Graphs admitting a k-NU Polymorphism

B. Larose ${ }^{12}$ and friends
${ }^{1}$ Concordia University, Montréal QC
${ }^{2}$ Champlain Regional College, St-Lambert QC

AMS Sectional Meeting, Boulder CO, April 2013

Authors and Abstract

Joint work with

- Tomás Feder,
- Pavol Hell (SFU),
- Mark Siggers (KNU),
- Claude Tardif (RMC).

We characterise, for each $k \geq 3$, the finite undirected graphs that admit a k-ary NU polymorphism, by describing a family generating them by products and retracts.

Graph Basics

- Our graphs are finite, undirected, and without loops.
- Unless otherwise specified, our graphs are connected.
- If \mathbf{G} is a graph, G is its set of vertices.
- Product:
- vertices of $\mathbf{G} \times \mathbf{H}: \mathbf{G} \times \mathrm{H}$
- edges of $\mathbf{G} \times \mathbf{H}$: $\left(\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right)$ where $\left(g_{1}, g_{2}\right)$ and $\left(h_{1}, h_{2}\right)$ are edges of \mathbf{G} and \mathbf{H} resp.
- Retract:
\mathbf{R} is a retract of \mathbf{G} if there are edge-preserving maps $e: \mathbf{R} \hookrightarrow \mathbf{G}$ and $r: \mathbf{G} \rightarrow \mathbf{R}$ such that $r \circ e=i d_{\mathbf{R}}$.

We write $\mathbf{R} \unlhd \mathbf{G}$.

NU Basics

- An operation f on G is a polymorphism of the graph \mathbf{G} if it is edge-preserving, i.e.
$\forall i\left(x_{i}, y_{i}\right)$ is an edge of $\mathbf{G} \Longrightarrow(f(\bar{x}), f(\bar{y}))$ is an edge of \mathbf{G}.
- For $k \geq 3, k$-ary f is k-NU if

$$
f(x, \ldots, x, y, x, \ldots, x) \approx x
$$

for any position of y;

- when $k=3$, NU operations are called majority.

Previous Results and Motivation

We are motivated by the following result:
Theorem (Hell '72 + Bandelt '92 + BL '98 =)
Let \mathbf{G} be a graph. TFAE:
(1) G admits a majority polymorphism;
(2) $\mathrm{G} \unlhd \prod_{i=1}^{s} P_{i}$ where the P_{i} are paths.

Analogous results hold for

- posets (Rival \approx '80)
- reflexive graphs (Jawhari, Misane, Pouzet '86)
- but not for reflexive digraphs (Kabil, Pouzet '98)

Previous Results and Motivation, continued

Question

Are there/What are the analogs of paths for $k \geq 4$?

- Motivation:
- $k=3$ case is natural and cute;
- NU structures possess remarkable properties from the algorithmic point of view e.g. CSP solvable in NLogspace (Barto, Kozik, Willard '12);
- for finitely-related structures: NU \Longleftrightarrow CD (Barto '13);
- Obstacle:
- proof for $k=3$: metric properties (absolute retracts) metric approach fails for $k \geq 4$.

The Generating Graphs $\mathbf{G}(\mathbf{T})$

Let \mathbf{T} be a tree with colour classes D and U.
Define a (bipartite) graph $\mathbf{G}(\mathbf{T})$ as follows:

- Vertices: there are two kinds:
- pairs $(0, X)$ where $X \subseteq E(\mathbf{T})$ satisfies $\forall d \in D$ of degree $>1, \exists!e \in X$ incident to d;
- pairs $(1, Y)$ where $Y \subseteq E(\mathbf{T})$ satisfies
$\forall u \in U$ of degree $>1, \exists!e \in Y$ incident to u.
- Edges: $(0, X)$ and $(1, Y)$ are adjacent if $X \cap Y=\emptyset$.

An Example

The tree \mathbf{T} and the graph $\mathbf{G}(\mathbf{T})$.
In $\mathbf{G}(\mathbf{T})$'s diagram, bottom vertices are those of the form $(0, X)$, top ones of the form $(1, Y)$; labels indicate corresponding set of edges, e.g. vertex $(1,\{1,2\})$ is labelled simply 12.

Another Example

T path of length $s \Rightarrow \mathbf{G}(\mathbf{T})$ path of length $s+2$
(+ isolated vertices)

Main Result

Theorem

Let $k \geq 3$ and let \mathbf{G} be a graph. TFAE:
(1) G admits a k-ary NU polymorphism;
(2) $\mathbf{G} \unlhd \prod_{i=1}^{s} \mathbf{G}\left(\mathbf{T}_{i}\right)$, where the T_{i} are trees with at most $k-1$ leaves.

Sketch of Proof: (\Leftarrow)

- k-NU: preserved under products and retracts;
- hence it suffices to prove each $\mathbf{G}(\mathbf{T})$ is $k-N U$;
- can be built explicitly
(uses the analogous result for reflexive graphs by Feder, Hell, BL, Loten, Siggers, Tardif)

Finite Duality: Definition

CAUTION: hand-waving ahead.

- A structure is a non-empty set together with relations;
- A homomorphism between similar structures $=$ relation-preserving map; we write $\mathbf{U} \rightarrow \mathbf{V}$ if there exists a homomorphism from \mathbf{U} to $\mathbf{V}(\mathbf{U} \nrightarrow \mathbf{V}$ if not).

Definition

A structure \mathbf{V} has finite duality if there exist finitely many $\mathbf{T}_{1}, \ldots, \mathbf{T}_{s}$ such that $\mathbf{U} \nrightarrow \mathbf{V} \Longleftrightarrow \exists i \mathbf{T}_{i} \rightarrow \mathbf{U}$.

Finite Duality: A few Facts

- The set of "obstructions" $\left\{\mathbf{T}_{1}, \ldots, \mathbf{T}_{s}\right\}$ is a duality for \mathbf{V};
- for each similarity type of structures, \exists notion of tree.

Theorem (Nešetřil, Tardif '00, '05)

(1) If \mathbf{V} has finite duality, then it has a finite duality $\left\{\mathbf{T}_{1}, \ldots, \mathbf{T}_{s}\right\}$ consisting of trees;
(2) For every tree \mathbf{T}, there exists a structure $D(\mathbf{T})$ such that $\{\mathbf{T}\}$ is a duality for $D(\mathbf{T})$;
(3) $\left\{\mathbf{T}_{1}, \ldots, \mathbf{T}_{s}\right\}$ is a duality for $\prod_{i=1}^{s} D\left(\mathbf{T}_{i}\right)$.
$D(\mathbf{T})$ is called a dual of \mathbf{T} (there is an explicit construction.)

Sketch of Proof: (\Rightarrow)

Step 1: $\mathbf{G} \mathbf{N U} \Rightarrow \mathbf{G}$ bipartite
(BL '98; Bulatov '05 for wnu)
Step 2: \mathbf{G} has colour classes D and U : let $\overrightarrow{\mathbf{G}}$ denote the strongly bipartite digraph obtained from \mathbf{G} by orienting edges from D towards U:

Sketch of Proof: (\Rightarrow), cont'd

Lemma

\mathbf{G} is $k-N U \Longleftrightarrow \overrightarrow{\mathbf{G}}$ is $k-N U$.

Step 3: To a digraph \mathbf{V} add all unary relations $\{v\}, v \in V$ to obtain a new structure \mathbf{V}_{c} with constants.

Theorem

Let \mathbf{V} be a strongly bipartite digraph. TFAE:
(1) V has an NU polymorphism;
(2) V_{c} has finite duality.

- uses reduction to posets (BL, Zádori '97)
- FD implies NU for cores (BL, Loten, Tardif '07)

Sketch of Proof: (\Rightarrow), cont'd

Step 4: By all the above:

- $\mathbf{G} k-\mathrm{NU} \Rightarrow \overrightarrow{\mathbf{G}}_{c} k-\mathrm{NU}$ and has finite duality;
- \exists duality $\left\{\mathbf{T}_{1}, \ldots, \mathbf{T}_{s}\right\}$ of trees;
- wlog the \mathbf{T}_{i} are critical obstructions;
- critical \Longrightarrow coloured vertices $=$ the leaves;
- $\overrightarrow{\mathbf{G}}_{c} k-\mathrm{NU} \Rightarrow \forall i \#$ coloured vertices of $\mathbf{T}_{i} \leq k-1$;
- By def. of dual and duality:

$$
\overrightarrow{\mathbf{G}}_{c} \leftrightarrow \prod_{i=1}^{s} D\left(\mathbf{T}_{i}\right) ;
$$

- since $\overrightarrow{\mathbf{G}}_{f}$ has constants, it is a core;
- hence $\overrightarrow{\mathbf{G}}_{c}$ is a retract of the product of the $D\left(\mathbf{T}_{i}\right)$;

Sketch of Proof: (\Rightarrow), end

Step 5: - $\overrightarrow{\mathbf{G}}_{c}$ is a retract of the product of the $D\left(\mathbf{T}_{i}\right)$;

- "forget" the unary structure and orientation: G is a retract of the product of the undirected reducts of the duals $D\left(\mathbf{T}_{i}\right)$;
- analysis of the Nešetril, Tardif construction + etc. : representation in terms of graphs $\mathbf{G}(\mathbf{T})$ only.

Conclusion

Thank you !

