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We characterise, for each k ≥ 3, the finite undirected graphs
that admit a k-ary NU polymorphism, by describing a family
generating them by products and retracts.
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Graph Basics

Our graphs are finite, undirected, and without loops.

Unless otherwise specified, our graphs are connected.

If G is a graph, G is its set of vertices.
Product:

vertices of G × H: G × H
edges of G × H: ((g1, h1), (g2, h2)) where
(g1, g2) and (h1, h2) are edges of G and H resp.

Retract:
R is a retract of G if there are edge-preserving maps
e : R →֒ G and r : G ։ R such that r ◦ e = idR.

We write R E G.
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NU Basics

An operation f on G is a polymorphism of the graph G if it
is edge-preserving, i.e.
∀i (xi , yi) is an edge of G =⇒ (f (x), f (y)) is an edge of G.

For k ≥ 3, k-ary f is k-NU if

f (x , . . . , x , y , x , . . . , x) ≈ x

for any position of y ;

when k = 3, NU operations are called majority.
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Previous Results and Motivation

We are motivated by the following result:

Theorem (Hell ’72 + Bandelt ’92 + BL ’98 =)

Let G be a graph. TFAE:
1 G admits a majority polymorphism;
2 G E

∏s
i=1 Pi where the Pi are paths.

Analogous results hold for

posets (Rival ≈ ’80)

reflexive graphs (Jawhari, Misane, Pouzet ’86)

but not for reflexive digraphs (Kabil, Pouzet ’98)
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Previous Results and Motivation, continued

Question

Are there/What are the analogs of paths for k ≥ 4 ?

Motivation:
k = 3 case is natural and cute;
NU structures possess remarkable properties from the
algorithmic point of view e.g. CSP solvable in NLogspace
(Barto, Kozik, Willard ’12);
for finitely-related structures: NU ⇐⇒ CD (Barto ’13);

Obstacle:
proof for k = 3: metric properties (absolute retracts)
metric approach fails for k ≥ 4.
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The Generating Graphs G(T)

Let T be a tree with colour classes D and U.
Define a (bipartite) graph G(T) as follows:

Vertices: there are two kinds:
pairs (0,X) where X ⊆ E(T) satisfies
∀d ∈ D of degree > 1, ∃!e ∈ X incident to d ;
pairs (1,Y ) where Y ⊆ E(T) satisfies
∀u ∈ U of degree > 1, ∃!e ∈ Y incident to u.

Edges: (0,X ) and (1,Y ) are adjacent if X ∩ Y = ∅.
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An Example

a b c

d

T
1 2 3

1 2 3

123 1323 12 123φ

G(T)

The tree T and the graph G(T).
In G(T)’s diagram, bottom vertices are those of the form (0,X ),
top ones of the form (1,Y ); labels indicate corresponding set of
edges, e.g. vertex (1, {1,2}) is labelled simply 12.
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Another Example

1 2 3 4 2s-1 2s
.......

(0,X )
0

.......

(1,Y )
1

(0,X )
1

(1,Y )
2

(0,X )
2

(0,X )
s

(0,X    )
s+1

(1,Y    )
s+1

T

G(T)

T path of length s ⇒ G(T) path of length s + 2
(+ isolated vertices)
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Main Result

Theorem

Let k ≥ 3 and let G be a graph. TFAE:
1 G admits a k-ary NU polymorphism;
2 G E

∏s
i=1 G(Ti),

where the Ti are trees with at most k − 1 leaves.



Preliminaries Main Result Sketch of Proof Conclusion

Sketch of Proof: (⇐)

k-NU: preserved under products and retracts;

hence it suffices to prove each G(T) is k-NU;

can be built explicitly
(uses the analogous result for reflexive graphs by
Feder, Hell, BL, Loten, Siggers, Tardif)
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Finite Duality and Duals

Finite Duality: Definition

CAUTION: hand-waving ahead.

A structure is a non-empty set together with relations;

A homomorphism between similar structures =
relation-preserving map;
we write U → V if there exists a homomorphism
from U to V (U 6→ V if not).

Definition

A structure V has finite duality if there exist finitely many
T1, . . . ,Ts such that U 6→ V ⇐⇒ ∃i Ti → U.
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Finite Duality and Duals

Finite Duality: A few Facts

The set of “obstructions” {T1, . . . ,Ts} is a duality for V;

for each similarity type of structures, ∃ notion of tree.

Theorem (Nešetřil, Tardif ’00, ’05)

1 If V has finite duality, then it has a finite duality {T1, . . . ,Ts}
consisting of trees;

2 For every tree T, there exists a structure D(T) such that
{T} is a duality for D(T);

3 {T1, . . . ,Ts} is a duality for
∏s

i=1 D(Ti).

D(T) is called a dual of T (there is an explicit construction.)
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Sketch of Proof : (⇒)

Sketch of Proof: (⇒)

Step 1: G NU ⇒ G bipartite
(BL ’98; Bulatov ’05 for wnu)

Step 2: G has colour classes D and U: let
−→
G denote the strongly

bipartite digraph obtained from G by orienting edges from
D towards U:

G 
D

U

G 

D

U
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Sketch of Proof : (⇒)

Sketch of Proof: (⇒), cont’d

Lemma

G is k-NU ⇐⇒
−→
G is k-NU.

Step 3: To a digraph V add all unary relations {v}, v ∈ V
to obtain a new structure Vc with constants.

Theorem

Let V be a strongly bipartite digraph. TFAE:

1 V has an NU polymorphism;

2 Vc has finite duality.

uses reduction to posets (BL, Zádori ’97)
FD implies NU for cores (BL, Loten, Tardif ’07)
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Sketch of Proof : (⇒)

Sketch of Proof: (⇒), cont’d

Step 4: By all the above:

G k -NU ⇒
−→
G c k -NU and has finite duality;

∃ duality {T1, . . . ,Ts} of trees;
wlog the Ti are critical obstructions;
critical =⇒ coloured vertices = the leaves;
−→
G c k -NU ⇒ ∀i # coloured vertices of Ti ≤ k − 1;
By def. of dual and duality:

−→
G c ↔

s∏

i=1

D(Ti);

since
−→
G c has constants, it is a core;

hence
−→
G c is a retract of the product of the D(Ti);
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Sketch of Proof : (⇒)

Sketch of Proof: (⇒), end

Step 5:
−→
G c is a retract of the product of the D(Ti);
“forget” the unary structure and orientation:
G is a retract of the product of the undirected reducts of the
duals D(Ti );
analysis of the Nešetřil, Tardif construction + etc. :
representation in terms of graphs G(T) only.
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Conclusion

Thank you !
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