Congruence *n*-permutable varieties

Matt Valeriote ¹ Ross Willard ²

¹McMaster University

²University of Waterloo

14 April 2013

Definition (W. Neumann, W. Taylor)

Let \mathcal{U} and \mathcal{V} be varieties.

- (Kearnes-Kiss): "The condition that U ≤ V may be expressed as there is a set of V-terms corresponding to the basic operation symbols of U such that the set of identities corresponding to the axioms of U hold in V."
- Suppose that the operation symbols of U are {f_i : i ∈ I}. We say that U is interpretable in V, and write U ≤ V, if for every i ∈ I there is a V-term t_i of the same arity as f_i such that for all A ∈ V, the algebra ⟨A, t_i^A(i ∈ I)⟩ is a member of U.
- If \mathcal{U} is a finitely presented variety, then the condition $\mathcal{U} \leq \mathcal{V}$ on \mathcal{V} is called the strong Maltsev condition defined by \mathcal{U} , and $\{\mathcal{V} : \mathcal{U} \leq \mathcal{V}\}$ is the strong Maltsev class defined by this condition.

Theorem (Taylor, Hobby-McKenzie)

Let \mathcal{V} be a locally finite idempotent variety. The following are equivalent:

- $\mathcal{V} \not\leq Sets$,
- $\mathcal V$ has a Taylor term,
- \mathcal{V} satisfies the congruence inclusion $\alpha \cap (\beta \circ \gamma) \subseteq \gamma_m \circ \beta_m$,
- V omits the unary type.

Theorem (Taylor, Kearnes-Kiss)

Let \mathcal{V} be an idempotent variety. The following are equivalent:

- $\mathcal{V} \not\leq Sets$,
- $\mathcal V$ has a Taylor term,
- V satisfies the congruence inclusion α ∩ (β ∘₄ γ) ⊆ w(α, β, γ), for some lattice word w with w(p, q, r)
- V has no member with a nonzero strongly abelian congruence.

Avoiding Semilattices

Theorem (Hobby-McKenzie)

Let \mathcal{V} be a locally finite idempotent variety. The following are equivalent:

- V ≤ Semilattices,
- \mathcal{V} has a Hobby-McKenzie term,
- \mathcal{V} satisfies $\alpha \cap (\beta \circ \gamma) \subseteq (\gamma \lor (\alpha \land \beta)) \circ (\beta \lor (\alpha \land \gamma))$,
- V omits the unary and semilattice types.

Theorem (Kearnes-Kiss)

Let \mathcal{V} be an idempotent variety. The following are equivalent:

- V ≤ Semilattices,
- \mathcal{V} has a Hobby-McKenzie term,
- \mathcal{V} satisfies $\alpha \cap (\beta \circ \gamma) \subseteq (\gamma \lor (\alpha \land \beta)) \circ (\beta \lor (\alpha \land \gamma))$,
- V satisfies a nontrivial congruence identity,
- V has no member with a nontrivial rectangular congruence.

Theorem (Hobby-McKenzie)

Let \mathcal{V} be a locally finite idempotent variety. The following are equivalent:

- $\mathcal{V} \not\leq \mathcal{M}$ for every non-trivial locally finite variety of modules,
- \mathcal{V} is congruence meet semidistributive,
- V satisfies the congruence inclusion α ∩ (β ∘ γ) ⊆ β_m ∩ γ_m, for some m,
- V omits the unary and affine types.

Theorem (Kearnes-Kiss)

Let \mathcal{V} be an idempotent variety. The following are equivalent:

- $\mathcal{V} \not\leq \mathcal{M}$ for every non-trivial variety of modules,
- \mathcal{V} is congruence meet semidistributive,
- \mathcal{V} satisfies the congruence inclusion $\alpha \cap (\beta \circ \gamma) \subseteq \beta_m$, for some m,
- V has no member with a nontrivial abelian congruence.

Definition

A variety \mathcal{V} is congruence *n*-permutable if for all $\mathbf{A} \in \mathcal{V}$ and α , $\beta \in \text{Con}(\mathbf{A})$, $\alpha \circ_n \beta = \beta \circ_n \alpha$.

Theorem (Hagemann-Mitschke)

The following are equivalent for a variety V and n > 1:

- \mathcal{V} is congruence n-permutable,
- \mathcal{V} has terms $p_i(x, y, z)$, for $1 \le i < n$, which satisfy the identities:

$$egin{array}{rcl} x & = & p_1(x,y,y) \ p_i(x,x,y) & = & p_{i+1}(x,y,y) & \mbox{for } 1 \leq i < n-1 \ p_{n-1}(x,x,y) & = & y. \end{array}$$

Theorem (Hobby-McKenzie)

Let \mathcal{V} be a locally finite idempotent variety. The following are equivalent:

- $\mathcal{V} \not\leq \text{Dist}$, the variety of distributive lattices,
- V has Hagemann-Mitschke terms,
- \mathcal{V} is congruence n-permutable for some n > 1,
- \mathcal{V} omits the unary, lattice, and semilattice types.

Definition

An algebra **A** is orderable if there is a compatible non-trivial partial order on A. This is equivalent to all of the term operations of A being monotone with respect to some non-trivial partial order on A.

Theorem (Hagemann)

If a variety \mathcal{V} contains an orderable algebra, then \mathcal{V} is not congruence *n*-permutable for any n > 1.

Proof.

Suppose that \leq is a compatible non-trivial order on some $\mathbf{A} \in \mathcal{V}$ and let a < b in A. Using the Hagemann-Mitschke terms for congruence *n*-permutability yields the following contradiction:

$$b=p_1(b,a,a)\leq p_1(b,b,a)=p_2(b,a,a)\leq \cdots =p_n(b,a,a)=a.$$

Theorem (Hagemann)

A variety V does not contain an orderable algebra if and only if it is congruence n-permutable for some n > 1.

Proof.

- Construct an algebra in \mathcal{V} that has a compatible order and show that the triviality of this order gives rise to Hagemann-Mitschke terms.
- Let ${\boldsymbol{\mathsf{F}}}$ be the free algebra in ${\mathcal{V}}$ generated by ${\boldsymbol{\mathsf{x}}}$ and ${\boldsymbol{\mathsf{y}}}.$
- \bullet Let R be the subalgebra of F^2 generated by $\{(x,x),(x,y),(y,y)\}$ and
- let \leq be the transitive closure of *R*, a compatible quasi-order on \mathbf{F}^2 .
- \leq is trivial, and so $\mathbf{y} \leq \mathbf{x}$.
- From this we get terms for *n*-permutability for some n > 1.

Theorem (Valeriote-Willard)

A idempotent variety V is congruence n-permutable for some n > 1 if and only if $V \leq D$ ist.

Remarks

- One direction has already been established, since Hagemann-Mitschke terms can't be modelled by any orderable algebra.
- The converse amounts to showing that V must contain a 2-element orderable algebra, if it contains some orderable algebra.

Lemma

Let \mathcal{V} be an idempotent variety that contains an orderable algebra. Then \mathcal{V} contains a 2-element orderable algebra.

Remarks

- Complications arise when \leq is a dense order of P.
- Otherwise, if P is finite, or more generally, if there is a covering pair a < b in P then a 2-element orderable algebra can easily be constructed as a subalgebra of P.
- If b covers a in P then {a, b} = a ↑ ∩ b ↓ is the intersection of two subalgebras of P and so is also a subalgebra.

Lemma

If **P** is an idempotent orderable algebra whose ordering \leq is dense, then some subalgebra of an ultrapower of **P** has a 2-element quotient (and so any variety containing **P** has a 2-element orderable algebra).

Remarks

- So, HSP_U(**P**) contains a 2-element orderable algebra.
- We may assume that \mathbf{P} is bounded by elements 0 < 1.
- Any ultrapower of an orderable algebra is orderable and will belong to the variety generated by the algebra.

An ultrafilter on P

Definition

• For
$$A \subseteq P$$
, let $N_A = (A \uparrow) \setminus (A \downarrow)$.

• Let
$$\mathcal{J} = \{N_A : A \subseteq (P \setminus \{0\})\} \cup \{\{0\}\}.$$

Example

When P is the unit interval [0, 1] and \leq is the usual ordering, then \mathcal{J} consists of all intervals of the form $(\epsilon, 1]$ and $[\epsilon, 1]$ for $\epsilon > 0$, and $\{0\}$.

Claim

P is not equal to the union of any finite subset from \mathcal{J} and so there is an ultrafilter \mathcal{U} on *P* that is disjoint from \mathcal{J} .

Claim

If $Z \in \mathcal{U}$ then Z is "downward closed" in P, i.e., there is some $0 < x \in Z$ such that for all $p \in P$ with $0 , there is <math>u_x \in Z$ with $u_x \leq p$.

Definition

- Let **U** be the ultrapower $\mathbf{P}^{p}/\mathcal{U}$.
- Let **0** and **1** be the images of the constant 0 function and the identity function on *P* in **U**.
- Let **S** be the subalgebra of **U** generated by $\{0, 1\}$.

Claim

- (Key Algebraic fact): For all terms $t(x_1, \ldots, x_n)$ and all $b_i > 0$ in S, $t(0, b_2, \ldots, b_n) > 0$ if and only if $t(0, 1, \ldots, 1) > 0$.
- **S** has a 2-element quotient via the congruence that identifies all elements of *S* that are not equal to **0**.