
ALGEBRA TEST #2

This exam is due Friday, October 31. Do three of the problems. You may use your
book, but you may not communicate with others concerning the exam. In order to
receive full credit your answer must be complete, legible and correct.

I have neither given nor received aid on this exam.
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1. Show that if N is a minimal normal subgroup of some finite group G, then N
is isomorphic to a power Sk of a simple group S.

Let M ≺ N be a subgroup that maximal for being normal in N , and let N/M = S
be the simple quotient. The conjugation map γg(x) = gxg−1 for g ∈ G induces an

automorphism of N . The kernel of the (surjective) composite map N
γg

→ N
ν
→ N/M

is g−1Mg, so N/g−1Mg ∼= S for all g ∈ G. Thus we have a family of surjective
homomorphisms ν ◦ γg from N onto S, which may be combined into a single product
map ϕ : N → S |G| which, when followed by any coordinate projection onto S, is
surjective. The kernel of ϕ is ∩g∈G(g−1Mg), which is a normal subgroup of G that is
properly contained in N , hence is {1}. Thus, ϕ embeds N into a power of a simple
group S in such a way that each composition of ϕ with the coordinate projections
is surjective. The result now follows from the more general statement: If ϕ : N →∏k

i=1
Si is an embedding of a group into a finite product of simple groups in such a

way that each composition of ϕ with a coordinate projection is surjective, then N is

isomorphic to a product of some subset of the Si’s.

This statement is proved by induction on the number of factors. Suppose k is the
least number of factors for which the statement has not yet been proved, and that
ϕ : N →

∏k

i=1
Si is an embedding of the type described. Compose ϕ with projection

onto the first k−1 factors, and let A be the kernel of this composition N
ϕ
→

∏k

i=1
Si →∏k−1

i=1
Si. Let B be the kernel of the composite N

ϕ
→

∏k

i=1
Si → Sk. If either A = {1}

or B = {1} we are done by induction. We have A ∩ B = ker(ϕ) = {1}, so since
A and B are nontrivial they must be incomparable. The incomparability implies
that A ∨ B = AB properly contains B in Norm(N). But B is a maximal normal
subgroup of N , so AB = N . Since A and B are complementary normal subgroups
of N , N ∼= N/A × N/B ∼= N/A × Sk. The group N/A is isomorphic to a product of
some subset of the groups S1, . . . , Sk−1, by induction, so we are done.
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2. Describe the structural properties a group G must have if the free G-set 〈G; G〉
has a nontrivial direct factorization (meaning 〈G; G〉 ∼= A × B with |A|, |B| > 1).
Then find a nonabelian finite group G such that 〈G; G〉 has no nontrivial direct
factorization.

We have seen that the subgroup lattice of G is isomorphic to the congruence lattice
of the free G-set 〈G; G〉 via the map H 7→ θH , where

θH = {(a, b) ∈ G2 | a−1b ∈ H}.

The characterization of products states that direct factorizations correspond to pairs
of permuting complementary congruences. From our first sentence, congruences θH

and θK are complements iff H and K are complementary subgroups. The pair (a, b)
lies in θH ◦ θK iff a−1b ∈ HK, and lies in θK ◦ θH iff a−1b ∈ KH. Thus θH and
θK are permuting congruences iff H and K are permuting subgroups (i.e., HK =
KH). Thus, the G-set 〈G; G〉 has a nontrivial direct factorization iff G has a pair of
nontrivial proper permuting subgroups.

The 8-element quaternion group has no pair of nontrivial complementary sub-
groups, because all proper subgroups contain the center.

3. Let FGrp(a, b) be the group freely generated by the set X = {a, b}. Show
that the subset {ab, a2b2, a3b3, . . .} is an infinite independent subset of this group.
Conclude that a free group generated by a countably infinite set is embeddable in a
free group on two generators.

We must show that if w(x1, . . . , xn) is a nonidentity reduced word and i1, . . . , in
are distinct, then w(ai1bi1 , . . . , ainbin) 6= 1. We do this by induction on the length of
w. The precise statement to prove by induction is: If w ends in the letter xj, then the
reduced form of w(ai1bi1 , . . . , ainbin) ends in exactly ij b’s, preceded by a or a−1; if w
ends in the letter x−1

j , then the reduced form of w(ai1bi1 , . . . , ainbin) ends in exactly

ij a−1’s, preceded by b or b−1. The two cases are handled the same way, so assume we
are in the first case where w = w′xj. Since w is reduced, the word w′ is reduced and
cannot end in x−1

j . This means that after substituting the anbn’s we get by induction

that w′(ai1bi1 , . . . , ainbin) ends in a sequence of a−1’s whose length is not ij, or else
ends in a sequence of b’s. Neither case can affect the length of the final string of b’s
in

w(ai1bi1 , . . . , ainbin) = w′(ai1bi1 , . . . , ainbin)aijbij ,

since after reduction the final sequence of ij b’s is still separated by the earlier letters
by some a’s or a−1’s.
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4. In this problem you will establish a fairly compact presentation of the symmetric
group Sn+1. Take as generators τ1, . . . , τn and as relations

• τ 2
i = 1 for all i.

• (τiτi+1)
3 = 1 for all i (equivalently, τiτi+1τi = τi+1τiτi+1 for all i).

• τiτj = τjτi if |j − i| > 1.

(a) Show that the group with this presentation has a homomorphism onto Sn+1.
(b) Show that the group with this presentation has at most (n + 1)! elements.

(Hint for (b): Use the relations and induction on n to show that any product of
generators may be rewritten as a product of the same length or shorter in the form
στnτn−1 · · · τk+1τk for some k where σ is a product of generators not including τn.)

Let Gn+1 be the group defined by the given presentation, 〈X | R〉. The function
f : X → Sn+1 defined by τi 7→ (i i + 1) preserves the relations, so extends uniquely
to a homomorphism f : Gn+1 → Sn+1. This homomorphism is surjective since it
contains a generating set f(X) in its image.

We prove by induction on n that any product of generators may be rewritten as a
product of the same length or shorter in the form στnτn−1 · · · τk+1τk for some k where
σ is a product of generators not including τn. Since there are at most n! choices
for σ (by induction) and n + 1 choices for the sequence following σ, this will prove
|Gn+1| ≤ (n + 1)!. The cases n = 0 and n = 1 are obvious.

Now suppose that we have a shortest product of generators that represents a par-
ticular element π ∈ Gn+1. If τn occurs more than once, we can eliminate one of
them without increasing length, as follows: if π = · · · τnρτn · · · indicates two oc-
currences of τn in the string π with an intermediate string ρ with no τn’s, then
by induction we may assume that ρ contains at most one τn−1. If ρ contains no
τn−1, then the relations allow us to bring the two τn’s together and cancel them,
leaving a shorter word. In the alternative case, we can move the two τn’s adja-
cent to the τn−1 to obtain π = · · · τnτn−1τn · · · = · · · τn−1τnτn−1 · · · , which has fewer
τn’s. This process may be continued until there is only one τn. Now we may as-
sume that π = ατnβ where α and β are free of τn. By induction we may assume
β = σ1τn−1τn−2 · · · τk with τn and τn−1 not in σ1, in which case we may rewrite
π = ατnβ = ατnσ1τn−1τn−2 · · · τk = (ασ1)τnτn−1τn−2 · · · τk with τn not appearing in
σ := (ασ1).
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5. Let A = 〈G/H; G〉 be the G-set of left cosets of H under the action of left
multiplication. Show that Aut(A) ∼= NG(H)/H.

Since G/H is 1-generated, any automorphism is determined by its action on the
coset H. This means that for any other coset gH there can be at most one auto-
morphism that maps H to gH. Isomorphisms of G-sets preserve stabilizers, so for an
automorphism to map H to gH we must have H = Stab(H) = Stab(gH) = gHg−1,
or g ∈ NG(H). We argue that for every g ∈ NG(H) there is an automorphism that
maps H to gH.

Choose g ∈ NG(H) and let ρg : G/H → G/H : aH 7→ aHg−1 be right multiplication

by g−1. Since g ∈ NG(H) we have ρg(aH) = a(Hg−1) = ag−1H, so ρg maps left
cosets to left cosets. The associative law implies that left multiplications commute
with right multiplications, so ρg is a homomorphism. Since ρg has inverse ρg−1 it
is an automorphism. Since ρg ◦ ρk(H) = Hk−1g−1 = H(gk)−1 = ρgk(H) the map
ϕ : NG(H) → Aut(G/H) : g 7→ ρg is a homomorphism. If α ∈ Aut(G/H), and
α(H) = gH, then we pointed out in the previous paragraph that α is the only
automorphism mapping H to gH, but since ρg−1 is another we get that the map ϕ is
surjective. ker(ϕ) consists of those g ∈ NG(H) such that ρg = id, and these are the
g ∈ NG(H) such that H = ρg(H) = Hg, i.e., the g ∈ H. By the first isomorphism
theorem NG(H)/H = NG(H)/ ker(ϕ) ∼= im(ϕ) = Aut(G/H).

6. Show that a coproduct of a family {Aj | j ∈ J} of G-sets is (A, {ιj}) where A

is the disjoint union of the Aj and ιj is inclusion.

The disjoint union ∪Ai of G-sets is again a G-set, with the action of g(x) on an
element a ∈ Aj ⊆ ∪Ai being the same as it was in Aj. We take the inclusion maps
ιj : Aj → ∪Ai to be the coprojections. For any family of homomorphisms ϕj : Aj → B

we need to construct tϕi :
⋃

Ai → B which encodes the ϕi’s. Define tϕi so that it
equals ϕj on elements of Aj. This uniquely defines tϕi on ∪Ai. It is a homomorphism,
since if a ∈ Aj ⊆ ∪Ai and g ∈ G, then tϕi(g(a)) = ϕj(g(a)) = g(ϕj(a)) = g(tϕi(a)).
Finally, tϕi ◦ ιj(a) = tϕi(a) = ϕj(a) for any a ∈ Aj, proving that tϕi ◦ ιj = ϕj for
any j.


