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Definitions

Digraph: a finite structure G = (V ,E ) where E is a binary relation on V .

Graph: a digraph (V ,E ) in which E is symmetric and irreflexive.

Polymorphism of a finite relational structure A = (A, . . .):
an operation f : An → A (n ≥ 1) which preserves each relation of A.

Idempotent operation: an operation f that satisfies f (x , x , . . . , x) = x .

A satisfies a Maltsev condition Σ:
this means that A has polymorphisms which satisfy the identities in Σ.

Problem

Which finite graphs satisfy your favorite Maltsev condition?
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Recall that a graph is bipartite if there exists a partition V = D ·∪U such
that all edges are between D and U.
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Theorem (Bulatov 2005; Hell, Nešeťril 1990)

Suppose G is a graph. If G satisfies a nontrivial idempotent Maltsev
condition, then G is bipartite.

Therefore we restrict our attention to bipartite graphs.
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Definition (Larose, Lemâıtre)

A digraph G = (V ,E ) is strongly bipartite if there exists a partition
V = D ·∪U such that E ⊆ D × U.

G = (V ,E )

Bipartite graph
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Every bipartite graph can be associated with a strongly bipartite digraph,
and vice versa.
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Definition

A 2-equivalence structure is a finite structure (A;α, β) where

α and β are equivalence relations on A.

α ∩ β = 0A.

~G = (V , ~E )
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Every strongly bipartite digraph can be associated with a 2-equivalence
structure, and vice versa.
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Definition

A 2-sorted digraph is a 2-sorted structure (V0,V1;E ) where

1 V0 and V1 are finite non-empty sets (the universes).

2 E ⊆ V0 × V1.

~G = (V , ~E )
Strongly bipartite digraph
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~G(2) = (V0,V1; ~E )
2-sorted digraph
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Every strongly bipartite digraph can be associated with a 2-sorted digraph,
and vice versa.
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Useful Lemma

Let Σ be an idempotent Maltsev condition such that

1 Every identity in Σ mentions at most two variables;

2 The 2-element graph satisfies Σ.

Let G be a connected bipartite graph and let ~G, Eq(~G), and ~G(2) be
the corresponding strongly bipartite digraph, 2-equivalence structure
and 2-sorted digraph respectively.

If any of G, ~G, Eq(~G) or ~G(2) satisfy Σ, then all satisfy Σ.

Remark. By an n-ary polymorphism of ~G(2) = (V0,V1;E ) I mean a pair
f = (f0, f1) where fi : (Vi )

n → Vi and such that f0, f1 jointly preserve E :

if (a1, b1), . . . , (an, bn) ∈ E then (f0(a), f1(b)) ∈ E .
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Lemma (summary)

Σ an idempotent Maltsev condition satisfying two hypotheses.

G connected, bipartite.

If any of G, ~G, ~G(2) or Eq(~G) satisfy Σ, then all satisfy Σ.

G ~G ~G(2)

V0

V1

Eq(~G)

Proof idea

Pp-interpretations: Eq(~G) ≡pp
~G(2) ≤pp

~G ≤pp Gc .

Thus it suffices to show that ~G(2) |= Σ ⇒ G |= Σ.

There is a recipe for doing this.
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Question (Benoit Larose, Nov’ 2012)

Does there exist a bipartite graph which:

1 Satisfies the Maltsev condition for congruence n-permutability
(n-PERM) for some n, and

2 Satisfies the Maltsev condition for congruence meet-semidistributivity
(SD(∧)), but

3 Does NOT have a near-unanimity (NU) polymorphism.

Theorem (W)

If a bipartite graph is n-PERM for some n ≤ 5, then it is NU.

Proof idea

Analyze 2-sorted digraphs. Characterize which are n-permutable for n ≤ 5.
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The previous result does not extend to 6-PERM.

Example

There exists a bipartite graph which is 6-PERM and SD(∧), but does not
have an NU polymorphism.
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All the structures on this page are 6-PERM and SD(∧) but have no NU.

Ross Willard (Waterloo) Bipartite Graphs and Polymorphisms Boulder 2013 10 / 13



No NU

V0

V1

0 1 2 3

0 1 2 3

Suppose f = (f0, f1) is an n-ary
NU polymorphism.

{3} is absorbing for each fi .

Therefore {1, 2} is absorbing for each fi . Consider

f1(0, 2, 2, 2, . . . , 2) = 2

f0(1, 0, 2, 2, . . . , 2) = 2

Bottom line must be in {1, 2} (absorbing), and connected to 2, so is 2.

Similarly, show

f (1, 1, 2, 2, . . . , 2) = 2

f (1, 1, 1, 2, . . . , 2) = 2

etc.
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5-PERM
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First, delete both 3’s.

The resulting subgraph has 3-PERM
polymorphisms p1 = (p10 , p

1
1), p2 = (p20 , q

2
1)

such that all pij preserve {1, 2}.

Lemma

Suppose G = (V0,V1;E ) is a 2-sorted digraph, H = (H0,H1;E ′) is a
retract of G, and r = (r0, r1) is a strong retraction of G onto H, i.e.,

N(a) ⊆ N(r0(a)) for all a ∈ V0, and dually.

Suppose H has n-PERM polymorphisms p1,p2, . . . ,pn−1 satisfying

For all a ∈ V0 \ H0, all pi1 preserve N(a) ∩ H1, and dually.

Then G has (n + 2)-PERM polymorphisms.

Apply the Lemma with both 3’s being sent to 0.
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Problems

1 Characterize the 6-PERM bipartite graphs.

2 Characterize the bipartite graphs which are n-PERM for some n.

3 (Larose) Prove that if a bipartite graph G is 6-PERM (or n-PERM)
and SD(∧), then CSP(Gc) is in LogSpace.

Thank you!
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