What is a Universal Property?

Modern Algebra 1

Fall 2008

Modern Algebra 1 (Fall 2008) What is a Universal Property?



The Algebraization of Functional Composition

Recall: When we created an algebraic model to study functional composition
(monoids), we made the simplifying assumption that all functions were
self-maps of some set X.
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A category is a 2-sorted partial algebra C = (O, M; o,id, dom, cod) where

(1) Ob(C) = O is a class whose members are called objects,

(2) Mor(C) = M is a class whose members are called morphisms,

(3) o: M x M — M is a binary partial operation called composition,

(4) id : O — M is a unary function assigning to each object A € O a
morphism id, called the identity of A,

(5) dom,cod : M — O are unary functions assigning to each morphism f
objects called the domain and codomain of f respectively.

The laws defining categories are:

(1) f o g exists if and only if dom(f) = cod(g).

(2) Composition is associative when it is defined.

(3) dom(f o g) = dom(g), cod(f o g) = cod(f).

(4) If A = dom(f) and B = cod(f), then f oidy = f and idg o f = f.
(5) dom(idy) = cod(ids) = A.
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Examples of Categories

(1) If (M; 0, 1) is a monoid, then M determines a one-object category
M = ({*},M, o,id, dom, cod)

where id(*) = 1 and dom, cod : M — {x} are both the constant
function.
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where id(*) = 1 and dom, cod : M — {x} are both the constant
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(2) If (P; <) is a partially ordered set, then the elements of P may be thought

of as the objects of a category whose morphisms are the arrows a — b
whenever a < b in P.
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Examples of Categories

(1) If (M; 0, 1) is a monoid, then M determines a one-object category

M = ({x},M, o,id, dom, cod)

where id(*) = 1 and dom, cod : M — {x} are both the constant
function.
(2) If (P; <) is a partially ordered set, then the elements of P may be thought

of as the objects of a category whose morphisms are the arrows a — b
whenever a < b in P.

(3) Any class of algebras equipped with all algebra homomorphisms is a
category.
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Examples of Functors

(1) A functor F: M — N from one monoid to another is just a monoid
homomorphism.

(2) A functor F: P — Q from one ordered set to another is just an
order-preserving function.
(3) Functors from the category of rings to the category of groups include:
(i) The unit group functor R — U(R), ¢ — ©|y(r)-
(ii) GLa: R GLa(R), ¢ — ¥l6L,(r)-
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A category is small if M is a set. (This forces O to be a set, t00.)
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be played by the morphism iy, after a translation of language.
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Universal Morphisms

Given a functor F: C — D, a universal morphism from X € Ob(D) to F is a
pair (A,f) € Ob(C) x Mor(D) that is “universal” among all such pairs for the
property that f: X — F(A). The universality means that if (B, g) is another
pair with g: X — F(B), then there is a unique #: A — B such that
g=F(h)of.
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Universal Morphisms, Properties

The notion of a universal morphisms from a functor F to an object X is
obtained by reversing the directions of all morphisms. The statement that
(A,f) is a universal morphism is the universal property of this pair.

Modern Algebra 1 (Fall 2008)

What is a Universal Property?

10/10



Universal Morphisms, Properties

The notion of a universal morphisms from a functor F to an object X is
obtained by reversing the directions of all morphisms. The statement that
(A,f) is a universal morphism is the universal property of this pair.

Examples

Modern Algebra 1 (Fall 2008)

What is a Universal Property?

10/10



Universal Morphisms, Properties

The notion of a universal morphisms from a functor F to an object X is
obtained by reversing the directions of all morphisms. The statement that
(A,f) is a universal morphism is the universal property of this pair.

Examples

(1) Let C x C be the category whose objects are pairs (A, B) where
A, B € Ob(C) and whose morphisms are pairs (f, g) where
f,& € Mor(C). Now let A: C — C x C be the functor C — (C, C),
e — (e, e). For any X = (A, B) in this category, a universal morphism
from A to X is a product (P,(wa,wg)) of A and B.
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obtained by reversing the directions of all morphisms. The statement that
(A,f) is a universal morphism is the universal property of this pair.

Examples

(1) Let C x C be the category whose objects are pairs (A, B) where
A, B € Ob(C) and whose morphisms are pairs (f, g) where
f,& € Mor(C). Now let A: C — C x C be the functor C — (C, C),
e — (e, e). For any X = (A, B) in this category, a universal morphism
from A to X is a product (P,(wa,wg)) of A and B.

(2) A universal morphism to A from X is a coproduct of A and B.
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