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CLOSURE SYSTEMS AND CLOSURE OPERATORS

Definition 1. (Closure system) A family C of subsets of A is a closure system if the family
is closed under complete intersection. (This includes the empty intersection, which forces
A ∈ C.) The elements of C are called the closed subsets of A with respect to the closure
system.

If X ⊆ A, then the closure of X with respect to this closure system is X :=
⋂
{C ∈

C | X ⊆ C}.

X is the smallest closed set containing X.

Example 2. (Of closure systems)

(1) The family of closed sets of a topological space.
(2) The family of subalgebras of an algebra.
(3) The family of down-closed subsets of a partially ordered set 〈A;≤〉.

In this course, we are interested in closure systems primarily because of Example (2).

Theorem 3. The map : X 7→ 〈X〉 is a function P(A) → P(A) that is

(i) (Extensive) X ⊆ X
(ii) (Isotone) X ⊆ Y implies X ⊆ Y .

(iii) (Idempotent) X = X.

A function : P(A) → P(A) satisfying (i)—(iii) is called a closure operator, and sets of
the form X are called closed with respect to .

Conversely, given any closure operator , the family C = {X | X ⊆ A} is a closure
system.

Proof. Let CX :=
⋂
{C ∈ C | X ⊆ C}. Then X =

⋂
CX , by definition.

Now, for (i), X contains X because all members of CX contain X. For (ii), if X ⊆ Y ,

then CX ⊇ CY , so X =
⋂

CX ⊆
⋂

CY = Y . For (iii), we have X ⊆ X, by (i), so X ⊆ X, by

(ii). But CX ⊆ C
X

(check), so X =
⋂
CX ⊇

⋂
C

X
= X. Hence X = X.

Now suppose that is a closure operator. We must show that its closed sets are closed
under complete intersection. So, choose any Z ⊆ P(A) such that every Y ∈ Z is closed
(Y = X for some X ⊆ A). Let W =

⋂
Z. Then since W =

⋂
Z ⊆ Y for any Y ∈ Z we

have W
(ii)
= Y

(iii)
= Y for every Y ∈ Z, so W

(i)

⊆ W ⊆
⋂

Z = W , yielding W = W . �

This correspondence between closure systems and closure operators described here is
bijective, as one sees by comparing the two senses of “closed set”.

Thus the set L of closed sets of a closure operator, when ordered by inclusion, form a
complete lattice. (In particular, every subalgebra lattice is complete.) What is less obvious
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is that, conversely, every complete lattice is isomorphic to the lattice of closed sets of some
closure operator.

Theorem 4. If L is a complete lattice, then L is isomorphic to the lattice of closed subsets
of a closure operator.

Proof. Complete lattices have least and largest elements, 0 and 1. The intervals of the form
[0, a], a ∈ L are closed under arbitrary intersection, since L is complete, with the empty
intersection being [0, 1] = L. Thus, these intervals form a closure system on the set L. The
map a 7→ [0, a] is a bijection between L and the lattice of closed sets of this closure system
which preserves complete meet. Hence it is an isomorphism. �

But not every complete lattice can be realized as a subalgebra lattice. As noticed in class,
subalgebra generation has an extra property, listed as item (1) in the next result.

Theorem 5. If : P(A) → P(A) is a closure operator, then the following conditions are
equivalent.

(1) A subset X ⊆ A that contains the closure of each of its finite subsets is a closed set.
(2) The union of an up-directed family of closed sets is closed.

(A subset of an ordered set 〈P ;≤〉 is up-directed if whenever a, b ∈ P there is a c ∈ P
such that a ≤ c and b ≤ c.)

Proof. Suppose that (1) holds and that D is an updirected family of closed sets. The union
C =

⋃
D contains the closure of any of its finite subsets, as we now prove. If C0 ⊆ C is

finite, then because D is updirected there is a single D ∈ D containing all elements of C0.
This yields C0 ⊆ D, hence C0 ⊆ D = D ⊆ C.

Now suppose that (2) holds, and that X ⊆ A contains the closure of each of its finite
subsets. The family D consisting of the closures of the finite subsets of X is up-directed, so⋃

D is closed. But our assumption on X implies that each member of D is a subset of X, so⋃
D ⊆ X. On the other hand,

⋃
D contains every one element subset of X, so

⋃
D ⊇ X.

This proves that X =
⋃

D is closed. �

Corollary 6. The union of any up-directed family of subalgebras (or congruences) of an
algebra is again a subalgebra (or congruence).

Definition 7. A closure operator is algebraic if it satisfies the equivalent conditions of
Theorem 5

Algebraic closure operators are special in that one can recognize lattice-theoretically when
a closed set is the closure of a finite set.

Definition 8. An element c of a lattice L is compact if whenever c ≤
∨

Z for some Z ⊆ L,
then there is a finite subset Z0 ⊆ Z such that c ≤

∨
Z0.

A complete lattice is compactly generated if every element is the least upper bound of a
family of compact elements.

A compactly generated complete lattice is called an algebraic lattice.
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Theorem 9. The lattice of closed sets of an algebraic closure operator is an algebraic lattice.
The compact elements of the lattice are exactly the closures of finite sets.

Proof. The first statement follows from the second, for the following reason. The lattice of
closed sets of any closure operator is complete, according to the remark before Theorem 4.
Any closed set c is the union of the closures of its finite sets, since the closure operator is
algebraic. If the second statement is true, then the closures of the finite subsets are compact.
Thus, every element is the lub of compact elements, implying the lattice is algebraic.

To prove the second statement assume that c is the closure of a finite set and that c ≤
∨

Z.
Replace Z ⊆ L by the larger set W , whose members are the finite joins of elements of Z
(W = {

∨
Z0 | Zfinite

0 ⊆ Z}). Then W is up-directed and has the same lub as Z. This means
that c ⊆

∨
Z =

∨
W =

⋃
W . The finite set of generators of c must lie in some set d ∈ W ,

since W is updirected, so c ≤ d for some d =
∨

Zfinite
0 ∈ W . This proves that c is compact.

Conversely, assume that c is compact. Let Z be the set of closures of finite subsets of
c. Then Z is up-directed and has lub equal to

⋃
Z = c. By the compactness of c and the

up-directedness of Z, c ∈ Z, so c is the closure of a finite set. �

It can be proved that any algebraic lattice is isomorphic to the subalgebra lattice of some
algebra and to the congruence lattice of some algebra, so there are no further properties of
these lattices to discover.

Applications to algebra.
The remarks above about algebraic closure operators are relevant because of the connec-

tion with Zorn’s Lemma.
If L is an algebraic lattice and c ∈ L is compact, then the ordered set P := L − [c, 1]

obtained by deleting everything above c, including c, satisfies the hypotheses of Zorn’s
Lemma: it is inductively ordered. (This means that any chain in P has an upper bound,
namely the lub of the chain. This lub lies in P because c is compact.) Hence any element
of P = L − [c, 1] can be enlarged to a maximal element of P = L − [c, 1].

Rephrasing this in terms of L, any x ∈ L that is not above c can be enlarged to an element
that is maximal for not being above c. This fact is useful as a subsitute for induction in
settings where induction is not valid.

In particular, if S,T ≤ A, T 6≤ S, and S is finitely generated, then T can be enlarged to
a subalgebra T′ ≤ A that is maximal for the property S 6≤ T′. A similar statement holds
for congruences.

We can describe the same property in terms of elements instead of suabalgebras. If s ∈ A,
T ≤ A, and s /∈ T , then T can be enlarged to a subalgebra that is maximal for not
containing s.


