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Problem #5

Proposition. Let ¢ : R — S be a surjective homomorphism of commutative rings. Then we have that
¢(nil(R)) C nil(S) and ¢(rad(R)) C rad(S). Under the additional hypothesis that ker ¢ is nil, we find
¢(rad(R)) = rad(S). Further, the hypothesis ker ¢ is nil is not trivial.

Proof.
First we show that ¢(nil(R)) C nil(S).

Suppose that s € ¢(nil(R)). Then there exists an 7 € R such that ¢(r) = s and an n € Z* such that
r™ = 0. Because ¢ is a ring homomorphism, it preserves multiplication, so that ¢(r™) = ¢(r)"*. Also we
know that ¢(r™) = ¢(0) = 0 by an elementary property of ring homomorphisms. Thus

S = 6r)" = 60™) = 0,

that is, s is nilpotent and therefore in nil(S). Because s was arbitrarily chosen, our desired result, ¢(nil(R)) C
nil(S), follows.

Next we show that ¢(rad(R)) C rad(.S).

One particularly clear way to show this result is to recall from general algebra that, for commutative ring
R, we know that a € rad(R) if and only if 1 — ab is a unit for all b € R. (Briefly, we can see this by looking
at the ideal I generated by 1 — ab. If 1 — ab is not a unit for a given b, then I is proper and thus in some
maximal ideal. But « is in all maximal ideals, so a € I, implying ab € I. Therefor 1 —ab+ ab =1 is in I,
contradicting that it is proper.)

Now suppose that y € ¢(rad(R)). We will show that 1 —ys is a unit for all s € S, implying by the above
that y € rad(S). Because ¢ is surjective, we know there are x,r € R such that ¢(z) =y and ¢(r) = s. In
fact, we can assume x € rad(R) because y € ¢(rad(R)). By the characterization above, we know that 1 — zr
is a unit in R.

By the properties of homomorphisms, we know that

P(1 —zr) = ¢(1) = d(x)o(r) = (1 —ys).

Since homomorphisms also preserve units—the inverse of (1 —ys) is just the image of the inverse of (1 —zr)—
we have that (1 — ys) is a unit as needed. Since s was chosen arbitrarily, we have that y € rad(S). Thus

¢(rad(R)) C rad(S).

We also offer the following alternative proof because, while longer and less elegant, it uses a more ideal-
based approach which may elucidate other aspects of the result. Recall from the first isomorphism theorem
that R/ker ¢ is isomorphic to ¢(R) = S, since ¢ is surjective. In particular, the ideals of R/ker ¢ are in
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one-to-one correspondence with those from S. Let ¢ : R/ ker ¢ — S be this correspondence, which is defined
by (r + ker ¢) = 6(r).

Now let M be a maximal ideal of S. This corresponds to a maximal ideal of R/ker ¢. Recall that the
forth isomorphism theorem states that there is a one-to-one correspondence between ideals of R/ ker ¢ and
ideals of R that contain ker ¢, so there is an ideal N of R that corresponds to this maximal ideal of R/ ker ¢.
(Also from the forth isomorphism theorem, we know that this maximal ideal is simply N/ker ¢.) Further,
the ideal N is maximal among ideals containing ker ¢. Of course, any ideal containing N clearly contains
ker ¢ as well, so NV is maximal among all ideals of R.

We can quickly see that N is, in fact, the preimage of M under ¢. Let n € N and recall that ¢(n) is
equal to gzg(n + ker ¢). Since n + ker ¢ € N/ker ¢ and N/ ker ¢ corresponds to M, we get that é(n + ker ¢)
is in M. Thus ¢(N) C M. On the other hand, if r € R\ N, then r + ker ¢ is not in N/ ker ¢, so its image
under ¢ is not in M. Therefore ¢~ (M) C N, so they must be equal.

We have shown that the preimage of a maximal ideal is also maximal for a surjective ring homomorphism.
Now, let r € rad(R). By definition, we know r is in every maximal ideal of R. We claim that ¢(r) must then
be in every maximal ideal of S and thus in rad(S) as needed.

Suppose there is a maximal ideal M of S that does not contain ¢(r). Then ¢~!(M) must not contain 7.
However, as shown above, ¢~1(M) is maximal, so it must contain r, a contradiction, completing our second
proof that ¢(rad(R)) C rad(sS).

Ounly a few more observations are necessary to show that, when ker ¢ is nil, we have ¢(rad(R)) = rad(S).
Recall from algebra that, in a commutative ring with unity, all maximal ideals are prime ideals and must
then contain all nilpotent elements as follows.

Let P be any prime ideal in R and let a be a nilpotent element of R with a™ = 0. Because 0 € P, the
primality of P tells us that either @ € P or a"~! € P, since their product is. If the former, we are done.

n=2 ¢ P. Because n is a

If the latter, then we again use the primality of P to get that either a € P or a
positive integer, we eventually must have a € P as needed.

So we have that every nilpotent element of R is in every prime ideal of R and, since all maximal ideals
are prime, in every maximal ideal of R. Now, because ker ¢ is nil, i.e. made up entirely of nilpotent elements,
it immediately follows that every maximal ideal of R contains the kernel of ¢. This is convenient because,
in the proof above that ¢(rad(R)) C rad(S), we found that the maximal ideals of S correspond directly to
the maximal ideals of R containing the kernel of ¢. So, if we have an element s € rad(S), its preimage is
contained in every maximal ideal of R containing the kernel, which is now every maximal ideal. Thus it’s

preimage is in rad(R), so s € ¢(rad(R)) as needed to establish equality.

Finally, we show that the requirement that ker ¢ is nil is not a trivial one, i.e. that it is sometimes the case
that ¢(rad(R)) & rad(S).

Let R=7Z and S =7Z/8Z. Let ¢ : R — S be the standard map sending an integer @ to a (mod 8). This
is a well-known ring homomorphism and clearly surjective. We observe that the kernel of ¢ is all multiples
of 8. Because 0 is the only nilpotent element of Z, it is not the case the ker ¢ is nil, so this is an example of
a situation not satisfying the hypothesis above. We will see that, indeed, ¢(rad(R)) G rad(S).

It is well-known that the maximal ideals of the integers are just the prime ideals, i.e. pZ where p is
prime. As the primes are infinite, there is no nonzero integer divisible by every prime, so the intersection of
all these ideals is 0. That is, we have rad(R) = (0). Clearly then, ¢(rad(R)) is also zero.

The radical of S is a more complicated object. All proper ideals of S can contain no odd numbers since
they are all units in Z/8Z. On the other hand, the ideal 27 /8Z is proper and consists of all the even numbers,
so it must be maximal, as if it contained any more, it would contain an odd number and thus a unit. Further,
all proper ideals of S must be made up entirely of even number and must therefore be contained in 2Z/8Z,
so this is the only maximal ideal of S. Therefore rad(S) = 2Z/8Z, which is clearly not (0). Thus ¢(rad(R))
is properly contained in rad(S) as needed, and the proof is complete. O
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