
COMMUTATIVE ALGEBRA HW 1

JONES, KELLER

3. (a) Show that a ring R is directly decomposable as a ring iff it is directly decomposable
when considered as an R-module.

(b) Show that an R-module M is directly decomposable iff it has an idempotent endomor-
phism ε : M →M such that ker(ε) 6= 0 6= im(ε).

(c) Show that the R-module endomorphisms of RR all have the form ε(x) = r(x) for some
r ∈ R.

(d) Show that any direct decomposition of R has the form R ∼= R/(e)×R/(1− e) for some
idempotent e ∈ R.

Solution (a) Let R be a commutative ring with unit. Then we can consider the R-algebra

A = 〈R; +,−, 0, {εr | r ∈ R}, ·, 1〉
where εr : A → A is the unary operation defined by εR(x) = r · x for all x ∈ A.
Sometimes we will denote · by juxtaposition. The R-algebra A is a ring under the
operations +,−, 0, ·, 1 and an R-module under the operations +,−, 0, {εr | r ∈ R}.
When considered as a ring, A is precisely the ring R. When considered as an R-module,
A is precisely the the ring R considered as an R-module, which we will denote by M
or RR when we wish to emphasize that we are considering A (or equivalently R) as an
R-module. We will now show that any subset of A that is an ideal when A is considered
as a ring forms a submodule when A is considered as an R-module, and conversely.
Suppose X ⊆ A is an ideal when A is considered as a ring. Then X is closed under the
operations +,−, 0. Now let x ∈ X and r ∈ R. Then we have εr(x) = rx ∈ X, since X
is an ideal and hence closed under left multiplication by elements from R. Thus X is
closed under the operations {εr | r ∈ R}. It follows that X is a submodule of M . On
the other hand, suppose X ⊆ A is submodule of M . Then X is closed under +,−, 0.
Let x ∈ X and r ∈ R. Then we have rx = εr(x) ∈ X since X is a submodule and
hence closed under the operations {εr | r ∈ R}. It follows that X is closed under left
multiplication by elements from R and hence X is an ideal of R.

Consider that the set {0} ⊂ A is the zero ideal when A is considered as a ring and the
zero module when A is considered as an R-module. Then if X ⊆ A is an ideal of R
with X 6= (0) then X contains a nonzero element and hence X 6= (0) as a submodule of
M . Similarly if X ⊆ A is a submodule of M with X 6= (0) then X contains a nonzero
element and hence X 6= (0) as an ideal of R. Also, since R,M , and A have the same
underlying set R, it follows that a set X ⊂ A is a proper ideal of R if and only if it is a
proper submodule of M . Furthermore if S, T are subsets of A then we have S ∩T = (0)
as ideals iff S ∩ T = (0) as submodules of M . We also have that the ring R = S + T iff
the module M = S + T . It follows that S, T are complementary ideals of R iff S, T are
complementary submodules of M .

Now suppose R is directly decomposable. That is to say there exist ideals S, T with
(0) 6= S, T 6= R such that R ∼= R/S × R/T . This is equivalent to the statement that
(0) 6= S, T 6= R and S, T are complementary ideals. This holds iff (0) 6= S, T 6= M
and S, T are complementary submodules. This is equivalent to the statement that
(0) 6= S, T 6= M such that M ∼= M/S ×M/T . This is precisely the statement that M
is directly decomposable. The result follows. �
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(b) Let M be an R-module. Suppose M is directly decomposable. Then there exist sub-
modules U, V where (0) 6= U, V 6= M such that M ∼= M/U ×M/V . Then U, V are
complementary and hence M = U + V and (0) = U ∩ V . Then every element m ∈ M
can be written uniquely in the form m = u + v where u ∈ U and v ∈ V . We claim
that the map ε : M → M defined by ε(m) = v where m = u + v, u ∈ U , v ∈ V is
an idempotent endomorphism with ker(ε) 6= 0 6= im(ε). To check that this map is an
R-module endomorphism, let m = u + v,m′ = u′ + v′ ∈ M and let r ∈ R. Since U, V
are submodules, u+ u′ ∈ U and v + v′ ∈ V . Then we have that

ε(m+m′) = ε((u+ u′) + (v + v′)) = v + v′ = ε(m) + ε(m′).

Since U, V are submodules, ru ∈ U and rv ∈ V . Thus

ε(rm) = ε(ru+ rv) = rv = rε(m).

It follows that ε respects addition and scalar multiplication and hence is an R-module
endomorphism. Furthermore, we have

ε2(m) = ε(ε(m)) = ε(v) = ε(0 + v) = v = ε(m)

and hence ε is idempotent. Suppose ε(m) = v = 0. Then m = u ∈ U . Then ker(ε) ⊂ U .
On the other hand ε(u) = ε(u + 0) = 0 so ker(ε) ⊃ U . Thus ker(ε) = U 6= 0. Suppose
m ∈ im(ε). Then for some m′ = u′ + v′ we have m = ε(m′) = v′ ∈ V . Thus im(ε) ⊂ V .
On the other hand for all v ∈ V we have v = ε(0 + v) so im(ε) ⊃ V and hence
im(ε) = V 6= 0.

Now suppose that there is an idempotent endomorphism ε : M →M such that ker(ε) 6=
0 6= im(ε). Suppose m ∈ ker(ε) ∩ im(ε). Then since m ∈ im(ε) we have that m = ε(m′)
for some m′ ∈ M . Since m ∈ ker(ε) we have ε(m) = 0. Using the fact that ε is
idempotent we compute:

m = ε(m′) = ε2(m′) = ε(ε(m′)) = ε(m) = 0.

Hence ker(ε) ∩ im(ε) = (0). It follows that ker(ε), im(ε) 6= M , since if either of these
submodules were M , the fact that they intersect trivially would mean the other is (0),
contradicting our hypothesis. We now wish to show that M = ker(ε) + im(ε). We have

m = [m− ε(m)] + [ε(m)].

Set v = ε(m). Clearly v ∈ im(ε). Then it remains to show that u = m− ε(m) ∈ ker(ε).
We compute

ε(u) = ε(m− ε(m)) = ε(m)− ε2(m) = 0
since ε is idempotent. Thus we have expressed m = u + v where u ∈ ker(ε) and
v ∈ im(ε). It follows that M = ker(ε) + im(ε). Then we have that ker(ε) and im(ε)
are complementary submodules with (0) 6= ker(ε), im(ε) 6= M . Thus M ∼= M/U ×M/V
and hence M is directly decomposable. �



(c) Let ε be an R-module endomorphism of RR. Let r = ε(1). Let s ∈ RR. Then (in A)
we have

ε(s) = ε(s · 1) = sε(1) = sr = rs.

Thus ε(s) = rs for all s ∈ RR. Furthermore, if ε is idempotent, then so is the element
r. This is because

r2 = r · r = r · ε(1) = ε(ε(1)) = ε2(1) = ε(1) = r.

Thus every R-module endomorphism of RR acts as left multiplication by an element
of R and an idempotent endomorphism acts as left multiplication by an idempotent
element of R.

(d) Let R = R/S × R/T be a direct decomposition of R where S, T are ideals. Then by
part (a) we have that M = M/S ×M/T is a direct decomposition of M =R R. From
part (b) it follows that there is an idempotent R-module endomorphism ε : M → M
such that S = ker(ε) and T = im(ε). From part (c) there exists an idempotent e ∈ R
such that ε(x) = ex for all x ∈ RR. Then we have

T = im(ε) = eR = Re = (e)

in other words, the image of ε is the ideal generated by e, considered as an R-module.
Now suppose x ∈ ker(ε). Then ex = ε(x) = 0. Since x = ex + (1 − e)x we have that
x = (1− e)x = x(1− e). Then x ∈ R(1− e) = (1− e), the ideal generated by 1− e. On
the other hand, suppose x ∈ (1− e). Then x = r(1− e) for some r ∈ R. Then we have

ε(x) = ε(r(1− e)) = er(1− e) = r(e− e2) = 0

since e is idempotent. Thus we have

S = ker(ε) = (1− e),
the ideal generated by 1− e, considered as an R-module. Thus R ∼= R/(e)×R/(1− e)
as required.


