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Disjunctions instead of Malcev conditions

Disjunctions from Malcev conditions

Bjarni Jonsson said a variety 'V has distributive congruence lattices iff
here exists ternary terms py, ..., p, which satisfy the identities

po(xyz) ~ x

plxvz) ~ z

pi(xyx) = x 0<i<n
pi(xxy) = piyi(xxy) i even
pi(xyy) =~ pipa(xyy) i odd
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Disjunctions instead of Malcev conditions

Disjunctions from Malcev conditions

Maroti and McKenzie said that for quasivariety K TFAE:
@ there exist ternary terms fo, ..., f,, g1, ..., &, such that

X E filxyx)=gi(xyx) 0<i<n

K b xity =V [HGo) ~ 8009) © floy) # 800v)]

@ X has psuedo-complemented congruences(weakened form of SD(A)
A very general finite basis result follows which covers both Willard’s
finite basis result and Pigozzi's on relatively congruence distributivity
quasivarieties.

o V= SD(A) iff ViEan(Boy) C Bm
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The congruences

For any A € X, the set of K-congruences are
Congc(A)={a € Con(A): A/a € K}.

@ meets are the same as in Con(A)

@ join denoted by V¥ is induced by arbitrary meets.

Let a,B,y € Cong(A), and define congruences B, Yim € Congc(A)
inductively

Bo=Byw=yYy
Brs1=BVX(aAY:) and Va1 =YV (aABy).
Notice B< B <Bo<---and y<y <p<---.

Set
B“:UB” and yoo:Uyn

ncw new

and note B, Yo €Congc(A).
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A Disjunction
= Vi [filxxy) = gi(xxy) < fi(xyy) % gi(xyy)]

[y = c(xxy) A c(xxy) = c(yxx) A c(yyx) = c(xyy) A c(xyy) =~ x].

For any quasivariety X the following are equivalent:

Q Forany Ae X and a,,y €Cony(A), a AB=a Ay=0a implies
an(Boy)Cyep.

Q For the principle congruences a = ©(x,z), B = O(x,y), and
y=0(y,z) in Fx(x,y,z) there exists m such that
Gﬂ(Boy) C Ym0 Bm-

© There exists ternary terms fi,....,f,, 81, ....,&n, C such that
fi(xyx) =~ gi(xyx) and X satisfies the sentence

VxVy [x %y — W,(x,y)V M:(x,y)].

XYm€(xyz)Bmz implies ¢(xyz) must be idempotent.
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Varieties with a weak difference term

From Kearnes and Szendrei

Theorem

(Theorem 4.8 " Two commutators”) For a variety V, the following are
equivalent:

Q ViEan(Boy) < YmoBm.

Q V has a weak difference term.

@ V satisfies a nontrivial idempotent Malcev condition which implies
the abelian algebras are affine.
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Disjunctions instead of Malcev conditions

c(xyz) in Mc(x,y) is your weak difference term

(Theorem 4.8 " Two commutators”) For a variety V, the following are
equivalent:

Q V has a weak difference term.
Q@ There exists ternary terms fi,....,f,, 81, ....,8n, C Such that
fi(xyx) ~ gi(xyx) and
VE XYy [x %y — Wa(x,y)V Mc(x,y)].

© V has an idempotent term which interprets as a malcev operation in
abelian algebras; consequently, abelian algebras are affine.

o

The disjunction yields a proof which avoids the topic of quasi-affine or
linear commutators, but you still need that righteous lemma.....you know
the one.



Disju instead of Malcev conditions

Malcev or Willard?

Let A€V, a,B,y€ Con(A), and a,b € A such that a # b:
o If (a,b) e an(BVy)and A= Wy(a,b), then

aANB#0a or aAyF#O0a.
o If (a,b) e an(BVy)~d where d=0aALw=0A VY, then
adc(abb) dc(bba) and b c(baa) o c(aab).
o If (a,b)ean(BVy)and aAB=aAy=04, then
A= Mc(a,b) A=Wy(a,b).

We say (a, b) is a Malcev pair if A= Mc(a,b), and a Willard pair if
A= W,(a,b).
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Tournaments

Tournaments with Taylor polymorphisms

Let T be a finite reflexive tournament. T°€ is the structure which has all
the singleton unary relations in addition to the edge relation of T.

(Larose '06) Let T be a finite reflexive tournament. Then T admits a
Taylor operation if and only if T is transitive. If T is transitive, then the
problem CSP(T¢€) is in P, and it is NP-complete otherwise.

@ The homotopy theory says a minimal counterexample must have at
least four elements.

@ Then use pp-definition on the possible configurations and minimality.
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Tournaments
no 3-cycles with two loops

Let T be a finite tournament(not neccessarily reflexive). If T contains a
3-cycle with at least two loops, then T is not closed under a Taylor

polymorphism.

Proof:
@ T a counterexample of minimal cardinality.
o Let a— b— c— a be a 3-cycle in T; vertices a and b have loops.
@ (a,b) must be a Willard pair. Take f(xyz),g(xyz) such that
f(xyx) ~ g(xyx) and

f(aab) = g(aab) and f(abb) # g(abb).
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no 3-cycles with two loops

There exists a vertex w such that a — w — b.

f(bcb)
/ \‘\g(ahb) f(beh) —————>————f(bab)

f(abb)

| /f(bab)\ ! 4 b
\ ] / :c ]H:

(a) G

If not,
o Either f(abb) = a and g(abb) = b, f(abb) = b and g(abb) = a. Any
case, we consider TH.
@ Collapse onto the cycle creates a symmetric edge.

@ There exists a vertex w such that a— w — b and w — ¢ (if not,
reverse the edges)
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Another proof of H-dichotomy

Since Hell and NeSet¥il established H-dichotomy for simple graphs,
@ Siggers, Bulatov, Kun and Szegedy, and Barto and Kozik have
offered proofs
@ some more algebraic, some more combinatorial

@ A finite irreflexive symmetric graph with an odd cycle has only
essentially unary surjective polymorphims ( does not have a Taylor
polymorphism)
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Pre-processing

A finite irreflexive digraph which contains a symmetric odd cycle is not
closed under a Taylor operation.

o G = (V, E) counterexample of minimal cardinality.
@ May assume G is symmetric
o G has a triangle (H = (V,EF2)).

1231

@ Every vertex is part of a triangle (aE3a iff a is vertex of a triangle).

@ Every edge can only be on one triangle. No rhombus!!

d

i
AN

(So begins Hell and Neset¥il, Siggers, and Bulatov)
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H-dichotomy
Malcev or Willard pairs

@ Assume (1,2) and (1,3) are Malcev pairs. Then
1=c(122) +> c(331) = 1.
@ We must have at least one Willard pair. Assume (1,2) is a Willard

pair and there exists f,g such that f(xyx) = g(xyx) with
f(122) = g(122) and £(112) # g(112)

fa1)—7
f(231)< \ 1>2
\ f(323)/ \

£(313)

3

£(122) Sy

g(231)

Figure: A leaf
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