COMMUTATIVE ALGEBRA HW 1

JONES, KELLER

3. (a) Show that a ring R is directly decomposable as a ring iff it is directly decomposable

when considered as an R-module.

(b) Show that an R-module M is directly decomposable iff it has an idempotent endomor-
phism e: M — M such that ker(e) # 0 # im(e).

(c) Show that the R-module endomorphisms of gpR all have the form e(z) = r(z) for some
r € R.

(d) Show that any direct decomposition of R has the form R = R/(e) x R/(1 — e) for some
idempotent e € R.

Solution (a) Let R be a commutative ring with unit. Then we can consider the R-algebra
A= (R;+,—,0,{e, | r € R},-, 1)

where €,: A — A is the unary operation defined by eg(x) = r -z for all x € A.
Sometimes we will denote - by juxtaposition. The R-algebra A is a ring under the
operations +,—,0,-,1 and an R-module under the operations +,—,0,{e, | r € R}.
When considered as a ring, A is precisely the ring R. When considered as an R-module,
A is precisely the the ring R considered as an R-module, which we will denote by M
or gR when we wish to emphasize that we are considering A (or equivalently R) as an
R-module. We will now show that any subset of A that is an ideal when A is considered
as a ring forms a submodule when A is considered as an R-module, and conversely.
Suppose X C A is an ideal when A is considered as a ring. Then X is closed under the
operations +, —, 0. Now let x € X and r € R. Then we have ¢,(z) = rz € X, since X
is an ideal and hence closed under left multiplication by elements from R. Thus X is
closed under the operations {e, | » € R}. It follows that X is a submodule of M. On
the other hand, suppose X C A is submodule of M. Then X is closed under +, —,0.
Let x € X and r € R. Then we have rz = ¢,(x) € X since X is a submodule and
hence closed under the operations {e, | » € R}. It follows that X is closed under left
multiplication by elements from R and hence X is an ideal of R.

Consider that the set {0} C A is the zero ideal when A is considered as a ring and the
zero module when A is considered as an R-module. Then if X C A is an ideal of R
with X # (0) then X contains a nonzero element and hence X # (0) as a submodule of
M. Similarly if X C A is a submodule of M with X # (0) then X contains a nonzero
element and hence X # (0) as an ideal of R. Also, since R, M, and A have the same
underlying set R, it follows that a set X C A is a proper ideal of R if and only if it is a
proper submodule of M. Furthermore if S, T are subsets of A then we have SNT = (0)
as ideals iff SNT = (0) as submodules of M. We also have that the ring R = S + T iff
the module M = S + T. It follows that S, T are complementary ideals of R iff S,T are
complementary submodules of M.

Now suppose R is directly decomposable. That is to say there exist ideals S, T with
(0) # S,T # R such that R = R/S x R/T. This is equivalent to the statement that
(0) # S,T # R and S,T are complementary ideals. This holds iff (0) # S, T # M
and S,T are complementary submodules. This is equivalent to the statement that
(0) # S, T # M such that M = M/S x M/T. This is precisely the statement that M
is directly decomposable. The result follows. O
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(b) Let M be an R-module. Suppose M is directly decomposable. Then there exist sub-
modules U,V where (0) # U,V # M such that M = M/U x M/V. Then U,V are
complementary and hence M = U + V and (0) = U NV. Then every element m € M
can be written uniquely in the form m = w4+ v where v € U and v € V. We claim
that the map e: M — M defined by e(m) = v where m = w4+ v, u € U, v € V is
an idempotent endomorphism with ker(e) # 0 # im(e). To check that this map is an
R-module endomorphism, let m = v +v,m' =« +v' € M and let r € R. Since U,V
are submodules, u + v’ € U and v +v' € V. Then we have that

em+m)=e((u+u)+ (v+0)) =v+0 =e(m) +e(m').
Since U,V are submodules, ru € U and rv € V. Thus
g(rm) = e(ru+rv) = rv = re(m).
It follows that e respects addition and scalar multiplication and hence is an R-module
endomorphism. Furthermore, we have
e2(m) = e(e(m)) = e(v) = (0 +v) = v = &(m)

and hence ¢ is idempotent. Suppose £(m) =v = 0. Then m = u € U. Then ker(¢) C U.
On the other hand e(u) = e(u + 0) = 0 so ker(e) D U. Thus ker(e) = U # 0. Suppose
m € im(g). Then for some m’' = v’ 4+ v' we have m = e(m’) = v € V. Thus im(e) C V.
On the other hand for all v € V we have v = (0 + v) so im(¢) D V and hence
im(e) =V #0.

Now suppose that there is an idempotent endomorphism e: M — M such that ker(e) #
0 # im(g). Suppose m € ker(e) Nim(e). Then since m € im(g) we have that m = e(m/)
for some m’ € M. Since m € ker(e) we have e(m) = 0. Using the fact that ¢ is
idempotent we compute:

m = e(m') = e*(m’) = e(e(m’)) = e(m) = 0.

Hence ker(e) Nim(e) = (0). It follows that ker(e),im(e) # M, since if either of these
submodules were M, the fact that they intersect trivially would mean the other is (0),
contradicting our hypothesis. We now wish to show that M = ker(¢) + im(g). We have

m = [m —e(m)] + [e(m)].
Set v = g(m). Clearly v € im(e). Then it remains to show that u = m — g(m) € ker(e).
We compute
e(u) = e(m —e(m)) = e(m) —e*(m) =0
since € is idempotent. Thus we have expressed m = u + v where u € ker(e) and
v € im(e). It follows that M = ker(e) 4+ im(g). Then we have that ker(e) and im(e)

are complementary submodules with (0) # ker(e),im(e) # M. Thus M = M/U x MV
and hence M is directly decomposable. ([l
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Let ¢ be an R-module endomorphism of gpR. Let r = ¢(1). Let s € gR. Then (in A)
we have
e(s) =e(s-1) =se(l) = sr=rs.
Thus e(s) = rs for all s € pR. Furthermore, if ¢ is idempotent, then so is the element
r. This is because
rPP=r.r=r-g1)=¢c1)) =*(1) =¢(1) =

Thus every R-module endomorphism of pR acts as left multiplication by an element
of R and an idempotent endomorphism acts as left multiplication by an idempotent
element of R.

Let R = R/S x R/T be a direct decomposition of R where S,T" are ideals. Then by
part (a) we have that M = M/S x M/T is a direct decomposition of M = R. From
part (b) it follows that there is an idempotent R-module endomorphism e¢: M — M
such that S = ker(e) and T' = im(e). From part (c) there exists an idempotent e € R
such that e(z) = ex for all x € gR. Then we have

T =im(e) = eR = Re = (e)

in other words, the image of ¢ is the ideal generated by e, considered as an R-module.
Now suppose x € ker(e). Then ex = ¢(z) = 0. Since z = ex + (1 — e)z we have that
r=(l—e)z =x(l—e€). Then z € R(1—e) = (1—e), the ideal generated by 1 —e. On
the other hand, suppose = € (1 —e). Then z = r(1 — e) for some r € R. Then we have
c(x)=c(r(l—e) =er(l—e)=r(e—€e*) =0
since e is idempotent. Thus we have
S =ker(e) = (1 —e),

the ideal generated by 1 — e, considered as an R-module. Thus R = R/(e) x R/(1 —e)
as required.



