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Authors and Abstract

Joint work with
@ Tomas Feder,
@ Pavol Hell (SFU),
@ Mark Siggers (KNU),
@ Claude Tardif (RMC).

We characterise, for each k > 3, the finite undirected graphs
that admit a k-ary NU polymorphism, by describing a family
generating them by products and retracts.



Preliminaries

Graph Basics

Our graphs are finite, undirected, and without loops.
Unless otherwise specified, our graphs are connected.
If G is a graph, G is its set of vertices.

Product:
@ verticesof G xH: G x H
@ edges of G x H: ((g1, h1), (92, h2)) where
(91,02) and (hy, hy) are edges of G and H resp.
Retract:
R is a retract of G if there are edge-preserving maps
e:R— Gandr:G—»Rsuchthatr oe = idg.

We write R < G.



Preliminaries

NU Basics

@ An operation f on G is a polymorphism of the graph G if it
is edge-preserving, i.e.
Vi (x,y;) is an edge of G = (f(X),f(y)) is an edge of G.

@ Fork > 3, k-ary f is k-NU if
X, o X, Y, X, e, X) A X

for any position of y;
@ when k = 3, NU operations are called majority.



Preliminaries

Previous Results and Motivation

We are motivated by the following result:

Theorem (Hell '72 + Bandelt'92 + BL '98 =)

Let G be a graph. TFAE:
© G admits a majority polymorphism;
© G <[, Pi where the P; are paths.

Analogous results hold for
@ posets (Rival ~ '80)
@ reflexive graphs (Jawhari, Misane, Pouzet '86)
@ but not for reflexive digraphs (Kabil, Pouzet '98)



Preliminaries

Previous Results and Motivation, continued

Are there/What are the analogs of paths for k > 4 ?

@ Motivation:
@ k = 3 case is natural and cute;
@ NU structures possess remarkable properties from the
algorithmic point of view e.g. CSP solvable in NLogspace
(Barto, Kozik, Willard '12);
o for finitely-related structures: NU <= CD (Barto '13);
@ Obstacle:
o proof for k = 3: metric properties (absolute retracts)
metric approach fails for k > 4.




Main Result

The Generating Graphs G(T)

Let T be a tree with colour classes D and U.
Define a (bipartite) graph G(T) as follows:

@ Vertices: there are two kinds:
@ pairs (0,X) where X C E(T) satisfies
vd € D of degree > 1, Jle € X incident to d;
@ pairs (1,Y) where Y C E(T) satisfies
Yu € U of degree > 1, Jle € Y incident to u.

@ Edges: (0,X) and (1,Y) are adjacentif X NY = 0.



Main Result

An Example

a b c o 3 23 2431 42 123
[

G(T)

The tree T and the graph G(T).

In G(T)'s diagram, bottom vertices are those of the form (0, X),
top ones of the form (1, Y); labels indicate corresponding set of
edges, e.g. vertex (1, {1, 2}) is labelled simply 12.



Main Result

Another Example

G (T) M ....... w

©0X)  (0X) (0, (0.X)) 0X,,,)

T path of length s = G(T) path of length s 4 2
(+ isolated vertices)



Main Result

Main Result

Letk > 3 and let G be a graph. TFAE:
© G admits a k-ary NU polymorphism;
Q G <[, G(Ti),

where the T; are trees with at most k — 1 leaves.




Sketch of Proof

Sketch of Proof: (<)

@ Kk-NU: preserved under products and retracts;
@ hence it suffices to prove each G(T) is k-NU;

@ can be built explicitly
(uses the analogous result for reflexive graphs by
Feder, Hell, BL, Loten, Siggers, Tardif)



Sketch of Proof
[ Je]

Finite Duality and Duals

Finite Duality: Definition

CAUTION: hand-waving ahead.

@ A structure is a non-empty set together with relations;

@ A homomorphism between similar structures =
relation-preserving map;
we write U — V if there exists a homomorphism
from U to V (U 4 V if not).

Definition

A structure V has finite duality if there exist finitely many
Tq,...,TssuchthatU AV < diT; — U.




Sketch of Proof
oe

Finite Duality and Duals

Finite Duality: A few Facts

@ The set of “obstructions” {Ty,..., Ts} is a duality for V;
@ for each similarity type of structures, 3 notion of tree.

Theorem (NeSetfil, Tardif '00, '05)

© If V has finite duality, then it has a finite duality {Ty,...,Ts}
consisting of trees;

© For every tree T, there exists a structure D(T) such that
{T} is a duality for D(T);

© {T1,....Ts}is aduality for [T_, D(T)).

D(T) is called a dual of T (there is an explicit construction.)



Sketch of Proof
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Sketch of Proof : (=)

Sketch of Proof: (=)

Step 1: G NU = G bipartite
(BL '98; Bulatov '05 for wnu)

%
Step 2: G has colour classes D and U: let G denote the strongly
bipartite digraph obtained from G by orienting edges from

D towards U:
U
G M
D
. U
¢ M
D



Sketch of Proof
[o] le]e}

Sketch of Proof : (=)

Sketch of Proof: (=), contd

. = .
Gisk-NU < G is k-NU.

Step 3: To a digraph V add all unary relations {v}, v € V
to obtain a new structure V. with constants.

Let V be a strongly bipartite digraph. TFAE:

© V has an NU polymorphism;
@ V. has finite duality.

@ uses reduction to posets (BL, Zadori '97)
@ FD implies NU for cores (BL, Loten, Tardif '07)



Sketch of Proof
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Sketch of Proof : (=)

Sketch of Proof: (=), contd

Step 4: By all the above:

G k-NU = éc k-NU and has finite duality;
Jduality {Tq,...,Ts} of trees;

wlog the T; are critical obstructions;

gitical — coloured vertices = the leaves;

G k-NU = Vi # coloured vertices of T; <k — 1;
By def. of dual and duality:

¢ 6 ¢ ¢ ¢ ¢

since G_§ has constants, it is a core;

hence G. is a retract of the product of the D(T;);

[



Sketch of Proof
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Sketch of Proof : (=)

Sketch of Proof: (=), end

Step5: o (_fc is a retract of the product of the D(T;);
o “forget” the unary structure and orientation:
G is a retract of the product of the undirected reducts of the
duals D(T;);
@ analysis of the NeSetfil, Tardif construction + etc. :
representation in terms of graphs G(T) only.



Conclusion

Conclusion

Thank you !
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