A disjunction characterizing varieties with a weak difference term

Alexander Wires
Vanderbilt University
Department of Mathematics

April 14, 2013
Boulder, CO

Disjunctions from Malcev conditions

Bjarni Jónsson said a variety \mathcal{V} has distributive congruence lattices iff here exists ternary terms p_{0}, \ldots, p_{n} which satisfy the identities

$$
\begin{aligned}
p_{0}(x y z) & \approx x \\
p_{n}(x y z) & \approx z \\
p_{i}(x y x) & \approx x \quad 0 \leq i \leq n \\
p_{i}(x x y) & \approx p_{i+1}(x x y) \quad i \quad \text { even } \\
p_{i}(x y y) & \approx p_{i+1}(x y y) \quad i \quad \text { odd }
\end{aligned}
$$

Disjunctions from Malcev conditions

Kirby Baker said \mathcal{V} is congruence distributive iff there exists ternary terms p_{1}, \ldots, p_{n} such that

$$
\begin{aligned}
& \mathcal{V} \models p_{i}(x u x) \approx p_{i}(x v x) \quad 0 \leq i \leq n \\
& \mathcal{V} \vDash x \not \approx y \rightarrow \bigvee_{i=1}^{n-1}\left[p_{i}(x x y) \not \approx p_{i+1}(x y y)\right]
\end{aligned}
$$

Disjunctions from Malcev conditions

Kirby Baker said \mathcal{V} is congruence distributive iff there exists ternary terms p_{1}, \ldots, p_{n} such that

$$
\begin{aligned}
& \mathcal{V} \models p_{i}(x u x) \approx p_{i}(x v x) \quad 0 \leq i \leq n \\
& \mathcal{V} \vDash x \not \approx y \rightarrow \bigvee_{i=1}^{n-1}\left[p_{i}(x x y) \not \approx p_{i+1}(x y y)\right]
\end{aligned}
$$

A very general finite axiomatizability result follows.

Disjunctions from Malcev conditions

Kirby Baker said \mathcal{V} is congruence distributive iff there exists ternary terms p_{1}, \ldots, p_{n} such that

$$
\begin{aligned}
& \mathcal{V} \vDash p_{i}(x u x) \approx p_{i}(x v x) \quad 0 \leq i \leq n \\
& \mathcal{V} \vDash x \not \approx y \rightarrow \bigvee_{i=1}^{n-1}\left[p_{i}(x x y) \not \approx p_{i+1}(x y y)\right]
\end{aligned}
$$

Ross Willard said \mathcal{V} is congruence meet-semidistributive iff there exist ternary terms $f_{0}, \ldots, f_{n}, g_{1}, \ldots, g_{n}$ such that

$$
\mathcal{V} \models f_{i}(x y x) \approx g_{i}(x y x) \quad 0 \leq i \leq n
$$

Disjunctions from Malcev conditions

Kirby Baker said \mathcal{V} is congruence distributive iff there exists ternary terms p_{1}, \ldots, p_{n} such that

$$
\begin{aligned}
& \mathcal{V} \vDash p_{i}(x u x) \approx p_{i}(x v x) \quad 0 \leq i \leq n \\
& \mathcal{V} \vDash x \not \approx y \rightarrow \bigvee_{i=1}^{n-1}\left[p_{i}(x x y) \not \approx p_{i+1}(x y y)\right]
\end{aligned}
$$

Ross Willard said \mathcal{V} is congruence meet-semidistributive iff there exist ternary terms $f_{0}, \ldots, f_{n}, g_{1}, \ldots, g_{n}$ such that

$$
\begin{aligned}
& \mathcal{\nu} \models f_{i}(x y x) \approx g_{i}(x y x) \quad 0 \leq i \leq n \\
& \mathcal{\nu} \models x \not \approx y \rightarrow \bigvee_{i=0}^{n}\left[f_{i}(x x y) \approx g_{i}(x x y) \leftrightarrow f_{i}(x y y) \not \approx g_{i}(x y y)\right]
\end{aligned}
$$

A very general finite axiomatizability result follows.

Disjunctions from Malcev conditions

Maroti and McKenzie said that for quasivariety \mathcal{K} TFAE:

- there exist ternary terms $f_{0}, \ldots, f_{n}, g_{1}, \ldots, g_{n}$ such that

$$
\begin{aligned}
\mathcal{K} & \models f_{i}(x y x) \approx g_{i}(x y x) \quad 0 \leq i \leq n \\
\mathcal{K} & \models x \not \approx y \rightarrow \bigvee_{i=0}^{n}\left[f_{i}(x x y) \approx g_{i}(x x y) \leftrightarrow f_{i}(x y y) \not \approx g_{i}(x y y)\right]
\end{aligned}
$$

Disjunctions from Malcev conditions

Maroti and McKenzie said that for quasivariety \mathcal{K} TFAE:

- there exist ternary terms $f_{0}, \ldots, f_{n}, g_{1}, \ldots, g_{n}$ such that

$$
\begin{aligned}
\mathcal{K} & \models f_{i}(x y x) \approx g_{i}(x y x) \quad 0 \leq i \leq n \\
\mathcal{K} & \models x \not \approx y \rightarrow \bigvee_{i=0}^{n}\left[f_{i}(x x y) \approx g_{i}(x x y) \leftrightarrow f_{i}(x y y) \not \approx g_{i}(x y y)\right]
\end{aligned}
$$

- \mathcal{K} has psuedo-complemented congruences(weakened form of $\operatorname{SD}(\wedge)$

Disjunctions from Malcev conditions

Maroti and McKenzie said that for quasivariety \mathcal{K} TFAE:

- there exist ternary terms $f_{0}, \ldots, f_{n}, g_{1}, \ldots, g_{n}$ such that

$$
\begin{aligned}
\mathcal{K} & \models f_{i}(x y x) \approx g_{i}(x y x) \quad 0 \leq i \leq n \\
\mathcal{K} & \models x \not \approx y \rightarrow \bigvee_{i=0}^{n}\left[f_{i}(x x y) \approx g_{i}(x x y) \leftrightarrow f_{i}(x y y) \not \approx g_{i}(x y y)\right]
\end{aligned}
$$

- \mathcal{K} has psuedo-complemented congruences(weakened form of $\operatorname{SD}(\wedge)$ A very general finite basis result follows which covers both Willard's finite basis result and Pigozzi's on relatively congruence distributivity quasivarieties.

Disjunctions from Malcev conditions

Maroti and McKenzie said that for quasivariety \mathcal{K} TFAE:

- there exist ternary terms $f_{0}, \ldots, f_{n}, g_{1}, \ldots, g_{n}$ such that

$$
\begin{aligned}
\mathcal{K} & \models f_{i}(x y x) \approx g_{i}(x y x) \quad 0 \leq i \leq n \\
\mathcal{K} & \models x \not \approx y \rightarrow \bigvee_{i=0}^{n}\left[f_{i}(x x y) \approx g_{i}(x x y) \leftrightarrow f_{i}(x y y) \not \approx g_{i}(x y y)\right]
\end{aligned}
$$

- \mathcal{K} has psuedo-complemented congruences(weakened form of $\operatorname{SD}(\wedge)$ A very general finite basis result follows which covers both Willard's finite basis result and Pigozzi's on relatively congruence distributivity quasivarieties.
- $\mathcal{V} \models \operatorname{SD}(\wedge)$ iff $\mathcal{V} \models \alpha \cap(\beta \circ \gamma) \subseteq \beta_{m}$

The congruences

For any $A \in \mathcal{K}$, the set of \mathcal{K}-congruences are $\operatorname{Con}_{\mathcal{K}}(A)=\{\alpha \in \operatorname{Con}(A): A / \alpha \in \mathcal{K}\}$.

The congruences

For any $A \in \mathcal{K}$, the set of \mathcal{K}-congruences are $\operatorname{Con}_{\mathcal{K}}(A)=\{\alpha \in \operatorname{Con}(A): A / \alpha \in \mathcal{K}\}$.

- meets are the same as in $\operatorname{Con}(A)$
- join denoted by $\bigvee^{\mathscr{K}}$ is induced by arbitrary meets.

The congruences

For any $A \in \mathcal{K}$, the set of \mathcal{K}-congruences are $\operatorname{Con}_{\mathcal{K}}(A)=\{\alpha \in \operatorname{Con}(A): A / \alpha \in \mathcal{K}\}$.

- meets are the same as in $\operatorname{Con}(A)$
- join denoted by $\mathrm{V}^{\mathscr{K}}$ is induced by arbitrary meets.

Let $\alpha, \beta, \gamma \in \operatorname{Con}_{\mathcal{K}}(A)$, and define congruences $\beta_{m}, \gamma_{m} \in \operatorname{Con}_{\mathcal{K}}(A)$ inductively

$$
\begin{gathered}
\beta_{0}=\beta, \gamma_{0}=\gamma \\
\beta_{n+1}=\beta \vee^{\mathscr{K}}\left(\alpha \wedge \gamma_{n}\right) \text { and } \gamma_{n+1}=\gamma \vee^{\mathscr{K}}\left(\alpha \wedge \beta_{n}\right) .
\end{gathered}
$$

The congruences

For any $A \in \mathcal{K}$, the set of \mathcal{K}-congruences are $\operatorname{Con}_{\mathcal{K}}(A)=\{\alpha \in \operatorname{Con}(A): A / \alpha \in \mathcal{K}\}$.

- meets are the same as in $\operatorname{Con}(A)$
- join denoted by $\mathrm{V}^{\mathcal{K}}$ is induced by arbitrary meets.

Let $\alpha, \beta, \gamma \in \operatorname{Con}_{\mathcal{K}}(A)$, and define congruences $\beta_{m}, \gamma_{m} \in \operatorname{Con}_{\mathcal{K}}(A)$ inductively

$$
\begin{gathered}
\beta_{0}=\beta, \gamma_{0}=\gamma \\
\beta_{n+1}=\beta \vee^{\mathcal{K}}\left(\alpha \wedge \gamma_{n}\right) \text { and } \gamma_{n+1}=\gamma \vee^{\mathcal{K}}\left(\alpha \wedge \beta_{n}\right) .
\end{gathered}
$$

Notice $\beta \leq \beta_{1} \leq \beta_{2} \leq \cdots$ and $\gamma \leq \gamma_{1} \leq \gamma_{2} \leq \cdots$.
Set

$$
\beta_{\infty}=\bigcup_{n \in \omega} \beta_{n} \quad \text { and } \quad \gamma_{\infty}=\bigcup_{n \in \omega} \gamma_{n}
$$

and note $\beta_{\infty}, \gamma_{\infty} \in \operatorname{Con}_{\mathcal{K}}(A)$.

A Disjunction

$$
\begin{aligned}
& W_{n}(x, y):=\bigvee_{i=1}^{n}\left[f_{i}(x x y) \approx g_{i}(x x y) \leftrightarrow f_{i}(x y y) \not \approx g_{i}(x y y)\right] \\
& M_{c}(x, y):= \\
& {[y \approx c(x x y) \wedge c(x x y) \approx c(y x x) \wedge c(y y x) \approx c(x y y) \wedge c(x y y) \approx x] .}
\end{aligned}
$$

A Disjunction

$$
\begin{aligned}
& W_{n}(x, y):=\bigvee_{i=1}^{n}\left[f_{i}(x x y) \approx g_{i}(x x y) \leftrightarrow f_{i}(x y y) \not \approx g_{i}(x y y)\right] \\
& M_{c}(x, y):= \\
& {[y \approx c(x x y) \wedge c(x x y) \approx c(y x x) \wedge c(y y x) \approx c(x y y) \wedge c(x y y) \approx x] .}
\end{aligned}
$$

Theorem

For any quasivariety \mathcal{K} the following are equivalent:
(1) For any $A \in \mathcal{K}$ and $\alpha, \beta, \gamma \in \operatorname{Con}_{\mathcal{K}}(A), \alpha \wedge \beta=\alpha \wedge \gamma=0_{A}$ implies $\alpha \wedge(\beta \circ \gamma) \subseteq \gamma \circ \beta$.
(2) For the principle congruences $\alpha=\Theta(x, z), \beta=\Theta(x, y)$, and $\gamma=\Theta(y, z)$ in $F_{\mathcal{K}}(x, y, z)$ there exists m such that $\alpha \cap(\beta \circ \gamma) \subseteq \gamma_{m} \circ \beta_{m}$.
(3) There exists ternary terms $f_{1}, \ldots ., f_{n}, g_{1}, \ldots ., g_{n}, c$ such that $f_{i}(x y x) \approx g_{i}(x y x)$ and \mathcal{K} satisfies the sentence

$$
\forall x \forall y\left[x \not \approx y \longrightarrow W_{n}(x, y) \vee M_{c}(x, y)\right] .
$$

A Disjunction

```
\(W_{n}(x, y):=\bigvee_{i=1}^{n}\left[f_{i}(x x y) \approx g_{i}(x x y) \leftrightarrow f_{i}(x y y) \not \approx g_{i}(x y y)\right]\)
\(M_{c}(x, y):=\)
\([y \approx c(x x y) \wedge c(x x y) \approx c(y x x) \wedge c(y y x) \approx c(x y y) \wedge c(x y y) \approx x]\).
```


Theorem

For any quasivariety \mathcal{K} the following are equivalent:
(3) For any $A \in \mathcal{K}$ and $\alpha, \beta, \gamma \in \operatorname{Con}_{\mathcal{K}}(A), \alpha \wedge \beta=\alpha \wedge \gamma=0_{A}$ implies $\alpha \wedge(\beta \circ \gamma) \subseteq \gamma \circ \beta$.
(2) For the principle congruences $\alpha=\Theta(x, z), \beta=\Theta(x, y)$, and $\gamma=\Theta(y, z)$ in $F_{\mathcal{K}}(x, y, z)$ there exists m such that $\alpha \cap(\beta \circ \gamma) \subseteq \gamma_{m} \circ \beta_{m}$.
(3) There exists ternary terms $f_{1}, \ldots ., f_{n}, g_{1}, \ldots, g_{n}, c$ such that $f_{i}(x y x) \approx g_{i}(x y x)$ and \mathcal{K} satisfies the sentence

$$
\forall x \forall y\left[x \not \approx y \longrightarrow W_{n}(x, y) \vee M_{c}(x, y)\right] .
$$

It is easy to see conditions in $W_{n}(x, y)$ and $M_{c}(x, y)$ cannot be satisfied by any interpretation by ternary projections.

A Disjunction

$$
\begin{aligned}
& W_{n}(x, y):=\bigvee_{i=1}^{n}\left[f_{i}(x x y) \approx g_{i}(x x y) \leftrightarrow f_{i}(x y y) \not \approx g_{i}(x y y)\right] \\
& M_{c}(x, y):= \\
& {[y \approx c(x x y) \wedge c(x x y) \approx c(y x x) \wedge c(y y x) \approx c(x y y) \wedge c(x y y) \approx x] .}
\end{aligned}
$$

Theorem

For any quasivariety \mathcal{K} the following are equivalent:
(1) For any $A \in \mathcal{K}$ and $\alpha, \beta, \gamma \in \operatorname{Con}_{\mathcal{K}}(A), \alpha \wedge \beta=\alpha \wedge \gamma=0_{A}$ implies $\alpha \wedge(\beta \circ \gamma) \subseteq \gamma \circ \beta$.
(2) For the principle congruences $\alpha=\Theta(x, z), \beta=\Theta(x, y)$, and $\gamma=\Theta(y, z)$ in $F_{\mathcal{K}}(x, y, z)$ there exists m such that $\alpha \cap(\beta \circ \gamma) \subseteq \gamma_{m} \circ \beta_{m}$.
(3) There exists ternary terms $f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}, c$ such that $f_{i}(x y x) \approx g_{i}(x y x)$ and \mathcal{K} satisfies the sentence

$$
\forall x \forall y\left[x \not \approx y \longrightarrow W_{n}(x, y) \vee M_{c}(x, y)\right]
$$

$x \gamma_{m} c(x y z) \beta_{m} z$

A Disjunction

$$
\begin{aligned}
& W_{n}(x, y):=\bigvee_{i=1}^{n}\left[f_{i}(x x y) \approx g_{i}(x x y) \leftrightarrow f_{i}(x y y) \not \approx g_{i}(x y y)\right] \\
& M_{c}(x, y):= \\
& {[y \approx c(x x y) \wedge c(x x y) \approx c(y x x) \wedge c(y y x) \approx c(x y y) \wedge c(x y y) \approx x] .}
\end{aligned}
$$

Theorem

For any quasivariety \mathcal{K} the following are equivalent:
(1) For any $A \in \mathcal{K}$ and $\alpha, \beta, \gamma \in \operatorname{Con}_{\mathcal{K}}(A), \alpha \wedge \beta=\alpha \wedge \gamma=0_{A}$ implies $\alpha \wedge(\beta \circ \gamma) \subseteq \gamma \circ \beta$.
(2) For the principle congruences $\alpha=\Theta(x, z), \beta=\Theta(x, y)$, and $\gamma=\Theta(y, z)$ in $F_{\mathcal{K}}(x, y, z)$ there exists m such that $\alpha \cap(\beta \circ \gamma) \subseteq \gamma_{m} \circ \beta_{m}$.
(3) There exists ternary terms $f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}, c$ such that $f_{i}(x y x) \approx g_{i}(x y x)$ and \mathcal{K} satisfies the sentence

$$
\forall x \forall y\left[x \not \approx y \longrightarrow W_{n}(x, y) \vee M_{c}(x, y)\right]
$$

$x \gamma_{m} c(x y z) \beta_{m} z$ implies $c(x y z)$ must be idempotent.

Varieties with a weak difference term

From Kearnes and Szendrei

Varieties with a weak difference term

From Kearnes and Szendrei

Theorem

(Theorem 4.8 "Two commutators") For a variety \mathcal{V}, the following are equivalent:

Varieties with a weak difference term

From Kearnes and Szendrei

Theorem

(Theorem 4.8 "Two commutators") For a variety \mathcal{V}, the following are equivalent:
(3) $\mathcal{V} \models \alpha \cap(\beta \circ \gamma) \subseteq \gamma_{m} \circ \beta_{m}$.

Varieties with a weak difference term

From Kearnes and Szendrei

Theorem

(Theorem 4.8 "Two commutators") For a variety \mathcal{V}, the following are equivalent:
(1) $\mathcal{V} \models \alpha \cap(\beta \circ \gamma) \subseteq \gamma_{m} \circ \beta_{m}$.
(3) \mathcal{V} has a weak difference term.

Varieties with a weak difference term

From Kearnes and Szendrei

Theorem

(Theorem 4.8 "Two commutators") For a variety \mathcal{V}, the following are equivalent:
(1) $\mathcal{V} \models \alpha \cap(\beta \circ \gamma) \subseteq \gamma_{m} \circ \beta_{m}$.
(3) \mathcal{V} has a weak difference term.

- V satisfies a nontrivial idempotent Malcev condition which implies the abelian algebras are affine.

$c(x y z)$ in $M_{c}(x, y)$ is your weak difference term

Theorem

(Theorem 4.8 "Two commutators") For a variety \mathcal{V}, the following are equivalent:
(1) \mathcal{V} has a weak difference term.
(3) There exists ternary terms $f_{1}, \ldots ., f_{n}, g_{1}, \ldots ., g_{n}, c$ such that $f_{i}(x y x) \approx g_{i}(x y x)$ and

$$
\mathcal{V} \models \forall x \forall y\left[x \not \approx y \longrightarrow W_{n}(x, y) \vee M_{c}(x, y)\right] .
$$

(\mathcal{V} has an idempotent term which interprets as a malcev operation in abelian algebras; consequently, abelian algebras are affine.

$c(x y z)$ in $M_{c}(x, y)$ is your weak difference term

Theorem

(Theorem 4.8 "Two commutators") For a variety \mathcal{V}, the following are equivalent:
(1) V has a weak difference term.
(3) There exists ternary terms $f_{1}, \ldots ., f_{n}, g_{1}, \ldots ., g_{n}, c$ such that $f_{i}(x y x) \approx g_{i}(x y x)$ and

$$
\mathcal{V} \models \forall x \forall y\left[x \not \approx y \longrightarrow W_{n}(x, y) \vee M_{c}(x, y)\right] .
$$

© \mathcal{V} has an idempotent term which interprets as a malcev operation in abelian algebras; consequently, abelian algebras are affine.

The disjunction yields a proof which avoids the topic of quasi-affine or linear commutators, but you still need that righteous lemma.....you know the one.

Malcev or Willard?

Let $A \in \mathcal{V}, \alpha, \beta, \gamma \in \operatorname{Con}(A)$, and $a, b \in A$ such that $a \neq b$:

- If $(a, b) \in \alpha \cap(\beta \vee \gamma)$ and $A \models W_{\nu}(a, b)$, then

$$
\alpha \wedge \beta \neq 0_{A} \quad \text { or } \quad \alpha \wedge \gamma \neq 0_{A} .
$$

- If $(a, b) \in \alpha \cap(\beta \vee \gamma) \backslash \delta$ where $\delta=\alpha \wedge \beta_{\infty}=\alpha \wedge \gamma_{\infty}$, then $a \delta c(a b b) \delta c(b b a)$ and $b \delta c(b a a) \delta c(a a b)$.
- If $(a, b) \in \alpha \cap(\beta \vee \gamma)$ and $\alpha \wedge \beta=\alpha \wedge \gamma=0_{A}$, then

$$
A \models M_{c}(a, b) \wedge \neg W_{v}(a, b) .
$$

We say (a, b) is a Malcev pair if $A \models M_{c}(a, b)$, and a Willard pair if $A \models W_{n}(a, b)$.

Tournaments with Taylor polymorphisms

Let T be a finite reflexive tournament. T^{c} is the structure which has all the singleton unary relations in addition to the edge relation of T.

Tournaments with Taylor polymorphisms

Let T be a finite reflexive tournament. T^{c} is the structure which has all the singleton unary relations in addition to the edge relation of T.

Theorem

(Larose '06) Let T be a finite reflexive tournament. Then T admits a Taylor operation if and only if T is transitive. If T is transitive, then the problem $\operatorname{CSP}\left(T^{c}\right)$ is in \mathbf{P}, and it is $\mathbf{N P}$-complete otherwise.

Tournaments with Taylor polymorphisms

Let T be a finite reflexive tournament. T^{c} is the structure which has all the singleton unary relations in addition to the edge relation of T.

Theorem

(Larose '06) Let T be a finite reflexive tournament. Then T admits a Taylor operation if and only if T is transitive. If T is transitive, then the problem $\operatorname{CSP}\left(T^{c}\right)$ is in \mathbf{P}, and it is $\mathbf{N P}$-complete otherwise.

- The homotopy theory says a minimal counterexample

Tournaments with Taylor polymorphisms

Let T be a finite reflexive tournament. T^{c} is the structure which has all the singleton unary relations in addition to the edge relation of T.

Theorem

(Larose '06) Let T be a finite reflexive tournament. Then T admits a Taylor operation if and only if T is transitive. If T is transitive, then the problem $\operatorname{CSP}\left(T^{c}\right)$ is in \mathbf{P}, and it is $\mathbf{N P}$-complete otherwise.

- The homotopy theory says a minimal counterexample must have at least four elements.

Tournaments with Taylor polymorphisms

Let T be a finite reflexive tournament. T^{c} is the structure which has all the singleton unary relations in addition to the edge relation of T.

Theorem

(Larose '06) Let T be a finite reflexive tournament. Then T admits a Taylor operation if and only if T is transitive. If T is transitive, then the problem $\operatorname{CSP}\left(T^{c}\right)$ is in \mathbf{P}, and it is $\mathbf{N P}$-complete otherwise.

- The homotopy theory says a minimal counterexample must have at least four elements.
- Then use pp-definition on the possible configurations and minimality.

no 3-cycles with two loops

Theorem

Let T be a finite tournament(not neccessarily reflexive). If T contains a 3-cycle with at least two loops, then T is not closed under a Taylor polymorphism.

Proof:

no 3-cycles with two loops

Theorem

Let T be a finite tournament(not neccessarily reflexive). If T contains a 3-cycle with at least two loops, then T is not closed under a Taylor polymorphism.

Proof:

- T a counterexample of minimal cardinality.
- Let $a \rightarrow b \rightarrow c \rightarrow a$ be a 3-cycle in T; vertices a and b have loops.

no 3-cycles with two loops

Theorem

Let T be a finite tournament(not neccessarily reflexive). If T contains a 3-cycle with at least two loops, then T is not closed under a Taylor polymorphism.

Proof:

- T a counterexample of minimal cardinality.
- Let $a \rightarrow b \rightarrow c \rightarrow a$ be a 3-cycle in T; vertices a and b have loops.
- (a, b) must be a Willard pair.

no 3-cycles with two loops

Theorem

Let T be a finite tournament(not neccessarily reflexive). If T contains a 3-cycle with at least two loops, then T is not closed under a Taylor polymorphism.

Proof:

- T a counterexample of minimal cardinality.
- Let $a \rightarrow b \rightarrow c \rightarrow a$ be a 3-cycle in T; vertices a and b have loops.
- (a, b) must be a Willard pair. Take $f(x y z), g(x y z)$ such that $f(x y x) \approx g(x y x)$ and

$$
f(a a b)=g(a a b) \leftrightarrow f(a b b) \neq g(a b b) .
$$

no 3-cycles with two loops

Theorem

Let T be a finite tournament(not neccessarily reflexive). If T contains a 3-cycle with at least two loops, then T is not closed under a Taylor polymorphism.

Proof:

- T a counterexample of minimal cardinality.
- Let $a \rightarrow b \rightarrow c \rightarrow a$ be a 3-cycle in T; vertices a and b have loops.
- (a, b) must be a Willard pair. Take $f(x y z), g(x y z)$ such that $f(x y x) \approx g(x y x)$ and

$$
f(a a b)=g(a a b) \quad \text { and } \quad f(a b b) \neq g(a b b)
$$

no 3-cycles with two loops

There exists a vertex w such that $a \rightarrow w \rightarrow b$.

no 3-cycles with two loops

There exists a vertex w such that $a \rightarrow w \rightarrow b$.

(a) \mathbb{G}

(b) H

If not,

no 3-cycles with two loops

There exists a vertex w such that $a \rightarrow w \rightarrow b$.

(a) \mathbb{G}

(b) H

If not,

- Either $f(a b b)=a$ and $g(a b b)=b, f(a b b)=b$ and $g(a b b)=a$. Any case, we consider \mathbb{H}.

no 3-cycles with two loops

There exists a vertex w such that $a \rightarrow w \rightarrow b$.

If not,

- Either $f(a b b)=a$ and $g(a b b)=b, f(a b b)=b$ and $g(a b b)=a$. Any case, we consider \mathbb{H}.
- Collapse onto the cycle creates a symmetric edge.

no 3-cycles with two loops

There exists a vertex w such that $a \rightarrow w \rightarrow b$.

If not,

- Either $f(a b b)=a$ and $g(a b b)=b, f(a b b)=b$ and $g(a b b)=a$. Any case, we consider \mathbb{H}.
- Collapse onto the cycle creates a symmetric edge.
- There exists a vertex w such that $a \rightarrow w \rightarrow b$

no 3-cycles with two loops

There exists a vertex w such that $a \rightarrow w \rightarrow b$.

If not,

- Either $f(a b b)=a$ and $g(a b b)=b, f(a b b)=b$ and $g(a b b)=a$. Any case, we consider \mathbb{H}.
- Collapse onto the cycle creates a symmetric edge.
- There exists a vertex w such that $a \rightarrow w \rightarrow b$ and $w \rightarrow c$

no 3-cycles with two loops

There exists a vertex w such that $a \rightarrow w \rightarrow b$.

If not,

- Either $f(a b b)=a$ and $g(a b b)=b, f(a b b)=b$ and $g(a b b)=a$. Any case, we consider \mathbb{H}.
- Collapse onto the cycle creates a symmetric edge.
- There exists a vertex w such that $a \rightarrow w \rightarrow b$ and $w \rightarrow c$ (if not, reverse the edges)

no 3-cycles with two loops

no 3-cycles with two loops

Define the subalgebra $B=\{z:(\exists x)[(b \rightarrow x) \wedge(w \rightarrow x) \wedge(x \rightarrow z)]\}$.

no 3-cycles with two loops

Define the subalgebra $B=\{z:(\exists x)[(b \rightarrow x) \wedge(w \rightarrow x) \wedge(x \rightarrow z)]\}$. $\{a, b, c\} \subseteq B$

no 3-cycles with two loops

Define the subalgebra $B=\{z:(\exists x)[(b \rightarrow x) \wedge(w \rightarrow x) \wedge(x \rightarrow z)]\}$. $\{a, b, c\} \subseteq B$
Minimality implies $B=T \ni w$.

no 3-cycles with two loops

Define the subalgebra $B=\{z:(\exists x)[(b \rightarrow x) \wedge(w \rightarrow x) \wedge(x \rightarrow z)]\}$. $\{a, b, c\} \subseteq B$
Minimality implies $B=T \ni w$.

Another proof of H-dichotomy

Since Hell and Nešetřil established H-dichotomy for simple graphs,

Another proof of H-dichotomy

Since Hell and Nešetřil established H-dichotomy for simple graphs,

- Siggers, Bulatov, Kun and Szegedy, and Barto and Kozik have offered proofs
- some more algebraic, some more combinatorial
- A finite irreflexive symmetric graph with an odd cycle has only essentially unary surjective polymorphims

Another proof of H-dichotomy

Since Hell and Nešetřil established H-dichotomy for simple graphs,

- Siggers, Bulatov, Kun and Szegedy, and Barto and Kozik have offered proofs
- some more algebraic, some more combinatorial
- A finite irreflexive symmetric graph with an odd cycle has only essentially unary surjective polymorphims (does not have a Taylor polymorphism)

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

- $\mathbb{G}=\langle V, E\rangle$ counterexample of minimal cardinality.

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

- $\mathbb{G}=\langle V, E\rangle$ counterexample of minimal cardinality.
- May assume \mathbb{G} is symmetric

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

- $\mathbb{G}=\langle V, E\rangle$ counterexample of minimal cardinality.
- May assume \mathbb{G} is symmetric
- \mathbb{G} has a triangle $\left(\mathbb{H}=\left\langle V, E^{k-2}\right\rangle\right)$.

$$
1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 1
$$

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

- $\mathbb{G}=\langle V, E\rangle$ counterexample of minimal cardinality.
- May assume \mathbb{G} is symmetric
- \mathbb{G} has a triangle $\left(\mathbb{H}=\left\langle V, E^{k-2}\right\rangle\right)$.

$$
1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 1
$$

- Every vertex is part of a triangle ($a E^{3} a$ iff a is vertex of a triangle).

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

- $\mathbb{G}=\langle V, E\rangle$ counterexample of minimal cardinality.
- May assume \mathbb{G} is symmetric
- \mathbb{G} has a triangle $\left(\mathbb{H}=\left\langle V, E^{k-2}\right\rangle\right)$.

$$
1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 1
$$

- Every vertex is part of a triangle ($a E^{3} a$ iff a is vertex of a triangle).
- Every edge can only be on one triangle.

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

- $\mathbb{G}=\langle V, E\rangle$ counterexample of minimal cardinality.
- May assume \mathbb{G} is symmetric
- \mathbb{G} has a triangle $\left(\mathbb{H}=\left\langle V, E^{k-2}\right\rangle\right)$.

$$
1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 1
$$

- Every vertex is part of a triangle ($a E^{3} a$ iff a is vertex of a triangle).
- Every edge can only be on one triangle. No rhombus!!

Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not closed under a Taylor operation.

- $\mathbb{G}=\langle V, E\rangle$ counterexample of minimal cardinality.
- May assume \mathbb{G} is symmetric
- \mathbb{G} has a triangle $\left(\mathbb{H}=\left\langle V, E^{k-2}\right\rangle\right)$.

$$
1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 1
$$

- Every vertex is part of a triangle ($a E^{3} a$ iff a is vertex of a triangle).
- Every edge can only be on one triangle. No rhombus!!

(So begins Hell and Nešetril, Siggers, and Bulatov)

Malcev or Willard pairs

- Assume $(1,2)$ and $(1,3)$ are Malcev pairs. Then $1=c(122) \leftrightarrow c(331)=1$.

Malcev or Willard pairs

- Assume $(1,2)$ and $(1,3)$ are Malcev pairs. Then $1=c(122) \leftrightarrow c(331)=1$.
- We must have at least one Willard pair.

Malcev or Willard pairs

- Assume $(1,2)$ and $(1,3)$ are Malcev pairs. Then $1=c(122) \leftrightarrow c(331)=1$.
- We must have at least one Willard pair. Assume $(1,2)$ is a Willard pair and there exists f, g such that $f(x y x) \approx g(x y x)$ with $f(122)=g(122)$ and $f(112) \neq g(112)$

Malcev or Willard pairs

- Assume $(1,2)$ and $(1,3)$ are Malcev pairs. Then $1=c(122) \leftrightarrow c(331)=1$.
- We must have at least one Willard pair. Assume $(1,2)$ is a Willard pair and there exists f, g such that $f(x y x) \approx g(x y x)$ with $f(122)=g(122)$ and $f(112) \neq g(112)$

Figure: A leaf

