Bipartite Graphs and their Idempotent Polymorphisms

Ross Willard

University of Waterloo

AMS Spring Western Sectional Meeting University of Colorado Boulder April 14, 2013

Definitions

Digraph: a finite structure $\mathbf{G} = (V, E)$ where E is a binary relation on V.

Graph: a digraph (V, E) in which E is symmetric and irreflexive.

Polymorphism of a finite relational structure $\mathbf{A} = (A, ...)$: an operation $f : A^n \to A$ $(n \ge 1)$ which preserves each relation of \mathbf{A} .

Idempotent operation: an operation f that satisfies f(x, x, ..., x) = x.

A satisfies a Maltsev condition Σ : this means that A has polymorphisms which satisfy the identities in Σ .

Problem

Which finite graphs satisfy your favorite Maltsev condition?

Recall that a graph is bipartite if there exists a partition $V = D \cup U$ such that all edges are between D and U.

Bipartite graph

Theorem (Bulatov 2005; Hell, Nešetřil 1990)

Suppose ${\bf G}$ is a graph. If ${\bf G}$ satisfies a nontrivial idempotent Maltsev condition, then ${\bf G}$ is bipartite.

Therefore we restrict our attention to bipartite graphs.

Ross Willard (Waterloo)

Bipartite Graphs and Polymorphisms

Definition (Larose, Lemaître)

A digraph $\mathbf{G} = (V, E)$ is strongly bipartite if there exists a partition $V = D \cup U$ such that $E \subseteq D \times U$.

Every bipartite graph can be associated with a strongly bipartite digraph, and vice versa.

Definition

A 2-equivalence structure is a finite structure $(A; \alpha, \beta)$ where

- α and β are equivalence relations on A.
- $\alpha \cap \beta = \mathbf{0}_A$.

 $\beta =$ blocks

A 2-equivalence structure $Eq(\vec{G})$ blocks

Every strongly bipartite digraph can be associated with a 2-equivalence structure, and vice versa.

Ross Willard (Waterloo)

 $\alpha =$

Definition

A 2-sorted digraph is a 2-sorted structure $(V_0, V_1; E)$ where

() V_0 and V_1 are finite non-empty sets (the universes).

 $e \subseteq V_0 \times V_1.$

Every strongly bipartite digraph can be associated with a 2-sorted digraph, and vice versa.

Useful Lemma

Let $\boldsymbol{\Sigma}$ be an idempotent Maltsev condition such that

- Every identity in Σ mentions at most two variables;
- 2 The 2-element graph satisfies Σ .

Let **G** be a connected bipartite graph and let \vec{G} , Eq (\vec{G}) , and $\vec{G}_{(2)}$ be the corresponding strongly bipartite digraph, 2-equivalence structure and 2-sorted digraph respectively.

If any of **G**, \vec{G} , Eq(\vec{G}) or $\vec{G}_{(2)}$ satisfy Σ , then all satisfy Σ .

Remark. By an *n*-ary polymorphism of $\vec{\mathbf{G}}_{(2)} = (V_0, V_1; E)$ I mean a pair $\mathbf{f} = (f_0, f_1)$ where $f_i : (V_i)^n \to V_i$ and such that f_0, f_1 jointly preserve E:

if
$$(a_1, b_1), \ldots, (a_n, b_n) \in E$$
 then $(f_0(\mathbf{a}), f_1(\mathbf{b})) \in E$.

Lemma (summary)

- Σ an idempotent Maltsev condition satisfying two hypotheses.
- G connected, bipartite.

If any of **G**, \vec{G} , $\vec{G}_{(2)}$ or Eq(\vec{G}) satisfy Σ , then all satisfy Σ .

Proof idea

Pp-interpretations: Eq $(\vec{\mathbf{G}}) \equiv_{pp} \vec{\mathbf{G}}_{(2)} \leq_{pp} \vec{\mathbf{G}} \leq_{pp} \mathbf{G}^{c}$. Thus it suffices to show that $\vec{\mathbf{G}}_{(2)} \models \Sigma \Rightarrow \mathbf{G} \models \Sigma$.

There is a recipe for doing this.

Ross Willard (Waterloo)

Question (Benoit Larose, Nov' 2012)

Does there exist a bipartite graph which:

- Satisfies the Maltsev condition for congruence *n*-permutability (*n*-PERM) for some *n*, and
- Satisfies the Maltsev condition for congruence meet-semidistributivity (SD(^)), but
- **O** Does NOT have a near-unanimity (NU) polymorphism.

Theorem (W)

If a bipartite graph is n-PERM for some $n \leq 5$, then it is NU.

Proof idea

Analyze 2-sorted digraphs. Characterize which are *n*-permutable for $n \leq 5$.

The previous result does not extend to 6-PERM.

Example

There exists a bipartite graph which is 6-PERM and SD(\land), but does not have an NU polymorphism.

All the structures on this page are 6-PERM and $SD(\wedge)$ but have no NU.

No NU

Suppose $\mathbf{f} = (f_0, f_1)$ is an *n*-ary NU polymorphism.

 $\{3\}$ is absorbing for each f_i .

Therefore $\{1,2\}$ is absorbing for each f_i . Consider

$$f_1(0,2,2,2,\ldots,2) = 2 f_0(1,0,2,2,\ldots,2) = 2$$

Bottom line must be in $\{1,2\}$ (absorbing), and connected to 2, so is 2. Similarly, show

$$f(1,1,2,2,\ldots,2) = 2 f(1,1,1,2,\ldots,2) = 2$$

5-PERM

First, delete both 3's.

The resulting subgraph has 3-PERM polymorphisms $\mathbf{p}^1 = (p_0^1, p_1^1)$, $\mathbf{p}^2 = (p_0^2, q_1^2)$ such that all p_i^i preserve $\{1, 2\}$.

Lemma

Suppose $\mathbf{G} = (V_0, V_1; E)$ is a 2-sorted digraph, $\mathbf{H} = (H_0, H_1; E')$ is a retract of \mathbf{G} , and $\mathbf{r} = (r_0, r_1)$ is a **strong retraction** of \mathbf{G} onto \mathbf{H} , i.e.,

• $N(a) \subseteq N(r_0(a))$ for all $a \in V_0$, and dually.

Suppose **H** has *n*-PERM polymorphisms $\mathbf{p}^1, \mathbf{p}^2, \dots, \mathbf{p}^{n-1}$ satisfying

• For all $a \in V_0 \setminus H_0$, all p_1^i preserve $N(a) \cap H_1$, and dually. Then **G** has (n + 2)-PERM polymorphisms.

Apply the Lemma with both 3's being sent to 0.

Problems

- Characterize the 6-PERM bipartite graphs.
- **2** Characterize the bipartite graphs which are *n*-PERM for some *n*.
- (Larose) Prove that if a bipartite graph G is 6-PERM (or *n*-PERM) and SD(∧), then CSP(G^c) is in LOGSPACE.

Thank you!