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The original question.

A. D. Wallace defined the inquiry in 1955, when he asked,
“Which spaces admit what structures?”

Here “structure,” means the existence of continuous
operations identically satisfying certain equations: e.g.,
the structure of a topological group or a topological lattice,
and so on.

Here we survey the current state of knowledge in this area,
espcecially for finite simplicial complexes, and ask some
refined versions of Wallace’s question.



Compatibility: A |= Σ

Given a topological space A and a set Σ of equations in
operation symbols Ft , we write

A |= Σ,

and say that A and Σ are compatible, iff there exist
continuous operations Ft on A satisfying Σ.

With this notation, Wallace was asking for some
characterization, or description, or elucidation, of the relation
A |= Σ.

Examples: Groups on S1 and S3, various compact matrix
groups, many H-spaces, a lattice on [0, 1], a ternary median
operation on Y , simple Σ on absolute-retract A, Sets[n] on any
space An.

Each of these may be realized on a finite simplicial complex.
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interpretability

For equational theories Γ and ∆, we say that Γ is interpretable
in ∆, written Γ ≤ ∆, iff there exist terms γt in the
∆-language such that, for each algebra D ∈ ∆, the algebra
(D, γt)t∈T is an algebra of Γ.

Example: Γ is Abelian groups of exponent 2, ∆ is Boolean
algebra, and γ+ is symmetric difference. (Well known.)

Obviously, if A |= ∆ and Γ ≤ ∆, then A |= Γ.

Therefore it is important to know A |= ∆ for ∆ as high as
possible, and to know A 6|= Γ for Γ as low as possible.



Example and open question

Let Λn (n = 1, 2, . . .) have axioms for distributive lattice
theory, plus the following:

a1 ∧ a2 ≈ a1, a2 ∧ a3 ≈ a2, · · · , an−1 ∧ an ≈ an−1

f (0) ≈ 0, f (a1) ≈ 1, f (a2) ≈ 0, f (a3) ≈ 1, · · ·
f (1) ≈ 1 if n is even, 0 otherwise.

Then Λ1 < Λ2 < Λ3 < · · ·

Even their join (disjoint union) is compatible with an interval
I . Is this a maximal theory compatible with I ?

We have not identified any maximal theory compatible with I .
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Today’s central question

The spaces A associated to finite simplicial complexes are also
known as finitely triangulable. We may also say A is a finite
space. They seem simple enough, but much of the chaotic
behavior of “|=” occurs already in the finite realm. We let

J = {Σ : A |= Σ for some finite A}.

J is a downset under interpretability, but not an ideal.

Question: Does there exist a recursive sequence Σ0, Σ1 . . .
(with each Σn a finite set of equations) such that Σ ∈ J if and
only if for some n, Σ ≤ Σn in the interpretability lattice? If
yes, please be more specific.
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Questions surrounding the central question.

To repeat: we consider the possibility of finding finite theories
Σn such that:

Σ is modelable on a finite space if and only if for some n,
Σ ≤ Σn in the interpretability lattice.

We are further interested in such things as: the arities that
might be required for such generators Σn; the simplicity of
operations needed to model the Σn; and whether the known
examples more or less comprise the totality of Σn that will be
required.
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J is not an ideal.

J. D. Lawson and B. Madison (1970) If A is a finite space,
then A does not admit both the structure of a topological
group and the structure of a topological semilattice.

Corollary J contains group theory (using A = S1) and
semilattice theory (using A = I ), but not their join.

Thus J is not an ideal.
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What operations are needed to show that Σ ∈ J ?

For each Σ ∈ J , do there exist a finite complex A and
continuous piecewise multilinear operations F t on A such that
(A,F t)t∈T |= Σ ?

More likely to hold: for each Γ ∈ J , does there exist Σ ≥ Γ
satisfying the above?

If not, does there exist some reasonable enlargement of the
category “piecewise multilinear” for which the answer is yes?

For example, in the previously described theory Λn, we could
satisfy the equations on I = [−1, 1] with (fancy!) Chebysheff
polynomials, but in fact Λn can also be satisfied with piecewise
linear maps. (See next slide.)
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Reprise of the theory Λn.

a1 ∧ a2 ≈ a1, a2 ∧ a3 ≈ a2, · · · , an−1 ∧ an ≈ an−1

f (0) ≈ 0, f (a1) ≈ 1, f (a2) ≈ 0, f (a3) ≈ 1, · · ·
f (1) ≈ 1 if n is even, 0 otherwise.

One could use a fancy polynomial to make a function f going
back and forth between the endpoints of the interval. In fact
one can do it more simply by making f a piecewise-linear
function (of one variable).

In all examples that we understand in detail, piecewise
multilinear functions seem to do the job. Why?



What arities are needed to put Σ into J ?

For each Σ ∈ J does there exist Γ ≥ Σ such that Γ ∈ J and
such that all operations of Γ are at most ternary?

Same question for binary.

The ternary assertion holds true for all examples that we know
in any detail. As for the binary question, we have examples
where ternary operations play a role, but we have not proved
that their appearance is essential.

And of course, if both answers are no, then we could ask a
similar question for every arity.
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Perspective on our questions.

Any system for algebraic computation, if it is to be both
infinite and practical, requires some workable approximation
to the finite realm. Two ways of making such approximation
available are

I recursiveness (e.g. as seen for rational numbers),

and

I topological approximation (e.g. as for reals).

In the latter realm, practicality further demands some easily
described spaces, such as finite simplicial complexes.

We conclude this brief report with a brief catalog of known
examples of theories modeled on finite spaces. Obviously
the desired theories Σn will have to account for all these
examples.

Can the list be made complete?
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Known examples 1.

Distributive lattices with 0, 1
In fact this example is not really high enough; our previous

example—the join of all Λn—goes just a bit higher in the
lattice. Is there anything further up from there? (Ap ension?

Abelian groups
As manifested by the circle group.

Any other group varieties?
Any compact group could play a role here. Which of them

satisfy identities that need to be included?
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Known examples 2.

Any consistent set of simple equations.
E.g. 2/3 minority.

Power Varieties.
For any theory Σ, and for any n = 2, 3, . . ., there is a theory

Σ[n] each of whose (topological) models is the n-th power of a
(topological) model of Σ (with a small amount of further
structure).

J is closed under the formation of Σ[n] from Σ, for every n.
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Known examples 3.

A few isolated(?) theories.

One-one not onto:

F (x , y , 0) ≈ x , F (x , y , 1) ≈ y ,

ψ(θ(x)) ≈ x , φ(θ(x)) ≈ 0, φ(1) ≈ 1.

Possibly some entropic equations:

F (x , x) ≈ x , F (F (x , y),F (u, v)) ≈ F (F (x , u),F (y , v)).

A certain Σ rules out all spaces with the fixed-point
property. Does it rule out all finite spaces?

F (x , u, v) ≈ u; F (φ(x), u, v) ≈ v .



Recapitulation of question.

In the three previous slides, have we come close to including
all theories modelable on finite spaces? How about all known
examples of such theories?



Further questions.

For a fixed finite space A, we could modify the previous
questions, replacing J by JA, the class of theories that are
modelable on A. (And thus

J =
⋃
all A

JA .)

Here each JA is an ideal in the interpretability lattice, but JA is
not closed under the formation of Σ[n]. All the questions we
have asked for J remain open for JA, except for a few special
A. In particular, they remain open for A = I , an interval.
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