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Disjunctions instead of Malcev conditions Tournaments H-dichotomy

Disjunctions from Malcev conditions

Bjarni Jónsson said a variety V has distributive congruence lattices iff
here exists ternary terms p0, ...,pn which satisfy the identities

p0(xyz) ≈ x

pn(xyz) ≈ z

pi (xyx) ≈ x 0≤ i ≤ n

pi (xxy) ≈ pi+1(xxy) i even

pi (xyy) ≈ pi+1(xyy) i odd
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Kirby Baker said V is congruence distributive iff there exists ternary terms
p1, ...,pn such that

V |= pi (xux)≈ pi (xvx) 0≤ i ≤ n

V |= x 6≈ y →
n−1
∨

i=1

[pi (xxy) 6≈ pi+1(xyy)]
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p1, ...,pn such that

V |= pi (xux)≈ pi (xvx) 0≤ i ≤ n

V |= x 6≈ y →
n−1
∨

i=1

[pi (xxy) 6≈ pi+1(xyy)]

Ross Willard said V is congruence meet-semidistributive iff there exist
ternary terms f0, ..., fn,g1, ...,gn such that

V |= fi (xyx)≈ gi (xyx) 0≤ i ≤ n
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finite basis result and Pigozzi’s on relatively congruence distributivity
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Disjunctions from Malcev conditions

Maroti and McKenzie said that for quasivariety K TFAE:

there exist ternary terms f0, ..., fn,g1, ...,gn such that

K |= fi (xyx)≈ gi (xyx) 0≤ i ≤ n

K |= x 6≈ y →
n
∨

i=0

[fi (xxy)≈ gi (xxy)↔ fi (xyy) 6≈ gi (xyy)]

K has psuedo-complemented congruences(weakened form of SD(∧)
A very general finite basis result follows which covers both Willard’s
finite basis result and Pigozzi’s on relatively congruence distributivity
quasivarieties.

V |= SD(∧) iff V |= α ∩ (β ◦ γ)⊆ βm
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The congruences

For any A ∈K, the set of K-congruences are
ConK(A) = {α ∈ Con(A) : A/α ∈K}.

meets are the same as in Con(A)

join denoted by ∨K is induced by arbitrary meets.

Let α,β ,γ ∈ ConK(A), and define congruences βm, γm ∈ ConK(A)
inductively

β0 = β ,γ0 = γ

βn+1 = β ∨K (α ∧ γn) and γn+1 = γ ∨K (α ∧βn).

Notice β ≤ β1 ≤ β2 ≤ ·· · and γ ≤ γ1 ≤ γ2 ≤ ·· · .
Set

β∞ =
⋃

n∈ω
βn and γ∞ =

⋃

n∈ω
γn

and note β∞,γ∞ ∈ConK(A).
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A Disjunction

Wn(x ,y) :=
∨

n

i=1 [fi (xxy)≈ gi (xxy)↔ fi (xyy) 6≈ gi (xyy)]
Mc(x ,y) :=
[y ≈ c(xxy)∧ c(xxy)≈ c(yxx)∧ c(yyx)≈ c(xyy)∧ c(xyy)≈ x ] .
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For any quasivariety K the following are equivalent:

1 For any A ∈K and α,β ,γ ∈ConK(A), α ∧β = α ∧ γ = 0A implies
α ∧ (β ◦ γ)⊆ γ ◦β .

2 For the principle congruences α =Θ(x ,z), β =Θ(x ,y), and
γ =Θ(y ,z) in FK(x ,y ,z) there exists m such that
α ∩ (β ◦ γ)⊆ γm ◦βm.

3 There exists ternary terms f1, ...., fn,g1, ....,gn,c such that
fi (xyx)≈ gi (xyx) and K satisfies the sentence

∀x∀y [x 6≈ y −→Wn(x ,y)∨Mc(x ,y)] .
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It is easy to see conditions in Wn(x ,y) and Mc(x ,y) cannot be satisfied
by any interpretation by ternary projections.
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A Disjunction

Wn(x ,y) :=
∨

n

i=1 [fi (xxy)≈ gi (xxy)↔ fi (xyy) 6≈ gi (xyy)]
Mc(x ,y) :=
[y ≈ c(xxy)∧ c(xxy)≈ c(yxx)∧ c(yyx)≈ c(xyy)∧ c(xyy)≈ x ] .

Theorem

For any quasivariety K the following are equivalent:

1 For any A ∈K and α,β ,γ ∈ConK(A), α ∧β = α ∧ γ = 0A implies
α ∧ (β ◦ γ)⊆ γ ◦β .

2 For the principle congruences α =Θ(x ,z), β =Θ(x ,y), and
γ =Θ(y ,z) in FK(x ,y ,z) there exists m such that
α ∩ (β ◦ γ)⊆ γm ◦βm.

3 There exists ternary terms f1, ...., fn,g1, ....,gn,c such that
fi (xyx)≈ gi (xyx) and K satisfies the sentence

∀x∀y [x 6≈ y −→Wn(x ,y)∨Mc(x ,y)] .

xγmc(xyz)βmz implies c(xyz) must be idempotent.
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Varieties with a weak difference term

From Kearnes and Szendrei

Theorem

(Theorem 4.8 ”Two commutators”) For a variety V, the following are
equivalent:

1 V |= α ∩ (β ◦ γ)⊆ γm ◦βm.

2 V has a weak difference term.

3 V satisfies a nontrivial idempotent Malcev condition which implies
the abelian algebras are affine.
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c(xyz) in Mc(x ,y) is your weak difference term

Theorem

(Theorem 4.8 ”Two commutators”) For a variety V, the following are
equivalent:

1 V has a weak difference term.

2 There exists ternary terms f1, ...., fn,g1, ....,gn,c such that
fi (xyx)≈ gi (xyx) and

V |= ∀x∀y [x 6≈ y −→Wn(x ,y)∨Mc(x ,y)] .

3 V has an idempotent term which interprets as a malcev operation in
abelian algebras; consequently, abelian algebras are affine.
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c(xyz) in Mc(x ,y) is your weak difference term

Theorem

(Theorem 4.8 ”Two commutators”) For a variety V, the following are
equivalent:

1 V has a weak difference term.

2 There exists ternary terms f1, ...., fn,g1, ....,gn,c such that
fi (xyx)≈ gi (xyx) and

V |= ∀x∀y [x 6≈ y −→Wn(x ,y)∨Mc(x ,y)] .

3 V has an idempotent term which interprets as a malcev operation in
abelian algebras; consequently, abelian algebras are affine.

The disjunction yields a proof which avoids the topic of quasi-affine or
linear commutators, but you still need that righteous lemma.....you know
the one.
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Malcev or Willard?

Let A ∈ V, α,β ,γ ∈ Con(A), and a,b ∈ A such that a 6= b:

If (a,b) ∈ α ∩ (β ∨ γ) and A |=WV(a,b), then

α ∧β 6= 0A or α ∧ γ 6= 0A.

If (a,b) ∈ α ∩ (β ∨ γ)rδ where δ = α ∧β∞ = α ∧ γ∞, then

a δ c(abb) δ c(bba) and b δ c(baa) δ c(aab).

If (a,b) ∈ α ∩ (β ∨ γ) and α ∧β = α ∧ γ = 0A, then

A |=Mc(a,b)∧¬WV(a,b).

We say (a,b) is a Malcev pair if A |=Mc(a,b), and a Willard pair if
A |=Wn(a,b).
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problem CSP(T c) is in P, and it is NP-complete otherwise.
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Tournaments with Taylor polymorphisms

Let T be a finite reflexive tournament. T c is the structure which has all
the singleton unary relations in addition to the edge relation of T .

Theorem

(Larose ’06) Let T be a finite reflexive tournament. Then T admits a
Taylor operation if and only if T is transitive. If T is transitive, then the
problem CSP(T c) is in P, and it is NP-complete otherwise.

The homotopy theory says a minimal counterexample must have at
least four elements.

Then use pp-definition on the possible configurations and minimality.
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Let T be a finite tournament(not neccessarily reflexive). If T contains a
3-cycle with at least two loops, then T is not closed under a Taylor
polymorphism.

Proof:
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Theorem

Let T be a finite tournament(not neccessarily reflexive). If T contains a
3-cycle with at least two loops, then T is not closed under a Taylor
polymorphism.

Proof:

T a counterexample of minimal cardinality.

Let a→ b → c → a be a 3-cycle in T ; vertices a and b have loops.

(a,b) must be a Willard pair. Take f (xyz),g(xyz) such that
f (xyx)≈ g(xyx) and

f (aab) = g(aab)↔ f (abb) 6= g(abb).
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Theorem

Let T be a finite tournament(not neccessarily reflexive). If T contains a
3-cycle with at least two loops, then T is not closed under a Taylor
polymorphism.

Proof:

T a counterexample of minimal cardinality.

Let a→ b → c → a be a 3-cycle in T ; vertices a and b have loops.

(a,b) must be a Willard pair. Take f (xyz),g(xyz) such that
f (xyx)≈ g(xyx) and

f (aab) = g(aab) and f (abb) 6= g(abb).
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There exists a vertex w such that a→ w → b.

a b

c

f(bcb)

f(bab)

f(abb) g(abb)
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c

f(bcb) f(bab)
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If not,
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no 3-cycles with two loops

There exists a vertex w such that a→ w → b.

a b

c

f(bcb)

f(bab)

f(abb) g(abb)

(a) G

a b

c

f(bcb) f(bab)

(b) H

If not,

Either f (abb) = a and g(abb) = b, f (abb) = b and g(abb) = a. Any
case, we consider H.

Collapse onto the cycle creates a symmetric edge.

There exists a vertex w such that a→ w → b and w → c (if not,
reverse the edges)
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c

w

Define the subalgebra B = {z : (∃x) [(b → x)∧ (w → x)∧ (x → z)]}.
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Define the subalgebra B = {z : (∃x) [(b → x)∧ (w → x)∧ (x → z)]}.
{a,b,c} ⊆ B
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Define the subalgebra B = {z : (∃x) [(b → x)∧ (w → x)∧ (x → z)]}.
{a,b,c} ⊆ B
Minimality implies B = T ∋ w .
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essentially unary surjective polymorphims
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Another proof of H-dichotomy

Since Hell and Nes̆et̆ril established H-dichotomy for simple graphs,

Siggers, Bulatov, Kun and Szegedy, and Barto and Kozik have
offered proofs

some more algebraic, some more combinatorial

A finite irreflexive symmetric graph with an odd cycle has only
essentially unary surjective polymorphims ( does not have a Taylor
polymorphism)
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Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not
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(So begins Hell and Nes̆et̆ril, Siggers, and Bulatov)
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Figure: A leaf
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