φ is a ring homomorphism, it preserves multiplication, so that φ(rn) = φ(r)n. Also we
know that φ(rn) = φ(0) = 0 by an elementary property of ring homomorphisms. Thus

sn = φ(r)n = φ(rn) = 0,

that is, s is nilpotent and therefore in nil(S). Because s was arbitrarily chosen, our desired result, φ(nil(R)) ⊆
nil(S), follows.

Next we show that φ(rad(R)) ⊆ rad(S).
One particularly clear way to show this result is to recall from general algebra that, for commutative ring

R, we know that a ∈ rad(R) if and only if 1− ab is a unit for all b ∈ R. (Briefly, we can see this by looking
at the ideal I generated by 1 − ab. If 1 − ab is not a unit for a given b, then I is proper and thus in some
maximal ideal. But a is in all maximal ideals, so a ∈ I, implying ab ∈ I. Therefor 1 − ab + ab = 1 is in I,
contradicting that it is proper.)

Now suppose that y ∈ φ(rad(R)). We will show that 1− ys is a unit for all s ∈ S, implying by the above
that y ∈ rad(S). Because φ is surjective, we know there are x, r ∈ R such that φ(x) = y and φ(r) = s. In
fact, we can assume x ∈ rad(R) because y ∈ φ(rad(R)). By the characterization above, we know that 1−xr

is a unit in R.
By the properties of homomorphisms, we know that

φ(1− xr) = φ(1)− φ(x)φ(r) = (1− ys).

Since homomorphisms also preserve units—the inverse of (1−ys) is just the image of the inverse of (1−xr)—
we have that (1 − ys) is a unit as needed. Since s was chosen arbitrarily, we have that y ∈ rad(S). Thus
φ(rad(R)) ⊆ rad(S).

We also offer the following alternative proof because, while longer and less elegant, it uses a more ideal-
based approach which may elucidate other aspects of the result. Recall from the first isomorphism theorem
that R/ ker φ is isomorphic to φ(R) = S, since φ is surjective. In particular, the ideals of R/ ker φ are in
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one-to-one correspondence with those from S. Let φ̃ : R/ ker φ → S be this correspondence, which is defined
by φ̃(r + ker φ) = φ(r).

Now let M be a maximal ideal of S. This corresponds to a maximal ideal of R/ ker φ. Recall that the
forth isomorphism theorem states that there is a one-to-one correspondence between ideals of R/ ker φ and
ideals of R that contain ker φ, so there is an ideal N of R that corresponds to this maximal ideal of R/ ker φ.
(Also from the forth isomorphism theorem, we know that this maximal ideal is simply N/ ker φ.) Further,
the ideal N is maximal among ideals containing ker φ. Of course, any ideal containing N clearly contains
ker φ as well, so N is maximal among all ideals of R.

We can quickly see that N is, in fact, the preimage of M under φ. Let n ∈ N and recall that φ(n) is
equal to φ̃(n + ker φ). Since n + ker φ ∈ N/ ker φ and N/ ker φ corresponds to M , we get that φ̃(n + ker φ)
is in M . Thus φ(N) ⊆ M . On the other hand, if r ∈ R \N , then r + kerφ is not in N/ ker φ, so its image
under φ̃ is not in M . Therefore φ−1(M) ⊆ N , so they must be equal.

We have shown that the preimage of a maximal ideal is also maximal for a surjective ring homomorphism.
Now, let r ∈ rad(R). By definition, we know r is in every maximal ideal of R. We claim that φ(r) must then
be in every maximal ideal of S and thus in rad(S) as needed.

Suppose there is a maximal ideal M of S that does not contain φ(r). Then φ−1(M) must not contain r.
However, as shown above, φ−1(M) is maximal, so it must contain r, a contradiction, completing our second
proof that φ(rad(R)) ⊆ rad(S).

Only a few more observations are necessary to show that, when kerφ is nil, we have φ(rad(R)) = rad(S).
Recall from algebra that, in a commutative ring with unity, all maximal ideals are prime ideals and must
then contain all nilpotent elements as follows.

Let P be any prime ideal in R and let a be a nilpotent element of R with an = 0. Because 0 ∈ P , the
primality of P tells us that either a ∈ P or an−1 ∈ P , since their product is. If the former, we are done.
If the latter, then we again use the primality of P to get that either a ∈ P or an−2 ∈ P . Because n is a
positive integer, we eventually must have a ∈ P as needed.

So we have that every nilpotent element of R is in every prime ideal of R and, since all maximal ideals
are prime, in every maximal ideal of R. Now, because kerφ is nil, i.e. made up entirely of nilpotent elements,
it immediately follows that every maximal ideal of R contains the kernel of φ. This is convenient because,
in the proof above that φ(rad(R)) ⊆ rad(S), we found that the maximal ideals of S correspond directly to
the maximal ideals of R containing the kernel of φ. So, if we have an element s ∈ rad(S), its preimage is
contained in every maximal ideal of R containing the kernel, which is now every maximal ideal. Thus it’s
preimage is in rad(R), so s ∈ φ(rad(R)) as needed to establish equality.

Finally, we show that the requirement that ker φ is nil is not a trivial one, i.e. that it is sometimes the case
that φ(rad(R)) $ rad(S).

Let R = Z and S = Z/8Z. Let φ : R → S be the standard map sending an integer a to a (mod 8). This
is a well-known ring homomorphism and clearly surjective. We observe that the kernel of φ is all multiples
of 8. Because 0 is the only nilpotent element of Z, it is not the case the ker φ is nil, so this is an example of
a situation not satisfying the hypothesis above. We will see that, indeed, φ(rad(R)) $ rad(S).

It is well-known that the maximal ideals of the integers are just the prime ideals, i.e. pZ where p is
prime. As the primes are infinite, there is no nonzero integer divisible by every prime, so the intersection of
all these ideals is 0. That is, we have rad(R) = (0). Clearly then, φ(rad(R)) is also zero.

The radical of S is a more complicated object. All proper ideals of S can contain no odd numbers since
they are all units in Z/8Z. On the other hand, the ideal 2Z/8Z is proper and consists of all the even numbers,
so it must be maximal, as if it contained any more, it would contain an odd number and thus a unit. Further,
all proper ideals of S must be made up entirely of even number and must therefore be contained in 2Z/8Z,
so this is the only maximal ideal of S. Therefore rad(S) = 2Z/8Z, which is clearly not (0). Thus φ(rad(R))
is properly contained in rad(S) as needed, and the proof is complete.
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