Bipartite Graphs and their Idempotent Polymorphisms

Ross Willard

University of Waterloo

AMS Spring Western Sectional Meeting
University of Colorado Boulder
April 14, 2013

Definitions

Digraph: a finite structure $\mathbf{G}=(V, E)$ where E is a binary relation on V.
Graph: a digraph (V, E) in which E is symmetric and irreflexive.
Polymorphism of a finite relational structure $\mathbf{A}=(A, \ldots)$: an operation $f: A^{n} \rightarrow A(n \geq 1)$ which preserves each relation of \mathbf{A}.

Idempotent operation: an operation f that satisfies $f(x, x, \ldots, x)=x$.
A satisfies a Maltsev condition Σ :
this means that \mathbf{A} has polymorphisms which satisfy the identities in Σ.

Problem

Which finite graphs satisfy your favorite Maltsev condition?

Recall that a graph is bipartite if there exists a partition $V=D \smile U$ such that all edges are between D and U.

Bipartite graph

Theorem (Bulatov 2005; Hell, Nešetřil 1990)

Suppose G is a graph. If \mathbf{G} satisfies a nontrivial idempotent Maltsev condition, then \mathbf{G} is bipartite.

Therefore we restrict our attention to bipartite graphs.

Definition (Larose, Lemaître)

A digraph $\mathbf{G}=(V, E)$ is strongly bipartite if there exists a partition $V=D \cup U$ such that $E \subseteq D \times U$.

$$
\mathbf{G}=(V, E)
$$

Bipartite graph

$\overrightarrow{\mathbf{G}}=(V, \vec{E})$
Strongly bipartite digraph

Every bipartite graph can be associated with a strongly bipartite digraph, and vice versa.

Definition

A 2-equivalence structure is a finite structure $(A ; \alpha, \beta)$ where

- α and β are equivalence relations on A.
- $\alpha \cap \beta=0_{A}$.

A 2-equivalence structure $\operatorname{Eq}(\overrightarrow{\mathbf{G}})$

$$
\begin{aligned}
& \alpha=\bigcirc \text { blocks } \\
& \beta=\bigcirc \text { blocks }
\end{aligned}
$$

Every strongly bipartite digraph can be associated with a 2-equivalence structure, and vice versa.

Definition

A 2-sorted digraph is a 2-sorted structure ($V_{0}, V_{1} ; E$) where
(1) V_{0} and V_{1} are finite non-empty sets (the universes).
(2) $E \subseteq V_{0} \times V_{1}$.

Strongly bipartite digraph

$\overrightarrow{\mathbf{G}}_{(2)}=\left(V_{0}, V_{1} ; \vec{E}\right)$
2-sorted digraph

Every strongly bipartite digraph can be associated with a 2-sorted digraph, and vice versa.

Useful Lemma

Let Σ be an idempotent Maltsev condition such that
(1) Every identity in Σ mentions at most two variables;
(2) The 2-element graph satisfies Σ.

Let \mathbf{G} be a connected bipartite graph and let $\overrightarrow{\mathbf{G}}, \operatorname{Eq}(\overrightarrow{\mathbf{G}})$, and $\overrightarrow{\mathbf{G}}_{(2)}$ be the corresponding strongly bipartite digraph, 2-equivalence structure and 2-sorted digraph respectively.

If any of $\mathbf{G}, \overrightarrow{\mathbf{G}}, \mathrm{Eq}(\overrightarrow{\mathbf{G}})$ or $\overrightarrow{\mathbf{G}}_{(2)}$ satisfy Σ, then all satisfy Σ.

Remark. By an n-ary polymorphism of $\overrightarrow{\mathbf{G}}_{(2)}=\left(V_{0}, V_{1} ; E\right)$ I mean a pair $\mathbf{f}=\left(f_{0}, f_{1}\right)$ where $f_{i}:\left(V_{i}\right)^{n} \rightarrow V_{i}$ and such that f_{0}, f_{1} jointly preserve $E:$

$$
\text { if }\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) \in E \text { then }\left(f_{0}(\mathbf{a}), f_{1}(\mathbf{b})\right) \in E
$$

Lemma (summary)

- Σ an idempotent Maltsev condition satisfying two hypotheses.
- G connected, bipartite.

If any of $\mathbf{G}, \overrightarrow{\mathbf{G}}, \overrightarrow{\mathbf{G}}_{(2)}$ or $\mathrm{Eq}(\overrightarrow{\mathbf{G}})$ satisfy Σ, then all satisfy Σ.

G

$\overrightarrow{\mathbf{G}}$

$\overrightarrow{\mathbf{G}}_{(2)}$

$\mathrm{Eq}(\overrightarrow{\mathbf{G}})$

Proof idea

Pp-interpretations: $\operatorname{Eq}(\overrightarrow{\mathbf{G}}) \equiv_{p p} \overrightarrow{\mathbf{G}}_{(2)} \leq_{p p} \overrightarrow{\mathbf{G}} \leq_{p p} \mathbf{G}^{c}$.
Thus it suffices to show that $\overrightarrow{\mathbf{G}}_{(2)} \models \Sigma \Rightarrow \mathbf{G} \models \Sigma$.
There is a recipe for doing this.

Question (Benoit Larose, Nov' 2012)

Does there exist a bipartite graph which:
(1) Satisfies the Maltsev condition for congruence n-permutability (n-PERM) for some n, and
(2) Satisfies the Maltsev condition for congruence meet-semidistributivity (SD($\wedge)$), but
(3) Does NOT have a near-unanimity (NU) polymorphism.

Theorem (W)
If a bipartite graph is n-PERM for some $n \leq 5$, then it is $N U$.

Proof idea

Analyze 2-sorted digraphs. Characterize which are n-permutable for $n \leq 5$.

The previous result does not extend to 6-PERM.

Example

There exists a bipartite graph which is 6-PERM and $\operatorname{SD}(\wedge)$, but does not have an NU polymorphism.

All the structures on this page are $6-\operatorname{PERM}$ and $\mathrm{SD}(\wedge)$ but have no NU .

No NU

Suppose $\mathbf{f}=\left(f_{0}, f_{1}\right)$ is an n-ary
NU polymorphism.
$\{3\}$ is absorbing for each f_{i}.

Therefore $\{1,2\}$ is absorbing for each f_{i}. Consider

$$
\begin{aligned}
& f_{1}(0,2,2,2, \ldots, 2)=2 \\
& f_{0}(1,0,2,2, \ldots, 2)=2
\end{aligned}
$$

Bottom line must be in $\{1,2\}$ (absorbing), and connected to 2 , so is 2 . Similarly, show

$$
\begin{array}{r}
f(1,1,2,2, \ldots, 2)=2 \\
f(1,1,1,2, \ldots, 2)=2
\end{array}
$$

etc.

5-PERM

First, delete both 3's.
The resulting subgraph has 3-PERM polymorphisms $\mathbf{p}^{1}=\left(p_{0}^{1}, p_{1}^{1}\right), \mathbf{p}^{2}=\left(p_{0}^{2}, q_{1}^{2}\right)$
 such that all p_{j}^{i} preserve $\{1,2\}$.

Lemma

Suppose $\mathbf{G}=\left(V_{0}, V_{1} ; E\right)$ is a 2-sorted digraph, $\mathbf{H}=\left(H_{0}, H_{1} ; E^{\prime}\right)$ is a retract of \mathbf{G}, and $\mathbf{r}=\left(r_{0}, r_{1}\right)$ is a strong retraction of \mathbf{G} onto \mathbf{H}, i.e.,

- $N(a) \subseteq N\left(r_{0}(a)\right)$ for all $a \in V_{0}$, and dually.

Suppose \mathbf{H} has n-PERM polymorphisms $\mathbf{p}^{1}, \mathbf{p}^{2}, \ldots, \mathbf{p}^{n-1}$ satisfying

- For all $a \in V_{0} \backslash H_{0}$, all p_{1}^{i} preserve $N(a) \cap H_{1}$, and dually.

Then \mathbf{G} has $(n+2)$-PERM polymorphisms.

Apply the Lemma with both 3 's being sent to 0 .

Problems

(1) Characterize the 6-PERM bipartite graphs.
(2) Characterize the bipartite graphs which are n-PERM for some n.
(3) (Larose) Prove that if a bipartite graph G is 6-PERM (or n-PERM) and $\operatorname{SD}(\wedge)$, then $\operatorname{CSP}\left(\mathbf{G}^{c}\right)$ is in LogSpace.

Thank you!

