
What is a Universal Property?

Modern Algebra 1

Fall 2008

Modern Algebra 1 (Fall 2008) What is a Universal Property? 1 / 10



The Algebraization of Functional Composition

Recall: When we created an algebraic model to study functional composition
(monoids), we made the simplifying assumption that all functions were
self-maps of some set X.

Now we drop that assumption and consider functions
between different sets. The standard model of this situation is a category.
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Defn (Category)
A category is a 2-sorted partial algebra C = 〈O, M; ◦, id, dom, cod〉 where

(1) Ob(C) = O is a class whose members are called objects,
(2) Mor(C) = M is a class whose members are called morphisms,
(3) ◦ : M × M → M is a binary partial operation called composition,
(4) id : O → M is a unary function assigning to each object A ∈ O a

morphism idA called the identity of A,
(5) dom, cod : M → O are unary functions assigning to each morphism f

objects called the domain and codomain of f respectively.

The laws defining categories are:

(1) f ◦ g exists if and only if dom(f ) = cod(g).
(2) Composition is associative when it is defined.
(3) dom(f ◦ g) = dom(g), cod(f ◦ g) = cod(f ).
(4) If A = dom(f ) and B = cod(f ), then f ◦ idA = f and idB ◦ f = f .
(5) dom(idA) = cod(idA) = A.
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Examples of Categories

Examples

(1) If 〈M; ◦, 1〉 is a monoid, then M determines a one-object category

M = 〈{∗}, M; ◦, id, dom, cod〉

where id(∗) = 1 and dom, cod : M → {∗} are both the constant
function.

(2) If 〈P;≤〉 is a partially ordered set, then the elements of P may be thought
of as the objects of a category whose morphisms are the arrows a → b
whenever a ≤ b in P.

(3) Any class of algebras equipped with all algebra homomorphisms is a
category.
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Functors

Since categories are algebraic structures, we immediately know the meaning
of subcategory, quotient category, etc., especially “homomorphism”:

Defn (Functor)
A functor F : C → D is a homomorphism from C to D. In detail, F is a pair of
mappings, both called F, between object classes and morphism classes,
F : Ob(C) → Ob(D) and F : Mor(C) → Mor(D), where

(1) F(f ◦ g) = F(f ) ◦ F(g),

(2) F(idA) = idF(A),

(3) F(dom(f )) = dom(F(f )), and

(4) F(cod(f )) = cod(F(f )).
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Examples of Functors

Examples

(1) A functor F : M → N from one monoid to another is just a monoid
homomorphism.

(2) A functor F : P → Q from one ordered set to another is just an
order-preserving function.

(3) Functors from the category of rings to the category of groups include:

(i) The unit group functor R 7→ U(R), ϕ 7→ ϕ|U(R).
(ii) GLn: R 7→ GLn(R), ϕ 7→ ϕ|GLn(R).
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∃ A Cayley Representation Theorem

A category is small if M is a set. (This forces O to be a set, too.)

Theorem
Every small category is embeddable in the category of sets.

Idea of proof.
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Remarks

(1) We don’t need objects, strictly speaking, because the role of object A can
be played by the morphism iA, after a translation of language.

(2) Our definition of monoid was a “morphisms only” description of a
1-object category, minus redundant information.

(3) The representation theorem we gave for monoids was a special case of
the one for categories, in the “morphisms only” formulation.

(4) The “antihomomorphism” concept for monoids has an important
generalization to categories:

A contravariant functor F : C → D is an antihomomorphism (a composition
reversing mapping) from C to D. That is, F : Ob(C) → Ob(D),
F : Mor(C) → Mor(D), and

(1) F(f ◦ g) = F(g) ◦ F(f ),
(2) F(idA) = idF(A),
(3) F(dom(f )) = cod(F(f )), and
(4) F(cod(f )) = dom(F(f )).
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Universal Morphisms

Given a functor F : C → D, a universal morphism from X ∈ Ob(D) to F is a
pair (A, f ) ∈ Ob(C)× Mor(D) that is “universal” among all such pairs for the
property that f : X → F(A). The universality means that if (B, g) is another
pair with g : X → F(B), then there is a unique h : A → B such that
g = F(h) ◦ f .
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Universal Morphisms, Properties

The notion of a universal morphisms from a functor F to an object X is
obtained by reversing the directions of all morphisms. The statement that
(A, f ) is a universal morphism is the universal property of this pair.

Examples

(1) Let C × C be the category whose objects are pairs (A, B) where
A, B ∈ Ob(C) and whose morphisms are pairs (f , g) where
f , g ∈ Mor(C). Now let ∆: C → C × C be the functor C 7→ (C, C),
e 7→ (e, e). For any X = (A, B) in this category, a universal morphism
from ∆ to X is a product (P, (πA, πB)) of A and B.

(2) A universal morphism to ∆ from X is a coproduct of A and B.
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