Finitely decidable varieties admitting type 1 are residually finite

Ralph McKenzie and Matthew Smedberg

Vanderbilt University
Department of Mathematics

13 April 2013

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

The Finite Decidability Problem

Let $\mathcal V$ be a variety (usually locally finite) in a finite language. We say $\mathcal V$ is *decidable* if its first-order theory is, and *finitely decidable* if the theory of $\mathcal V_{\text{fin}}$ is decidable.

Residual finiteness of finitely decidable varieties

McKenzie & Smedberg

The Problem

Bounding SIs in V

abelian

Rad(S) is strongly

The Finite Decidability Problem

Let $\mathcal V$ be a variety (usually locally finite) in a finite language. We say $\mathcal V$ is *decidable* if its first-order theory is, and *finitely decidable* if the theory of $\mathcal V_{\rm fin}$ is decidable.

Decidable and finitely decidable varieties are rare and structurally constrained. For example,

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Let $\mathcal V$ be a variety (usually locally finite) in a finite language. We say $\mathcal V$ is *decidable* if its first-order theory is, and *finitely decidable* if the theory of $\mathcal V_{\rm fin}$ is decidable.

Decidable and finitely decidable varieties are rare and structurally constrained. For example,

Fact

If A has any congruence covers of the lattice or semilattice types, or

then every variety containing **A** is finitely undecidable.

Let $\mathcal V$ be a variety (usually locally finite) in a finite language. We say $\mathcal V$ is *decidable* if its first-order theory is, and *finitely decidable* if the theory of $\mathcal V_{\text{fin}}$ is decidable.

Decidable and finitely decidable varieties are rare and structurally constrained. For example,

Fact

- ► If A has any congruence covers of the lattice or semilattice types, or
- If any boolean- or affine-type minimal sets in A have nonempty tails, or

then every variety containing **A** is finitely undecidable.

The Problem

Let $\mathcal V$ be a variety (usually locally finite) in a finite language. We say $\mathcal V$ is *decidable* if its first-order theory is, and *finitely decidable* if the theory of $\mathcal V_{\text{fin}}$ is decidable.

Decidable and finitely decidable varieties are rare and structurally constrained. For example,

Fact

- ► If A has any congruence covers of the lattice or semilattice types, or
- If any boolean- or affine-type minimal sets in A have nonempty tails, or
- ► If **A** is a subdirectly irreducible finite algebra with two incomparable nonabelian congruences,

then every variety containing **A** is finitely undecidable.

If A is a finite algebra

▶ and **A** has a solvable congruence which is nonabelian, or

then every variety containing **A** is finitely undecidable.

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

If A is a finite algebra

- ▶ and **A** has a solvable congruence which is nonabelian, or
- ▶ A is subdirectly irreducible with boolean monolith and also has a cover of type 1 or 2, or

then every variety containing **A** is finitely undecidable.

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

If A is a finite algebra

- ▶ and **A** has a solvable congruence which is nonabelian, or
- ▶ **A** is subdirectly irreducible with boolean monolith and also has a cover of type 1 or 2, or
- ▶ **A** is SI with type 2 monolith and has also a cover of type 1, or vice versa,

then every variety containing **A** is finitely undecidable.

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

If A is a finite algebra

- ▶ and **A** has a solvable congruence which is nonabelian, or
- ▶ **A** is subdirectly irreducible with boolean monolith and also has a cover of type 1 or 2, or
- ▶ A is SI with type 2 monolith and has also a cover of type 1, or vice versa,

then every variety containing **A** is finitely undecidable.

These facts (and many of a similar nature) were established for modular varieties in the 90s (see [Idziak 1997]). The results for nonmodular varieties are in most cases new.

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Bounding Subdirect Irreducibles in ${\mathcal V}$

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V Type 3 and 2 Type 1 Rad(S) is m.i.

Rad(S) is strongly abelian

Theorem

Let K be a finite set of finite algebras, and suppose $V = \mathrm{HSP}(K)$ is finitely decidable. Then there is a finite bound on the cardinalities of SI algebras in V.

Bounding Subdirect Irreducibles in ${\cal V}$

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V
Type 3 and 2
Type 1
Rad(S) is m.i.

Rad(S) is strongly abelian

Theorem

Let K be a finite set of finite algebras, and suppose $V = \mathrm{HSP}(K)$ is finitely decidable. Then there is a finite bound on the cardinalities of SI algebras in V.

Using familiar methods from the congruence-modular case, we show that

• every SI with boolean-type monolith belongs to $HS(\mathcal{K})$;

Theorem

Let K be a finite set of finite algebras, and suppose $V = \mathrm{HSP}(K)$ is finitely decidable. Then there is a finite bound on the cardinalities of SI algebras in V.

Using familiar methods from the congruence-modular case, we show that

- every SI with boolean-type monolith belongs to $HS(\mathcal{K})$;
- ▶ there is a bound (~ quadruply exponential) on the affine-type SIs.

So let $\mathbf{S} \in \mathcal{V}$ have monolith $\perp \stackrel{1}{\prec} \mu$.

Lemma

 $\operatorname{Rad}(S)$ is comparable to all congruences of S.

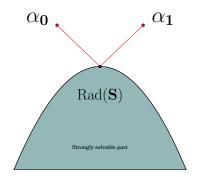
Lemma

Rad(S) is meet-irreducible.

Each of these is proved by contradiction: supposing the respective lemma were false, we construct a (relatively straightforward) semantic interpretation of some finitely undecidable class, usually graphs, into $\mathrm{HSP}(\mathbf{S})$.

Meet-irreducibility of the solvable radical

Goal: to semantically interprect a structure of the form $\langle I; E_0, E_1 \rangle$ (where the E_j are disjoint equivalence relations) into subpowers of **S**.



Residual finiteness of finitely decidable varieties

McKenzie & Smedberg

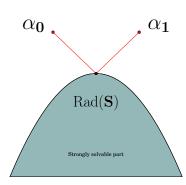
The Problem

Bounding SIs in V Type 3 and 2 Type 1 Rad(S) is m.i.

Meet-irreducibility of the solvable radical

Goal: to semantically interprect a structure of the form $\langle I; E_0, E_1 \rangle$ (where the E_j are disjoint equivalence relations) into subpowers of **S**.

Let $\{0_j, 1_j\}$ be $(\operatorname{Rad}(\mathbf{S}), \alpha_j)$ -minimal sets. Let $\mathbf{B} \leq \mathbf{S}^I$ consist of all \mathbf{x} which are α_1 -constant on E_1 -blocks and vice versa.



Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V Type 3 and 2 Type 1 Rad(S) is m.i.

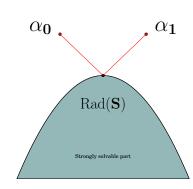
Meet-irreducibility of the solvable radical

Goal: to semantically interprect a structure of the form $\langle I; E_0, E_1 \rangle$ (where the E_j are disjoint equivalence relations) into subpowers of **S**.

Let $\{0_j, 1_j\}$ be $(\operatorname{Rad}(\mathbf{S}), \alpha_j)$ -minimal sets. Let $\mathbf{B} \leq \mathbf{S}'$ consist of all \mathbf{x} which are α_1 -constant on E_1 -blocks and vice versa.

Using a failure of $C(\mu, \{0_j, 1_j\}; \bot_S)$, and some tricks from tame congruence theory,

we reconstruct the original structure $\langle I; E_0, E_1 \rangle$ in a first-order way from **B**.



Residual finiteness of finitely decidable varieties

McKenzie & Smedberg

The Problem

Bounding SIs in V Type 3 and 2 Type 1 Rad(S) is m.i.

Since $\operatorname{Rad}(\mathbf{S})$ is meet-irreducible, we know that its index cannot exceed the maximum size of a boolean-type SI in \mathcal{V} .

$\mathsf{Theorem}$

Rad(S) is strongly abelian.

Proof.

Long!

Takeaway idea: Subalgebra generation (and congruence generation) can frequently be proven to be "sparse" in some useful sense, when the generators are chosen so that they are almost constant modulo a strongly abelian congruence (such as the monolith).

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly

ahelian

Sparsity of Sg and Cg Bounding Rad(S)-blocks

abelian Sparsity of Sg and Cg

Bounding Rad(S)-blocks

Fix a (\bot, μ) -minimal set U, and say we are working to semantically interpret a graph $\langle V, E \rangle$ into a power of $\bf S$. Let $I = \{v^+, v^- \colon v \in V\}$. Define a subalgebra

$$\Delta \subseteq \mathbf{B} \le \mathbf{S}^{\prime}$$

with generators those $\mathbf{x} \in U^I$ such that for some $v \in V$,

$$\begin{cases} x^{v^+} \equiv_{\mu} x^{v^-} \\ x^{w^+} = x^{w^-} \equiv_{\mu} x^{v^+} & \text{for all other } w \in V \end{cases}$$

We claim that $B \cap U^I$ consists of just the generators and no more.

Claim

 $B \cap U^I$ consists of just the generators and no more.

Proof: let $\mathbf{y} = \mathbf{f}(\mathbf{x}_1, \dots, \mathbf{x}_k) \in U^I$, where $f: \mathbf{S}^k \to U$ is a polynomial operation acting in \mathbf{B} coordinatewise. Let C_j be the μ -class where \mathbf{x}_j lives; then on $C_1 \times \dots \times C_k$, f is essentially unary; say it depends on \mathbf{x}_1 , which has its spike at $v_1 \in V$. Then $y^{v_1^+} \equiv_{\mu} y^{v_1^-}$, and for all $w \neq v_1$,

$$x_1^{w^+} = x_1^{w^-}$$
 and $x_j^{w^+} \equiv_{\mu} x_j^{w^-}$

so that

$$y^{w^+} = f(x_1^{x^+}, \dots, x_k^{w^+}) = f(x_1^{x^-}, \dots, x_k^{w^-}) = y^{w^-}$$

Sparse congruence generation

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly abelian

Sparsity of Sg and Cg Bounding Rad(S)-blocks

This sparseness allows us to construct some very involved semantic interpretations; for example, we may declare a congruence Θ on an algebra $\mathbf B$ as above to identify elements coding the endpoints of an edge of the graph $\langle V, E \rangle$; we use the sparseness to show that no vertices coding non-edges are made congruent as a consequence.

Say Rad(S) has index ℓ and some fixed monolith pair $c \neq d$. Since Rad(S) is strongly abelian,

Lemma

For any polynomial $t(v_0, \vec{v}_1, \dots, \vec{v}_\ell)$, there exist subsets of each variable set \vec{v}_i , of size no more than $\log |\mathbf{F}_{\mathcal{V}}(2+\ell)|$, such that for all $\mathrm{Rad}(\mathbf{S})$ -blocks B_1, \dots, B_ℓ , the mapping

$$A \times \vec{B}_1 \times \cdots \times \vec{B}_\ell \to A$$

induced by t depends only on v_0 and the indicated subsets.

Because of the Lemma, terms $f(v_0) = t(v_0, \vec{s})$ of bounded arity suffice to send exactly one of any unequal elements $x_1 \neq x_2$ to c.

Consider a fixed $\operatorname{Rad}(\mathbf{S})$ -block B, and to each $b \in B$ associate the set of terms $t(v_0, v_1, \ldots, v_k)$, with k bounded as described in the last slide, such that for some p_1, \ldots, p_k from the appropriate $\operatorname{Rad}(\mathbf{S})$ -blocks, $t(b, \vec{p}) = c$.

Claim

This is an injective map from B to subsets of $\mathbf{F}_{\mathcal{V}}(1+k)$

For if not, we get a failure of the strong term condition

$$c = t(b_1, \vec{p}_1) = t(b_2, \vec{p}_2)$$
 but $t(b_2, \vec{p}_1) \neq c$

This contradiction completes the proof.

Problem

Are tails of minimal sets of type 1 always empty in FD varieties?

Problem

Do finitely decidable, locally finite varieties have definable principal congruences? Definable principal subcongruences? Definable principal solvable congruences?

Problem

In a finite algebra **A** in a finitely decidable variety, must every congruence permute with $\operatorname{Rad}(A)$? With $\operatorname{Rad}_u(A)$?

Residual finiteness of finitely decidable varieties McKenzie &

McKenzie & Smedberg

The Problem

Bounding SIs in ${\sf V}$

Rad(S) is strongly abelian

Bounding Rad(S)-blocks

Thank you!