Preliminaries	Main Result	Sketch of Proof	Conclusion

Graphs admitting a k-NU Polymorphism

B. Larose ^{1 2} and friends

¹Concordia University, Montréal QC

²Champlain Regional College, St-Lambert QC

AMS Sectional Meeting, Boulder CO, April 2013

(日) (日) (日) (日) (日) (日) (日) (日)

Preliminaries	Main Result	Sketch of Proof	Conclusion

Authors and Abstract

Joint work with

- Tomás Feder,
- Pavol Hell (SFU),
- Mark Siggers (KNU),
- Claude Tardif (RMC).

We characterise, for each $k \ge 3$, the finite undirected graphs that admit a *k*-ary NU polymorphism, by describing a family generating them by products and retracts.

Preliminaries	Main Result	Sketch of Proof 000000	Conclusion
Graph Basics			

- Our graphs are *finite, undirected*, and *without loops*.
- Unless otherwise specified, our graphs are connected.
- If **G** is a graph, *G* is its set of vertices.
- Product.
 - vertices of $\mathbf{G} \times \mathbf{H}$: $\mathbf{G} \times \mathbf{H}$
 - edges of $\mathbf{G} \times \mathbf{H}$: $((g_1, h_1), (g_2, h_2))$ where (g_1, g_2) and (h_1, h_2) are edges of \mathbf{G} and \mathbf{H} resp.

Retract.

R is a retract of **G** if there are edge-preserving maps $e : \mathbf{R} \hookrightarrow \mathbf{G}$ and $r : \mathbf{G} \twoheadrightarrow \mathbf{R}$ such that $r \circ e = id_{\mathbf{R}}$.

We write $\mathbf{R} \leq \mathbf{G}$.

Preliminaries	Main Result	Sketch of Proof	Conclusion
NU Basics			

- An operation *f* on *G* is a *polymorphism* of the graph **G** if it is edge-preserving, i.e.
 ∀*i*(*x_i*, *y_i*) is an edge of **G** ⇒ (*f*(*x̄*), *f*(*ȳ*)) is an edge of **G**.
- For $k \ge 3$, *k*-ary *f* is *k*-NU if

$$f(\mathbf{x},\ldots,\mathbf{x},\mathbf{y},\mathbf{x},\ldots,\mathbf{x})\approx\mathbf{x}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

for any position of *y*;

• when k = 3, NU operations are called *majority*.

	9
I I CIII IIIII I AI IC	

Previous Results and Motivation

We are motivated by the following result:

Theorem (Hell '72 + Bandelt '92 + BL '98 =)

Let G be a graph. TFAE:

- G admits a majority polymorphism;
- **2** $\mathbf{G} \trianglelefteq \prod_{i=1}^{s} P_i$ where the P_i are paths.

Analogous results hold for

- posets (Rival \approx '80)
- reflexive graphs (Jawhari, Misane, Pouzet '86)
- but not for reflexive digraphs (Kabil, Pouzet '98)

Previous Results and Motivation, continued

Question

Are there/What are the analogs of paths for $k \ge 4$?

Motivation:

- k = 3 case is natural and cute;
- NU structures possess remarkable properties from the algorithmic point of view e.g. CSP solvable in NLogspace (Barto, Kozik, Willard '12);
- for finitely-related structures: NU \iff CD (Barto '13);

Obstacle:

 proof for k = 3: metric properties (absolute retracts) metric approach fails for k ≥ 4.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

The Generating Graphs G(T)

Let **T** be a tree with colour classes D and U. Define a (bipartite) graph **G**(**T**) as follows:

- Vertices: there are two kinds:
 - pairs (0, X) where $X \subseteq E(\mathbf{T})$ satisfies $\forall d \in D$ of degree > 1, $\exists ! e \in X$ incident to d;
 - pairs (1, Y) where $Y \subseteq E(\mathbf{T})$ satisfies $\forall u \in U$ of degree > 1, $\exists ! e \in Y$ incident to u.
- Edges: (0, X) and (1, Y) are adjacent if $X \cap Y = \emptyset$.

Preliminaries	Main Result	Sketch of Proof	Conclusion
An Example			

The tree **T** and the graph G(T).

In **G**(**T**)'s diagram, bottom vertices are those of the form (0, X), top ones of the form (1, Y); labels indicate corresponding set of edges, e.g. vertex $(1, \{1, 2\})$ is labelled simply 12.

Preliminaries	Main Result	Sketch of Proof	Conclusion

Another Example

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

T path of length $s \Rightarrow$ **G**(**T**) path of length s + 2 (+ isolated vertices)

Preliminaries	Main Result	Sketch of Proof oooooo	Conclusion
Main Pocult			

Theorem

iviairi ixesuit

Let $k \ge 3$ and let **G** be a graph. TFAE:

G admits a k-ary NU polymorphism;

2 $\mathbf{G} \trianglelefteq \prod_{i=1}^{s} \mathbf{G}(\mathbf{T}_{i})$, where the T_{i} are trees with at most k - 1 leaves.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Preliminaries	Main Result	Sketch of Proof	Conclusion
Sketch of F	Proof: (⇐)		

- *k*-NU: preserved under products and retracts;
- hence it suffices to prove each G(T) is k-NU;
- can be built explicitly (uses the analogous result for reflexive graphs by Feder, Hell, BL, Loten, Siggers, Tardif)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Preliminaries	Main Result	Sketch of Proof	Conclusion
Finite Duality and Duals			
Finite Dualit	v. Definition		

CAUTION: hand-waving ahead.

- A structure is a non-empty set together with relations;
- A homomorphism between similar structures = relation-preserving map; we write U → V if there exists a homomorphism from U to V (U → V if not).

Definition

A structure **V** has *finite duality* if there exist finitely many T_1, \ldots, T_s such that $U \not\rightarrow V \iff \exists i T_i \rightarrow U$.

Preliminaries	Main Result	Sketch of Proof	Conclusion
Finite Duality and Duals			
Finite Duality:	A few Facts		

- The set of "obstructions" $\{T_1, \ldots, T_s\}$ is a *duality* for V;
- for each similarity type of structures, \exists notion of *tree*.

Theorem (Nešetřil, Tardif '00, '05)

- If V has finite duality, then it has a finite duality {T₁,...,T_s} consisting of trees;
- For every tree T, there exists a structure D(T) such that
 {T} is a duality for D(T);
- **3** $\{\mathbf{T}_1, \ldots, \mathbf{T}_s\}$ is a duality for $\prod_{i=1}^s D(\mathbf{T}_i)$.

 $D(\mathbf{T})$ is called a *dual* of \mathbf{T} (there is an explicit construction.)

Preliminaries	Main Result	Sketch of Proof	Conclusion
		00000	
Sketch of Proof : (\Rightarrow)			
Sketch of Proof	(\Rightarrow)		

- Step 1: **G** NU \Rightarrow **G** bipartite (BL '98; Bulatov '05 for wnu)
- Step 2: **G** has colour classes *D* and *U*: let $\overrightarrow{\mathbf{G}}$ denote the *strongly* bipartite digraph obtained from **G** by orienting edges from *D* towards *U*:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Sketch of Proof	(\rightarrow) cont'd		
Sketch of Proof : (\Rightarrow)			
Preliminaries	Main Result	Sketch of Proof	Conclusion

Lemma

G is k-NU $\iff \overrightarrow{\mathbf{G}}$ is k-NU.

Step 3: To a digraph **V** add all unary relations $\{v\}$, $v \in V$ to obtain a new structure **V**_c with constants.

Theorem

Let **V** be a strongly bipartite digraph. TFAE:

V has an NU polymorphism;

2 V_c has finite duality.

- uses reduction to posets (BL, Zádori '97)
- FD implies NU for cores (BL, Loten, Tardif '07)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

(日) (日) (日) (日) (日) (日) (日) (日)

Sketch of Proof : (\Rightarrow)

Sketch of Proof: (\Rightarrow), cont'd

Step 4: By all the above:

- **G** k-NU $\Rightarrow \overrightarrow{\mathbf{G}}_{c} k$ -NU and has finite duality;
- \exists duality { T_1, \ldots, T_s } of trees;
- wlog the **T**_i are *critical* obstructions;
- critical \implies coloured vertices = the leaves;
- $\vec{\mathbf{G}}_c k$ -NU $\Rightarrow \forall i \#$ coloured vertices of $\mathbf{T}_i \leq k 1$;
- By def. of dual and duality:

$$\overrightarrow{\mathbf{G}}_{c} \leftrightarrow \prod_{i=1}^{s} D(\mathbf{T}_{i});$$

- since $\overrightarrow{\mathbf{G}}_{c}$ has constants, it is a core;
- hence \mathbf{G}_c is a retract of the product of the $D(\mathbf{T}_i)$;

・ロト・日本・日本・日本・日本

Sketch of Proof : (\Rightarrow)

Sketch of Proof: (\Rightarrow) , end

Step 5:

- $\vec{\mathbf{G}}_c$ is a retract of the product of the $D(\mathbf{T}_i)$;
- "forget" the unary structure and orientation:
 G is a retract of the product of the undirected reducts of the duals D(T_i);
- analysis of the Nešetřil, Tardif construction + etc. : representation in terms of graphs G(T) only.

Preliminaries	Main Result	Sketch of Proof	Conclusion
Conclusion			

Thank you !

