
Problem 1. (Batchelder, Chriestenson, Gern) Let k be a field.

Describe the ideal lattice of

• k[x]
• k[[k]]
• k((k))

Solution: We begin with k[x]. Recall that since k is a field k[x] is a
euclidean domain and hence a principal ideal domain, a unique factor-
ization domain, and an integral domain. Thus every ideal of k[x] is
generated some element of k[x].

Define ≡ on k[x] by p ≡ q ⇔ p = qu where u is unit and p, q ∈ k[x].
Note that for all p, q, r ∈ k[x] we have that:

• p ≡ p because p = 1p
• If p ≡ q then p = qu so q = pu−1 hence q ≡ p

• If p ≡ q and q ≡ r then there are units u and v in k[x] such
that p = qu and q = rv; Hence p = rvu and p ≡ r since uv is a
unit.

Hence ≡ is an equivalence relation on k[x]. Note p ≡ q if and only if
the ideals (p) and (q) are equal. Hence the equivalence classes of ≡
are in one to one correspondence with the ideals of k[x]. Denote the
equivalence class of p by [p].

Define ≤ on the equivalence classes of ≡ by [p] ≤ [q] ⇔ p|q in k[x].
Note that for any p, q, r ∈ k[x] we have that:

• [p] ≤ [p] since p = 1p
• If [p] ≤ [q], [q] ≤ [r] then ∃a, b ∈ k[x] such that q = ap and

r = bq thus r = bap; Ergo [p] ≤ [r]
• If p ≤ q and q ≤ p then ∃a, b ∈ k[x] such that q = ap and p = bq

thus p = bap and so ba = 1. Thus p and q differ by a unit so
p ≡ q; Giving [p] = [q].

Therefore we have a partial ordering on the equivalence classes of ≡ in
k[x].

For any p, q ∈ k[x] there are unique integers m and n and unique
prime elements pi, qj ∈ k[x] with 1 ≤ i ≤ m and 1 ≤ j ≤ n such that
p = up1p2...pm and q = vq1q2...qn where u, v ∈ k[x] are units. By possi-
bly reordering and renaming the primes found in both decompositions
to ri we can write p = ur1r2...rtpt+1...pm and q = vr1r2...rtqt+1...qn

for some integer t with 1 ≤ t ≤ min {m, n}. Now we can define
gcd(p, q) = r1r2...rt and lcm(p, q) = r1r2...rtqt+1...qmpt+1...pn. Clearly
gcd(p, q)|p and gcd(p, q)|q and we defined gcd(p, q) to be the largest di-
visor of both p and q. Likewise p|lcm(p, q) and q|lcm(p, q) and lcm(p, q)
is defined to be the smallest element such that p and q both divide it.
Thus since prime decomposition is unique up to unit the prime decom-
positions of [p] and [q] are unique (up to reordering).

Thus we can define ∨ and ∧ on the equivalence classes of ≡ by
[p] ∨ [q] = [lcm(p, q)] and [p] ∧ [q] = [gcd(p, q)]. The uniqueness of the
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prime decompositions shows that these are well defined. Denote by
[k[x]] the set of equivalence classes of ≡ in k[x]. Then we have that
〈[k[x]];≤,∨,∧〉 is a lattice that is isomorphic to the lattice of ideals of
k[x] by construction. We note that if p, q ∈ k[x] such that p ≤ q then
the ideal inclusion is reversed; that is (q) ⊆ (p). So the ideal lattice of
k[x] looks like A but ≤ in A corresponds to ⊇ in the ideal lattice of
k[x].

We now move on to k[[x]], the ring of formal power series in the
variable x. We recall that the elements of k[[x]] are formal sums a0 +
a1x + a2x

2 + ... where ai ∈ k for all i = 0, 1, 2, .... Note that it if
A = a0 + a1 + a2x

2 + ... and C = c0 + c1x + c2x
2 + ... are inverses

of each other then AB = 1 hence the 0-th coefficient a0c0 must be 1.
In particular this means that if A is a unit that a0 cannot be 0. Now
for A given above with a0 6= 0 we define B = b0 + b1x + b2x

2 + ... by
b0 = (a0)

−1 Assuming the first n − 1 coefficients of B are defined we
define bn in terms of the previous coefficients of B by bn = −b0(bn−1a1+
bn−2a2 + ... + b1an−1 + b1a0) for each n ≥ 1. The bi’s are well defined
by the principle of recursive definition. Notice that a0bn = bn−1a1 +
bn−2a2 + ... + b1an−1 + b1a0 so we get that a0bn + bn−1a1 + bn−2a2 +
... + b1an−1 + b1a0 = 0. This implies AB = 1 since for n ≥ 1 we have
a0bn + bn−1a1 + bn−2a2 + ...+ b1an−1 + b1a0 is the n-th coefficient of AB;
And the 0-th coefficient is 1. Thus A is a unit. Hence every element
with nonzero constant term is a unit.

Let I be any ideal on k[[x]] and let l be the smallest integer such
that xl ∈ I. Then (xl) ⊆ I ⊆ (x). If there is an integer m satisfying
m ≤ l and I ∩ (xm) 6= {0}, let a0x

l +a1x
l+1 + ... 6= 0 be in I ∩ (xm) such

that a0 6= 0. This implies xm(a0 + a1x + a2x
2 + ...) ∈ I ∩ (xm), which

is xm times a unit. Hence xm is in I ∩ (xl) and thus xm = xl so m = l.
This implies that I = (xl). Thus every ideal of k[[x]] is generated by a
unique element in the set A = {xl|l = 1, 2, ...}, likewise every element
of this set generates an ideal in k[[x]].

The set A is in bijective correspondence with the strictly positive
integers. Note that for positive integers m and n we have that if
m ≤ n then (xn) ⊆ (xm) in k[[x]]. Hence A is linearly ordered via
this correspondence. Thus the lattice of ideals of k[[x]] is a tower:
{k[[x]] = (1) ⊇ (x) ⊇ (x2) ⊇ (x3) ⊇ ...}. More formally it is isomorphic
to 〈A;≤〉 where xn ≤ xm in A if and only if m ≤ n in Z.

Now we turn to k((x)) the ring of formal Laurent series a
−nx−x +

...a
−1x

−1 +a0 +a1x+a2x
2 + ... for some integer n. First note that that

k[[x]] is a subring of k((x)) as the sums with no negative indices. Note
that since x−1 ∈ k((x)) then xx−1 = 1 and x is a unit is k((x)). Hence
for any element f = a

−nx−x + ...a
−1x

−1 + a0 + a1x+ a2x
2 + ... ∈ k((x))

we have (xn)(f) ∈ k[[x]] and the constant term of (xn)(f) is nonzero so
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(xn)(f) is a unit is k[[x]]. Thus since x is a unit in k((x)) we have that
f is a unit is k((x)).(Note that this argument works with n a negative
integer as well.) Since f was chosen arbitrarily we must have that all
elements of k((x)) are units. Since k((x)) is commutative we have that
it is a field. Hence the ideal lattice of k((x)) lattice is a lattice with
two elements: {(0) ⊆ k[[x]]}. �


