Problem 1. (Batchelder, Chriestenson, Gern) Let k be a field.
Describe the ideal lattice of

o k[z]

o K[[k]]

o k((k))

Solution: We begin with k[z]. Recall that since k is a field k[z] is a
euclidean domain and hence a principal ideal domain, a unique factor-
ization domain, and an integral domain. Thus every ideal of k[x] is
generated some element of k[z].
Define = on k[z] by p = ¢ < p = qu where w is unit and p, g € k[z].
Note that for all p,q,r € k[z] we have that:
e p = p because p = 1p
o If p=gthen p=qusoqg=pu! hence g =p
o If p = g and ¢ = r then there are units u and v in k[z] such
that p = qu and ¢ = rv; Hence p = rvu and p = r since uv is a
unit.
Hence = is an equivalence relation on k[z]. Note p = ¢ if and only if
the ideals (p) and (q) are equal. Hence the equivalence classes of =
are in one to one correspondence with the ideals of k[x]. Denote the
equivalence class of p by [p].
Define < on the equivalence classes of = by [p] < [q] < p|q in k[z].
Note that for any p,q,r € k[z] we have that:
e [p] <|[p]since p =1p
o If [p] < [q], [¢] < [r] then Ja,b € k[z] such that ¢ = ap and
r = bq thus r = bap; Ergo [p] < [r]
e If p < gand g < pthen Ja,b € k[x] such that ¢ = ap and p = bq
thus p = bap and so ba = 1. Thus p and ¢ differ by a unit so
p = ¢; Giving [p] = [q].
Therefore we have a partial ordering on the equivalence classes of = in
For any p,q € k[z]| there are unique integers m and n and unique
prime elements p;, ¢; € klz] with 1 <7 <m and 1 < j < n such that
P = upip2...pm and ¢ = vq1qs...q, where u, v € k[x] are units. By possi-
bly reordering and renaming the primes found in both decompositions
to r; we can write p = urire..vyPir1...Pm and q¢ = VT TiQrit1---Qn
for some integer ¢ with 1 < ¢t < min{m,n}. Now we can define
gcd(p, q) = rirg...ry and lem(p, q) = r172...7¢Qie1--GmPis1---Pn. Clearly
gcd(p, q)|p and ged(p, q)|q and we defined ged(p, q) to be the largest di-
visor of both p and ¢. Likewise p|lem(p, q) and g|lem(p, q) and lem(p, q)
is defined to be the smallest element such that p and ¢ both divide it.
Thus since prime decomposition is unique up to unit the prime decom-
positions of [p] and [¢] are unique (up to reordering).
Thus we can define V and A on the equivalence classes of = by

[p] V [q] = [lem(p, q)] and [p] A [q] T [gcd(p, q)]. The uniqueness of the
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prime decompositions shows that these are well defined. Denote by
[k[x]] the set of equivalence classes of = in k[z]. Then we have that
([k[z]]; <, V, A) is a lattice that is isomorphic to the lattice of ideals of
k[x] by construction. We note that if p, g € k[x] such that p < ¢ then
the ideal inclusion is reversed; that is (¢) C (p). So the ideal lattice of
k[x] looks like A but < in A corresponds to 2O in the ideal lattice of

We now move on to k[[z]], the ring of formal power series in the
variable x. We recall that the elements of k[[x]] are formal sums ay +
a1 + ax® + ... where a; € k for all i = 0,1,2,.... Note that it if
A=ayg+a; +ax®>+ ... and C = ¢y + 12 + 2> + ... are inverses
of each other then AB = 1 hence the 0-th coefficient agcyg must be 1.
In particular this means that if A is a unit that ay cannot be 0. Now
for A given above with ag # 0 we define B = by + bz + byx® + ... by
bo = (ap)~! Assuming the first n — 1 coefficients of B are defined we
define b, in terms of the previous coefficients of B by b,, = —bg(b,—1a1+
by_2as + ... + bia,_1 + biag) for each n > 1. The b;’s are well defined
by the principle of recursive definition. Notice that agb, = b,_1a; +
bp_2as + ... + bya,_1 + brag so we get that agb, + b,_1a1 + b,_sas +
oo + b1ay_1 4+ biag = 0. This implies AB = 1 since for n > 1 we have
aoby, + bp_1a1 +by_2a9+ ... + bra,—1 + brag is the n-th coefficient of AB;
And the 0-th coefficient is 1. Thus A is a unit. Hence every element
with nonzero constant term is a unit.

Let I be any ideal on k[[z]] and let [ be the smallest integer such
that 2! € I. Then (2!) C I C (x). If there is an integer m satisfying
m < land IN(z™) # {0}, let apz’ +ayz"™ 4 ... # 0 be in I N (z™) such
that ag # 0. This implies 2™ (ag + a12 + agz® + ...) € I N (z™), which
is ™ times a unit. Hence 2™ is in I N (2!) and thus 2™ = 2! so m = [.
This implies that I = (2!). Thus every ideal of k[[z]] is generated by a
unique element in the set A = {z!|l = 1,2,...}, likewise every element
of this set generates an ideal in k[[z]].

The set A is in bijective correspondence with the strictly positive
integers. Note that for positive integers m and n we have that if
m < n then (2") C (2™) in k[[z]]. Hence A is linearly ordered via
this correspondence. Thus the lattice of ideals of k[[z]] is a tower:
{k[[z]] = (1) 2 (z) 2 (2%) 2 (2®) D ...}. More formally it is isomorphic
to (A; <) where 2™ < 2™ in A if and only if m <n in Z.

Now we turn to k((z)) the ring of formal Laurent series a_,x~" +
a2V Fag+ arx + asx? + ... for some integer n. First note that that
k[[z]] is a subring of k((z)) as the sums with no negative indices. Note
that since 7! € k((x)) then xz=! = 1 and z is a unit is k((x)). Hence
for any element f = a_,z™ % +...a_1x ' +ag+ a1z + axx® + ... € k((x))
we have (z")(f) € k[[z]] and the constant term of (z™)(f) is nonzero so
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(™)(f) is a unit is k[[z]]. Thus since x is a unit in k((z)) we have that
f is a unit is k((x)).(Note that this argument works with n a negative
integer as well.) Since f was chosen arbitrarily we must have that all
elements of k((z)) are units. Since k((x)) is commutative we have that
it is a field. Hence the ideal lattice of k((x)) lattice is a lattice with
two elements: {(0) C k[[z]]}. O



