▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ

A disjunction characterizing varieties with a weak difference term

Alexander Wires

Vanderbilt University Department of Mathematics

> April 14, 2013 Boulder, CO

Disjunctions from Malcev conditions

Bjarni Jónsson said a variety \mathcal{V} has distributive congruence lattices iff here exists ternary terms $p_0, ..., p_n$ which satisfy the identities

$p_0(xyz)$	\approx	X	
p _n (xyz)	\approx	z	
$p_i(xyx)$	\approx	$x 0 \le i \le n$	
$p_i(xxy)$	\approx	$p_{i+1}(xxy)$ i	even
p _i (xyy)	\approx	$p_{i+1}(xyy)$ i	odd

Disjunctions from Malcev conditions

Kirby Baker said \mathcal{V} is congruence distributive iff there exists ternary terms $p_1, ..., p_n$ such that

$$\begin{array}{lll} \mathcal{V} & \models & p_i(xux) \approx p_i(xvx) & 0 \leq i \leq n \\ \mathcal{V} & \models & x \not\approx y \rightarrow \bigvee_{i=1}^{n-1} [p_i(xxy) \not\approx p_{i+1}(xyy)] \end{array}$$

Disjunctions from Malcev conditions

Kirby Baker said \mathcal{V} is congruence distributive iff there exists ternary terms $p_1, ..., p_n$ such that

$$\begin{array}{lll} \mathcal{V} & \models & p_i(xux) \approx p_i(xvx) & 0 \le i \le n \\ \mathcal{V} & \models & x \not\approx y \to \bigvee_{i=1}^{n-1} [p_i(xxy) \not\approx p_{i+1}(xyy)] \end{array}$$

A very general finite axiomatizability result follows.

Disjunctions from Malcev conditions

Kirby Baker said \mathcal{V} is congruence distributive iff there exists ternary terms $p_1, ..., p_n$ such that

$$\begin{array}{lll} \mathcal{V} & \models & p_i(xux) \approx p_i(xvx) & 0 \leq i \leq n \\ \mathcal{V} & \models & x \not\approx y \rightarrow \bigvee_{i=1}^{n-1} [p_i(xxy) \not\approx p_{i+1}(xyy)] \end{array}$$

Ross Willard said \mathcal{V} is congruence meet-semidistributive iff there exist ternary terms $f_0, ..., f_n, g_1, ..., g_n$ such that

$$\begin{array}{lll} \mathcal{V} & \models & f_i(xyx) \approx g_i(xyx) & 0 \leq i \leq n \\ \mathcal{V} & \models & x \not\approx y \rightarrow \bigvee_{i=0}^n [f_i(xxy) \approx g_i(xxy) \leftrightarrow f_i(xyy) \not\approx g_i(xyy)] \end{array}$$

・ロット (四) (日) (日) (日) (日)

Disjunctions from Malcev conditions

Kirby Baker said \mathcal{V} is congruence distributive iff there exists ternary terms $p_1, ..., p_n$ such that

$$\begin{array}{lll} \mathcal{V} & \models & p_i(xux) \approx p_i(xvx) & 0 \leq i \leq n \\ \mathcal{V} & \models & x \not\approx y \rightarrow \bigvee_{i=1}^{n-1} [p_i(xxy) \not\approx p_{i+1}(xyy)] \end{array}$$

Ross Willard said \mathcal{V} is congruence meet-semidistributive iff there exist ternary terms $f_0, ..., f_n, g_1, ..., g_n$ such that

$$\begin{array}{lll} \mathcal{V} & \models & f_i(xyx) \approx g_i(xyx) & 0 \le i \le n \\ \mathcal{V} & \models & x \not\approx y \to \bigvee_{i=0}^n [f_i(xxy) \approx g_i(xxy) \leftrightarrow f_i(xyy) \not\approx g_i(xyy)] \end{array}$$

A very general finite axiomatizability result follows.

Disjunctions from Malcev conditions

Maroti and McKenzie said that for quasivariety ${\mathfrak K}$ TFAE:

• there exist ternary terms $f_0, ..., f_n, g_1, ..., g_n$ such that

$$\begin{array}{lll} \mathcal{K} & \models & f_i(xyx) \approx g_i(xyx) & 0 \leq i \leq n \\ \mathcal{K} & \models & x \not\approx y \rightarrow \bigvee_{i=0}^n [f_i(xxy) \approx g_i(xxy) \leftrightarrow f_i(xyy) \not\approx g_i(xyy)] \end{array}$$

Disjunctions from Malcev conditions

Maroti and McKenzie said that for quasivariety ${\mathfrak K}$ TFAE:

• there exist ternary terms $f_0, ..., f_n, g_1, ..., g_n$ such that

$$\begin{aligned} \mathcal{K} &\models f_i(xyx) \approx g_i(xyx) & 0 \leq i \leq n \\ \mathcal{K} &\models x \not\approx y \rightarrow \bigvee_{i=0}^n [f_i(xxy) \approx g_i(xxy) \leftrightarrow f_i(xyy) \not\approx g_i(xyy)] \end{aligned}$$

• \mathcal{K} has psuedo-complemented congruences(weakened form of SD(\wedge)

Disjunctions from Malcev conditions

Maroti and McKenzie said that for quasivariety ${\mathcal K}$ TFAE:

• there exist ternary terms $f_0, ..., f_n, g_1, ..., g_n$ such that

$$\begin{aligned} \mathcal{K} &\models f_i(xyx) \approx g_i(xyx) & 0 \le i \le n \\ \mathcal{K} &\models x \not\approx y \to \bigvee_{i=0}^n [f_i(xxy) \approx g_i(xxy) \leftrightarrow f_i(xyy) \not\approx g_i(xyy)] \end{aligned}$$

• \mathcal{K} has psuedo-complemented congruences(weakened form of SD(\land) A very general finite basis result follows which covers both Willard's finite basis result and Pigozzi's on relatively congruence distributivity quasivarieties.

Disjunctions from Malcev conditions

Maroti and McKenzie said that for quasivariety ${\mathcal K}$ TFAE:

• there exist ternary terms $f_0, ..., f_n, g_1, ..., g_n$ such that

$$\begin{aligned} \mathcal{K} &\models f_i(xyx) \approx g_i(xyx) & 0 \leq i \leq n \\ \mathcal{K} &\models x \not\approx y \to \bigvee_{i=0}^n [f_i(xxy) \approx g_i(xxy) \leftrightarrow f_i(xyy) \not\approx g_i(xyy)] \end{aligned}$$

• \mathcal{K} has psuedo-complemented congruences(weakened form of SD(\land) A very general finite basis result follows which covers both Willard's finite basis result and Pigozzi's on relatively congruence distributivity quasivarieties.

•
$$\mathcal{V} \models \mathsf{SD}(\land)$$
 iff $\mathcal{V} \models \alpha \cap (\beta \circ \gamma) \subseteq \beta_m$

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

The congruences

For any $A \in \mathcal{K}$, the set of \mathcal{K} -congruences are $Con_{\mathcal{K}}(A) = \{ \alpha \in Con(A) : A/\alpha \in \mathcal{K} \}.$

The congruences

For any $A \in \mathcal{K}$, the set of \mathcal{K} -congruences are $Con_{\mathcal{K}}(A) = \{ \alpha \in Con(A) : A/\alpha \in \mathcal{K} \}.$

- meets are the same as in Con(A)
- \bullet join denoted by $\vee^{\mathcal{K}}$ is induced by arbitrary meets.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The congruences

For any $A \in \mathcal{K}$, the set of \mathcal{K} -congruences are $Con_{\mathcal{K}}(A) = \{ \alpha \in Con(A) : A/\alpha \in \mathcal{K} \}.$

- meets are the same as in Con(A)
- \bullet join denoted by $\vee^{\mathcal{K}}$ is induced by arbitrary meets.

Let $\alpha, \beta, \gamma \in Con_{\mathcal{K}}(A)$, and define congruences β_m , $\gamma_m \in Con_{\mathcal{K}}(A)$ inductively

$$eta_0 = eta, \gamma_0 = \gamma$$

 $eta_{n+1} = eta \lor^{\mathcal{K}} (lpha \land \gamma_n) \quad ext{and} \quad \gamma_{n+1} = \gamma \lor^{\mathcal{K}} (lpha \land eta_n).$

n∈ω

The congruences

For any $A \in \mathcal{K}$, the set of \mathcal{K} -congruences are $Con_{\mathcal{K}}(A) = \{ \alpha \in Con(A) : A/\alpha \in \mathcal{K} \}.$

- meets are the same as in Con(A)
- \bullet join denoted by $\vee^{\mathcal{K}}$ is induced by arbitrary meets.

Let $\alpha, \beta, \gamma \in Con_{\mathcal{K}}(A)$, and define congruences β_m , $\gamma_m \in Con_{\mathcal{K}}(A)$ inductively

$$\begin{array}{l} \beta_0 = \beta \,, \gamma_0 = \gamma \\ \beta_{n+1} = \beta \, \lor^{\mathcal{K}} \left(\alpha \wedge \gamma_n \right) \quad \text{and} \quad \gamma_{n+1} = \gamma \lor^{\mathcal{K}} \left(\alpha \wedge \beta_n \right). \\ \text{Notice} \ \beta \leq \beta_1 \leq \beta_2 \leq \cdots \text{ and} \ \gamma \leq \gamma_1 \leq \gamma_2 \leq \cdots . \\ \text{Set} \\ \beta_{\infty} = \bigcup \beta_n \quad \text{and} \quad \gamma_{\infty} = \bigcup \gamma_n \end{array}$$

 $n \in \omega$

and note $\beta_{\infty}, \gamma_{\infty} \in \mathsf{Con}_{\mathcal{K}}(A)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A Disjunction

$$\begin{split} W_n(x,y) &:= \bigvee_{i=1}^n \left[f_i(xxy) \approx g_i(xxy) \leftrightarrow f_i(xyy) \not\approx g_i(xyy) \right] \\ M_c(x,y) &:= \\ \left[y \approx c(xxy) \wedge c(xxy) \approx c(yxx) \wedge c(yyx) \approx c(xyy) \wedge c(xyy) \approx x \right]. \end{split}$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

A Disjunction

$$\begin{aligned} & W_n(x,y) := \bigvee_{i=1}^n \left[f_i(xxy) \approx g_i(xxy) \leftrightarrow f_i(xyy) \not\approx g_i(xyy) \right] \\ & M_c(x,y) := \\ & [y \approx c(xxy) \wedge c(xxy) \approx c(yxx) \wedge c(yyx) \approx c(xyy) \wedge c(xyy) \approx x] \end{aligned}$$

Theorem

For any quasivariety K the following are equivalent:

- For any A ∈ 𝔅 and α, β, γ ∈ Con_𝔅(A), α ∧ β = α ∧ γ = 0_A implies α ∧ (β ∘ γ) ⊆ γ ∘ β.
- For the principle congruences $\alpha = \Theta(x, z)$, $\beta = \Theta(x, y)$, and $\gamma = \Theta(y, z)$ in $F_{\mathcal{K}}(x, y, z)$ there exists m such that $\alpha \cap (\beta \circ \gamma) \subseteq \gamma_m \circ \beta_m$.
- There exists ternary terms f₁,..., f_n, g₁,..., g_n, c such that f_i(xyx) ≈ g_i(xyx) and 𝔅 satisfies the sentence

$$\forall x \forall y [x \not\approx y \longrightarrow W_n(x,y) \lor M_c(x,y)].$$

H-dichotomy

A Disjunction

$$\begin{aligned} &W_n(x,y) := \bigvee_{i=1}^n [f_i(xxy) \approx g_i(xxy) \leftrightarrow f_i(xyy) \not\approx g_i(xyy)] \\ &M_c(x,y) := \\ &[y \approx c(xxy) \wedge c(xxy) \approx c(yxx) \wedge c(yyx) \approx c(xyy) \wedge c(xyy) \approx x] \end{aligned}$$

Theorem

For any quasivariety $\mathcal K$ the following are equivalent:

- For any A ∈ 𝔅 and α, β, γ ∈ Con_𝔅(A), α ∧ β = α ∧ γ = 0_A implies α ∧ (β ∘ γ) ⊆ γ ∘ β.
- For the principle congruences $\alpha = \Theta(x, z)$, $\beta = \Theta(x, y)$, and $\gamma = \Theta(y, z)$ in $F_{\mathcal{K}}(x, y, z)$ there exists m such that $\alpha \cap (\beta \circ \gamma) \subseteq \gamma_m \circ \beta_m$.
- There exists ternary terms f₁,..., f_n, g₁,..., g_n, c such that f_i(xyx) ≈ g_i(xyx) and K satisfies the sentence

 $\forall x \forall y [x \not\approx y \longrightarrow W_n(x,y) \lor M_c(x,y)].$

It is easy to see conditions in $W_n(x,y)$ and $M_c(x,y)$ cannot be satisfied by any interpretation by ternary projections.

A Disjunction

$$W_n(x,y) := \bigvee_{i=1}^n [f_i(xxy) \approx g_i(xxy) \leftrightarrow f_i(xyy) \not\approx g_i(xyy)]$$

$$M_c(x,y) := [y \approx c(xxy) \wedge c(xxy) \approx c(yxx) \wedge c(yyx) \approx c(xyy) \wedge c(xyy) \approx x]$$

Theorem

For any quasivariety $\mathcal K$ the following are equivalent:

- For any A ∈ 𝔅 and α, β, γ ∈ Con_𝔅(A), α ∧ β = α ∧ γ = 0_A implies α ∧ (β ∘ γ) ⊆ γ ∘ β.
- For the principle congruences $\alpha = \Theta(x, z)$, $\beta = \Theta(x, y)$, and $\gamma = \Theta(y, z)$ in $F_{\mathcal{K}}(x, y, z)$ there exists m such that $\alpha \cap (\beta \circ \gamma) \subseteq \gamma_m \circ \beta_m$.
- There exists ternary terms f₁,..., f_n, g₁,..., g_n, c such that f_i(xyx) ≈ g_i(xyx) and K satisfies the sentence

$$\forall x \forall y [x \not\approx y \longrightarrow W_n(x,y) \lor M_c(x,y)].$$

 $x\gamma_m c(xyz)\beta_m z$

H-dichotomy

A Disjunction

$$\begin{aligned} &W_n(x,y) := \bigvee_{i=1}^n [f_i(xxy) \approx g_i(xxy) \leftrightarrow f_i(xyy) \not\approx g_i(xyy)] \\ &M_c(x,y) := \\ &[y \approx c(xxy) \wedge c(xxy) \approx c(yxx) \wedge c(yyx) \approx c(xyy) \wedge c(xyy) \approx x] \end{aligned}$$

Theorem

For any quasivariety $\mathcal K$ the following are equivalent:

- For any A ∈ 𝔅 and α, β, γ ∈ Con_𝔅(A), α ∧ β = α ∧ γ = 0_A implies α ∧ (β ∘ γ) ⊆ γ ∘ β.
- For the principle congruences $\alpha = \Theta(x, z)$, $\beta = \Theta(x, y)$, and $\gamma = \Theta(y, z)$ in $F_{\mathcal{K}}(x, y, z)$ there exists m such that $\alpha \cap (\beta \circ \gamma) \subseteq \gamma_m \circ \beta_m$.
- There exists ternary terms f₁,..., f_n, g₁,..., g_n, c such that f_i(xyx) ≈ g_i(xyx) and 𝔅 satisfies the sentence

$$\forall x \forall y [x \not\approx y \longrightarrow W_n(x,y) \lor M_c(x,y)].$$

 $x\gamma_m c(xyz)\beta_m z$ implies c(xyz) must be idempotent.

▲ロト ▲聞 ▼ ▲ 画 ▼ ▲ 画 ▼ のへの

Varieties with a weak difference term

From Kearnes and Szendrei

Varieties with a weak difference term

From Kearnes and Szendrei

Theorem

(Theorem 4.8 "Two commutators") For a variety \mathcal{V} , the following are equivalent:

Varieties with a weak difference term

From Kearnes and Szendrei

Theorem

(Theorem 4.8 "Two commutators") For a variety \mathcal{V} , the following are equivalent:

Varieties with a weak difference term

From Kearnes and Szendrei

Theorem

(Theorem 4.8 "Two commutators") For a variety \mathcal{V} , the following are equivalent:

 ${\bf Q}$ ${\bf V}$ has a weak difference term.

◆□> ◆□> ◆三> ◆三> ・三 のへで

Varieties with a weak difference term

From Kearnes and Szendrei

Theorem

(Theorem 4.8 "Two commutators") For a variety \mathcal{V} , the following are equivalent:

- \bigcirc \mathcal{V} has a weak difference term.
- V satisfies a nontrivial idempotent Malcev condition which implies the abelian algebras are affine.

c(xyz) in $M_c(x,y)$ is your weak difference term

Theorem

(Theorem 4.8 "Two commutators") For a variety \mathcal{V} , the following are equivalent:

- \bigcirc \mathcal{V} has a weak difference term.
- There exists ternary terms f₁,..., f_n, g₁,..., g_n, c such that f_i(xyx) ≈ g_i(xyx) and

$$\mathcal{V} \models \forall x \forall y \, [x \not\approx y \longrightarrow W_n(x,y) \lor M_c(x,y)].$$

 V has an idempotent term which interprets as a malcev operation in abelian algebras; consequently, abelian algebras are affine.

c(xyz) in $M_c(x,y)$ is your weak difference term

Theorem

(Theorem 4.8 "Two commutators") For a variety \mathcal{V} , the following are equivalent:

- \bigcirc \mathcal{V} has a weak difference term.
- There exists ternary terms f₁,..., f_n, g₁,..., g_n, c such that f_i(xyx) ≈ g_i(xyx) and

$$\mathcal{V} \models \forall x \forall y \, [x \not\approx y \longrightarrow W_n(x, y) \lor M_c(x, y)].$$

 V has an idempotent term which interprets as a malcev operation in abelian algebras; consequently, abelian algebras are affine.

The disjunction yields a proof which avoids the topic of quasi-affine or linear commutators, but you still need that righteous lemma....you know the one.

H-dichotomy

Malcev or Willard?

Let $A \in \mathcal{V}$, $\alpha, \beta, \gamma \in \text{Con}(A)$, and $a, b \in A$ such that $a \neq b$: • If $(a, b) \in \alpha \cap (\beta \lor \gamma)$ and $A \models W_{\mathcal{V}}(a, b)$, then $\alpha \land \beta \neq 0_A$ or $\alpha \land \gamma \neq 0_A$. • If $(a, b) \in \alpha \cap (\beta \lor \gamma) \smallsetminus \delta$ where $\delta = \alpha \land \beta_{\infty} = \alpha \land \gamma_{\infty}$, then $a \delta c(abb) \delta c(bba)$ and $b \delta c(baa) \delta c(aab)$. • If $(a, b) \in \alpha \cap (\beta \lor \gamma)$ and $\alpha \land \beta = \alpha \land \gamma = 0_A$, then $A \models M_c(a, b) \land \neg W_{\mathcal{V}}(a, b)$.

We say (a, b) is a Malcev pair if $A \models M_c(a, b)$, and a Willard pair if $A \models W_n(a, b)$.

Tournaments with Taylor polymorphisms

Let T be a finite reflexive tournament. T^c is the structure which has all the singleton unary relations in addition to the edge relation of T.

Tournaments with Taylor polymorphisms

Let T be a finite reflexive tournament. T^c is the structure which has all the singleton unary relations in addition to the edge relation of T.

Theorem

(Larose '06) Let T be a finite reflexive tournament. Then T admits a Taylor operation if and only if T is transitive. If T is transitive, then the problem $CSP(T^c)$ is in **P**, and it is **NP**-complete otherwise.

Tournaments with Taylor polymorphisms

Let T be a finite reflexive tournament. T^c is the structure which has all the singleton unary relations in addition to the edge relation of T.

Theorem

(Larose '06) Let T be a finite reflexive tournament. Then T admits a Taylor operation if and only if T is transitive. If T is transitive, then the problem $CSP(T^c)$ is in **P**, and it is **NP**-complete otherwise.

• The homotopy theory says a minimal counterexample

Tournaments with Taylor polymorphisms

Let T be a finite reflexive tournament. T^c is the structure which has all the singleton unary relations in addition to the edge relation of T.

Theorem

(Larose '06) Let T be a finite reflexive tournament. Then T admits a Taylor operation if and only if T is transitive. If T is transitive, then the problem $CSP(T^c)$ is in **P**, and it is **NP**-complete otherwise.

• The homotopy theory says a minimal counterexample must have at least four elements.

Tournaments with Taylor polymorphisms

Let T be a finite reflexive tournament. T^c is the structure which has all the singleton unary relations in addition to the edge relation of T.

Theorem

(Larose '06) Let T be a finite reflexive tournament. Then T admits a Taylor operation if and only if T is transitive. If T is transitive, then the problem $CSP(T^c)$ is in **P**, and it is **NP**-complete otherwise.

- The homotopy theory says a minimal counterexample must have at least four elements.
- Then use pp-definition on the possible configurations and minimality.

no 3-cycles with two loops

Theorem

Let T be a finite tournament(not neccessarily reflexive). If T contains a 3-cycle with at least two loops, then T is not closed under a Taylor polymorphism.

no 3-cycles with two loops

Theorem

Let T be a finite tournament(not neccessarily reflexive). If T contains a 3-cycle with at least two loops, then T is not closed under a Taylor polymorphism.

- T a counterexample of minimal cardinality.
- Let $a \rightarrow b \rightarrow c \rightarrow a$ be a 3-cycle in T; vertices a and b have loops.

no 3-cycles with two loops

Theorem

Let T be a finite tournament(not neccessarily reflexive). If T contains a 3-cycle with at least two loops, then T is not closed under a Taylor polymorphism.

- T a counterexample of minimal cardinality.
- Let $a \rightarrow b \rightarrow c \rightarrow a$ be a 3-cycle in T; vertices a and b have loops.
- (*a*, *b*) must be a Willard pair.

no 3-cycles with two loops

Theorem

Let T be a finite tournament(not neccessarily reflexive). If T contains a 3-cycle with at least two loops, then T is not closed under a Taylor polymorphism.

- T a counterexample of minimal cardinality.
- Let $a \rightarrow b \rightarrow c \rightarrow a$ be a 3-cycle in T; vertices a and b have loops.
- (a, b) must be a Willard pair. Take f(xyz), g(xyz) such that $f(xyx) \approx g(xyx)$ and

$$f(aab) = g(aab) \leftrightarrow f(abb) \neq g(abb).$$

no 3-cycles with two loops

Theorem

Let T be a finite tournament(not neccessarily reflexive). If T contains a 3-cycle with at least two loops, then T is not closed under a Taylor polymorphism.

Proof:

- T a counterexample of minimal cardinality.
- Let $a \rightarrow b \rightarrow c \rightarrow a$ be a 3-cycle in T; vertices a and b have loops.
- (a, b) must be a Willard pair. Take f(xyz), g(xyz) such that $f(xyx) \approx g(xyx)$ and

f(aab) = g(aab) and $f(abb) \neq g(abb)$.

no 3-cycles with two loops

There exists a vertex *w* such that $a \rightarrow w \rightarrow b$.

H-dichotomy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

no 3-cycles with two loops

There exists a vertex *w* such that $a \rightarrow w \rightarrow b$.

If not,

no 3-cycles with two loops

There exists a vertex w such that $a \rightarrow w \rightarrow b$.

If not,

Either f(abb) = a and g(abb) = b, f(abb) = b and g(abb) = a. Any case, we consider III.

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ

no 3-cycles with two loops

There exists a vertex w such that $a \rightarrow w \rightarrow b$.

If not,

- Either f(abb) = a and g(abb) = b, f(abb) = b and g(abb) = a. Any case, we consider III.
- Collapse onto the cycle creates a symmetric edge.

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ

no 3-cycles with two loops

There exists a vertex w such that $a \rightarrow w \rightarrow b$.

If not,

- Either f(abb) = a and g(abb) = b, f(abb) = b and g(abb) = a. Any case, we consider III.
- Collapse onto the cycle creates a symmetric edge.
- There exists a vertex w such that $a \rightarrow w \rightarrow b$

no 3-cycles with two loops

There exists a vertex *w* such that $a \rightarrow w \rightarrow b$.

If not,

- Either f(abb) = a and g(abb) = b, f(abb) = b and g(abb) = a. Any case, we consider III.
- Collapse onto the cycle creates a symmetric edge.
- There exists a vertex w such that $a \rightarrow w \rightarrow b$ and $w \rightarrow c$

▲ロト ▲御 ト ▲目 ト ▲目 ト 一目 - のへで

no 3-cycles with two loops

There exists a vertex *w* such that $a \rightarrow w \rightarrow b$.

If not,

- Either f(abb) = a and g(abb) = b, f(abb) = b and g(abb) = a. Any case, we consider Ⅲ.
- Collapse onto the cycle creates a symmetric edge.
- There exists a vertex w such that $a \rightarrow w \rightarrow b$ and $w \rightarrow c$ (if not, reverse the edges)

H-dichotomy

no 3-cycles with two loops

H-dichotomy

no 3-cycles with two loops

Define the subalgebra $B = \{z : (\exists x) [(b \to x) \land (w \to x) \land (x \to z)]\}.$

◆ロト ◆聞 と ◆臣 と ◆臣 と ○臣 ○ のへで

H-dichotomy

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

no 3-cycles with two loops

Define the subalgebra $B = \{z : (\exists x) [(b \to x) \land (w \to x) \land (x \to z)]\}.$ $\{a, b, c\} \subseteq B$

H-dichotomy

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

no 3-cycles with two loops

Define the subalgebra $B = \{z : (\exists x) [(b \rightarrow x) \land (w \rightarrow x) \land (x \rightarrow z)]\}.$ $\{a, b, c\} \subseteq B$ Minimality implies $B = T \ni w$.

H-dichotomy

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

no 3-cycles with two loops

Define the subalgebra $B = \{z : (\exists x) [(b \to x) \land (w \to x) \land (x \to z)]\}.$ $\{a, b, c\} \subseteq B$ Minimality implies $B = T \ni w$.

H-dichotomy

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二直 - のへで

Another proof of H-dichotomy

Since Hell and Nešetřil established H-dichotomy for simple graphs,

Another proof of H-dichotomy

Since Hell and Nešetřil established H-dichotomy for simple graphs,

- Siggers, Bulatov, Kun and Szegedy, and Barto and Kozik have offered proofs
- some more algebraic, some more combinatorial
- A finite irreflexive symmetric graph with an odd cycle has only essentially unary surjective polymorphims

Another proof of H-dichotomy

Since Hell and Nešetřil established H-dichotomy for simple graphs,

- Siggers, Bulatov, Kun and Szegedy, and Barto and Kozik have offered proofs
- some more algebraic, some more combinatorial
- A finite irreflexive symmetric graph with an odd cycle has only essentially unary surjective polymorphims (does not have a Taylor polymorphism)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二直 - のへで

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

• $\mathbb{G} = \langle V, E \rangle$ counterexample of minimal cardinality.

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

- $\mathbb{G} = \langle V, E \rangle$ counterexample of minimal cardinality.
- $\bullet\,$ May assume ${\mathbb G}$ is symmetric

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

- $\mathbb{G} = \langle V, E \rangle$ counterexample of minimal cardinality.
- $\bullet\,$ May assume ${\mathbb G}$ is symmetric
- \mathbb{G} has a triangle $(\mathbb{H} = \langle V, E^{k-2} \rangle)$.

 $1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 1$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ の

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

- $\mathbb{G} = \langle V, E \rangle$ counterexample of minimal cardinality.
- $\bullet\,$ May assume ${\mathbb G}\,$ is symmetric
- \mathbb{G} has a triangle ($\mathbb{H} = \langle V, E^{k-2} \rangle$).

 $1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 1$

• Every vertex is part of a triangle (aE^3a iff a is vertex of a triangle).

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

- $\mathbb{G} = \langle V, E \rangle$ counterexample of minimal cardinality.
- $\bullet\,$ May assume ${\mathbb G}$ is symmetric
- \mathbb{G} has a triangle $(\mathbb{H} = \langle V, E^{k-2} \rangle).$

 $1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 1$

- Every vertex is part of a triangle (aE^3a iff a is vertex of a triangle).
- Every edge can only be on one triangle.

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

- $\mathbb{G} = \langle V, E \rangle$ counterexample of minimal cardinality.
- $\bullet\,$ May assume ${\mathbb G}\,$ is symmetric
- \mathbb{G} has a triangle $(\mathbb{H} = \langle V, E^{k-2} \rangle).$

 $1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 1$

- Every vertex is part of a triangle (aE^3a iff a is vertex of a triangle).
- Every edge can only be on one triangle. No rhombus!!

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

- $\mathbb{G} = \langle V, E \rangle$ counterexample of minimal cardinality.
- $\bullet\,$ May assume ${\mathbb G}\,$ is symmetric
- G has a triangle ($\mathbb{H} = \langle V, E^{k-2} \rangle$).

 $1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 1$

- Every vertex is part of a triangle (aE^3a iff a is vertex of a triangle).
- Every edge can only be on one triangle. No rhombus!!

(So begins Hell and Nešetřil, Siggers, and Bulatov)

H-dichotomy

Malcev or Willard pairs

• Assume (1,2) and (1,3) are Malcev pairs. Then $1 = c(122) \leftrightarrow c(331) = 1$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

Malcev or Willard pairs

- Assume (1,2) and (1,3) are Malcev pairs. Then $1 = c(122) \leftrightarrow c(331) = 1$.
- We must have at least one Willard pair.

H-dichotomy

Malcev or Willard pairs

- Assume (1,2) and (1,3) are Malcev pairs. Then $1 = c(122) \leftrightarrow c(331) = 1$.
- We must have at least one Willard pair. Assume (1,2) is a Willard pair and there exists f,g such that $f(xyx) \approx g(xyx)$ with f(122) = g(122) and $f(112) \neq g(112)$

H-dichotomy

Malcev or Willard pairs

- Assume (1,2) and (1,3) are Malcev pairs. Then $1 = c(122) \leftrightarrow c(331) = 1$.
- We must have at least one Willard pair. Assume (1,2) is a Willard pair and there exists f,g such that $f(xyx) \approx g(xyx)$ with f(122) = g(122) and $f(112) \neq g(112)$

Figure: A leaf