Varieties of Generalized Hoops and Integral GBL－algebras

Peter Jipsen

Chapman University，Orange，California

AMS Section Meeting，April 13，2013，Boulder Colorado

Generalized Hoops

Generalized hoops were first studied by Bosbach [1969, 70] and the name hoop was introduced by Büchi and Owen [1975].

A generalized hoop ($A, \cdot, 1, \backslash, /$) is a residuated partially ordered monoid in which

$$
x \leq y \Longleftrightarrow \exists u(x=u y) \Longleftrightarrow \exists v(x=y v)
$$

I.e. the monoid is naturally ordered, hence integral: $x \leq 1$

Residuated means: $x y \leq z \Longleftrightarrow y \leq x \backslash z \Longleftrightarrow x \leq z / y$

Two simple identities
$\left(\frac{x}{y}\right)$
Z

Two simple identities

$$
\frac{\left(\frac{x}{y}\right)}{z}=\frac{1}{z}\left(\frac{x}{y}\right)=
$$

Two simple identities

$$
\frac{\left(\frac{x}{y}\right)}{z}=\frac{1}{z}\left(\frac{x}{y}\right)=\frac{x}{z y}
$$

Two simple identities

$$
\frac{\left(\frac{x}{y}\right)}{z}=\frac{1}{z}\left(\frac{x}{y}\right)=\frac{x}{z y}
$$

$$
(x / y) / z=
$$

Two simple identities

$$
\frac{\left(\frac{x}{y}\right)}{z}=\frac{1}{z}\left(\frac{x}{y}\right)=\frac{x}{z y}
$$

$$
(x / y) / z=x /(z y)
$$

Two simple identities

$$
\begin{aligned}
& \frac{\left(\frac{x}{y}\right)}{z}=\frac{1}{z}\left(\frac{x}{y}\right)=\frac{x}{z y} \\
& (x / y) / z=x /(z y)
\end{aligned}
$$

$$
x \backslash(y \backslash z)=
$$

Two simple identities

$$
\begin{aligned}
& \frac{\left(\frac{x}{y}\right)}{z}=\frac{1}{z}\left(\frac{x}{y}\right)=\frac{x}{z y} \\
& (x / y) / z=x /(z y)
\end{aligned}
$$

$$
x \backslash(y \backslash z)=(y
$$

Two simple identities

$$
\begin{aligned}
& \frac{\left(\frac{x}{y}\right)}{z}=\frac{1}{z}\left(\frac{x}{y}\right)=\frac{x}{z y} \\
& (x / y) / z=x /(z y)
\end{aligned}
$$

$$
x \backslash(y \backslash z)=(y x)
$$

Two simple identities

$$
\begin{aligned}
& \frac{\left(\frac{x}{y}\right)}{z}=\frac{1}{z}\left(\frac{x}{y}\right)=\frac{x}{z y} \\
& (x / y) / z=x /(z y)
\end{aligned}
$$

$$
x \backslash(y \backslash z)=(y x) \backslash z
$$

Other simple identities

$\frac{x}{x}=1 \quad$ (true in integral residuated monoids) $\quad 1 y=y$
Therefore $\quad \frac{x}{x} y=y$
Another Basic identity: $(x / y) y=(y / x) x$
NOT true in residuated monoids, but an axiom of hoops.
Equivalent to $x \leq y \Longrightarrow x=(x / y) y$
Equivalent to naturally ordered: $x \leq y \Longrightarrow \exists u(x=u y)$

If $y=(x / x) y$ and $x /(y \cdot z)=((x / z) / y)$ and $(x / y) y=(y / x) x$ then \cdot is associative.

Proof: $x(y z)=[((x y) z) /((x y) z)](x(y z))$

$$
\begin{aligned}
& \text { If } y=(x / x) y \text { and } x /(y \cdot z)=((x / z) / y) \text { and } \\
& (x / y) y=(y / x) x \text { then } \cdot \text { is associative. } \\
& \text { Proof: } x(y z)=[((x y) z) /((x y) z)](x(y z)) \\
& =[(((x y) z) / z) /(x y)](x(y z))
\end{aligned}
$$

A lemma

If $y=(x / x) y$ and $x /(y \cdot z)=((x / z) / y)$ and $(x / y) y=(y / x) x$ then \cdot is associative.

Proof: $x(y z)=[((x y) z) /((x y) z)](x(y z))$
$=[(((x y) z) / z) /(x y)](x(y z))$
$=[((((x y) z) / z) / y) / x](x(y z))$

A lemma

If $y=(x / x) y$ and $x /(y \cdot z)=((x / z) / y)$ and $(x / y) y=(y / x) x$ then \cdot is associative.

Proof: $x(y z)=[((x y) z) /((x y) z)](x(y z))$
$=[(((x y) z) / z) /(x y)](x(y z))$
$=[((((x y) z) / z) / y) / x](x(y z))$
$=[(((x y) z) /(y z)) / x](x(y z))$

A lemma

If $y=(x / x) y$ and $x /(y \cdot z)=((x / z) / y)$ and $(x / y) y=(y / x) x$ then \cdot is associative.

Proof: $x(y z)=[((x y) z) /((x y) z)](x(y z))$
$=[(((x y) z) / z) /(x y)](x(y z))$
$=[((((x y) z) / z) / y) / x](x(y z))$
$=[(((x y) z) /(y z)) / x](x(y z))$
$=[((x y) z) /(x(y z))](x(y z))$

A lemma

If $y=(x / x) y$ and $x /(y \cdot z)=((x / z) / y)$ and $(x / y) y=(y / x) x$ then \cdot is associative.

Proof: $x(y z)=[((x y) z) /((x y) z)](x(y z))$
$=[(((x y) z) / z) /(x y)](x(y z))$
$=[((((x y) z) / z) / y) / x](x(y z))$
$=[(((x y) z) /(y z)) / x](x(y z))$
$=[((x y) z) /(x(y z))](x(y z))$
$=[(x(y z)) /((x y) z)]((x y) z)=$

A lemma

If $y=(x / x) y$ and $x /(y \cdot z)=((x / z) / y)$ and
$(x / y) y=(y / x) x$ then \cdot is associative.
Proof: $x(y z)=[((x y) z) /((x y) z)](x(y z))$
$=[(((x y) z) / z) /(x y)](x(y z))$
$=[((((x y) z) / z) / y) / x](x(y z))$
$=[(((x y) z) /(y z)) / x](x(y z))$
$=[((x y) z) /(x(y z))](x(y z))$
$=[(x(y z)) /((x y) z)]((x y) z)=$ reverse steps to get $=(x y) z$

Equational basis for generalized hoops

$x 1=x$
$x / x=1=x \backslash x$
$x /(y z)=(x / z) / y$
$y \backslash(z \backslash x)=(z y) \backslash x$
$(x / y) y=(y / x) x=y(y \backslash x)$
Generalized hoops are also called pseudo hoops
Note: The term $(x / y) y$ defines a binary operation that is commutative and idempotent $((x / x) x=1 x=x)$.

A meet-semilattice term

Lemma: $(x / y) y$ is associative, hence written as $x \wedge y$. It is a meet since $x \leq y \Longleftrightarrow 1=y / x \Longleftrightarrow x=(x / y) y$

Proof. $(x \wedge y) \wedge z=(((x / y) y) / z) z$

A meet-semilattice term

Lemma: $(x / y) y$ is associative, hence written as $x \wedge y$. It is a meet since $x \leq y \Longleftrightarrow 1=y / x \Longleftrightarrow x=(x / y) y$

Proof. $(x \wedge y) \wedge z=(((x / y) y) / z) z=(z /(x / y) y)(x / y) y$

A meet-semilattice term

Lemma: $(x / y) y$ is associative, hence written as $x \wedge y$. It is a meet since $x \leq y \Longleftrightarrow 1=y / x \Longleftrightarrow x=(x / y) y$

Proof. $(x \wedge y) \wedge z=(((x / y) y) / z) z=(z /(x / y) y)(x / y) y$
$=((z / y) /(x / y))(x / y) y$

A meet-semilattice term

Lemma: $(x / y) y$ is associative, hence written as $x \wedge y$. It is a meet since $x \leq y \Longleftrightarrow 1=y / x \Longleftrightarrow x=(x / y) y$

Proof. $(x \wedge y) \wedge z=(((x / y) y) / z) z=(z /(x / y) y)(x / y) y$
$=((z / y) /(x / y))(x / y) y$
$=((x / y) /(z / y))(z / y) y$

A meet-semilattice term

Lemma: $(x / y) y$ is associative, hence written as $x \wedge y$. It is a meet since $x \leq y \Longleftrightarrow 1=y / x \Longleftrightarrow x=(x / y) y$

$$
\begin{aligned}
& \text { Proof. }(x \wedge y) \wedge z=(((x / y) y) / z) z=(z /(x / y) y)(x / y) y \\
& =((z / y) /(x / y))(x / y) y \\
& =((x / y) /(z / y))(z / y) y \\
& =(x /(z / y) y)(z / y) y
\end{aligned}
$$

A meet-semilattice term

Lemma: $(x / y) y$ is associative, hence written as $x \wedge y$. It is a meet since $x \leq y \Longleftrightarrow 1=y / x \Longleftrightarrow x=(x / y) y$

Proof. $(x \wedge y) \wedge z=(((x / y) y) / z) z=(z /(x / y) y)(x / y) y$
$=((z / y) /(x / y))(x / y) y$
$=((x / y) /(z / y))(z / y) y$
$=(x /(z / y) y)(z / y) y=x \wedge(z \wedge y)=x \wedge(y \wedge z)$

Multiplication distributes over meet

[Galatos $\sim 04]$ Generalized hoops satisfy $(x \wedge y) z=x z \wedge y z$
Preliminary: $x z \leq x z \Longrightarrow x \leq x z / z$

Multiplication distributes over meet

[Galatos $\sim 04]$ Generalized hoops satisfy $(x \wedge y) z=x z \wedge y z$
Preliminary: $x z \leq x z \Longrightarrow x \leq x z / z \quad$ hence $x z \leq(x z / z) z$

Multiplication distributes over meet

[Galatos $\sim 04]$ Generalized hoops satisfy $(x \wedge y) z=x z \wedge y z$ Preliminary: $x z \leq x z \Longrightarrow x \leq x z / z \quad$ hence $x z \leq(x z / z) z$ $x z / z \leq x z / z \Longrightarrow(x z / z) z \leq x z$

Multiplication distributes over meet

[Galatos $\sim 04]$ Generalized hoops satisfy $(x \wedge y) z=x z \wedge y z$ Preliminary: $x z \leq x z \Longrightarrow x \leq x z / z \quad$ hence $x z \leq(x z / z) z$ $x z / z \leq x z / z \Longrightarrow(x z / z) z \leq x z \quad$ therefore $x z=(x z / z) z$

Multiplication distributes over meet

[Galatos $\sim 04]$ Generalized hoops satisfy $(x \wedge y) z=x z \wedge y z$ Preliminary: $x z \leq x z \Longrightarrow x \leq x z / z \quad$ hence $x z \leq(x z / z) z$ $x z / z \leq x z / z \Longrightarrow(x z / z) z \leq x z \quad$ therefore $x z=(x z / z) z$

Now $(x \wedge y) z \leq x z \wedge y z$ always holds since \cdot is order-preserving

Multiplication distributes over meet

[Galatos $\sim 04]$ Generalized hoops satisfy $(x \wedge y) z=x z \wedge y z$ Preliminary: $x z \leq x z \Longrightarrow x \leq x z / z \quad$ hence $x z \leq(x z / z) z$ $x z / z \leq x z / z \Longrightarrow(x z / z) z \leq x z \quad$ therefore $x z=(x z / z) z$

Now $(x \wedge y) z \leq x z \wedge y z$ always holds since \cdot is order-preserving $x z \wedge y z=(x z / y z) y z=((x z / z) / y) y z$

Multiplication distributes over meet

[Galatos $\sim 04]$ Generalized hoops satisfy $(x \wedge y) z=x z \wedge y z$ Preliminary: $x z \leq x z \Longrightarrow x \leq x z / z \quad$ hence $x z \leq(x z / z) z$ $x z / z \leq x z / z \Longrightarrow(x z / z) z \leq x z \quad$ therefore $x z=(x z / z) z$

Now $(x \wedge y) z \leq x z \wedge y z$ always holds since \cdot is order-preserving $x z \wedge y z=(x z / y z) y z=((x z / z) / y) y z$
$=(y /((x z) / z))(x z / z) z$

Multiplication distributes over meet

[Galatos $\sim 04]$ Generalized hoops satisfy $(x \wedge y) z=x z \wedge y z$ Preliminary: $x z \leq x z \Longrightarrow x \leq x z / z \quad$ hence $x z \leq(x z / z) z$ $x z / z \leq x z / z \Longrightarrow(x z / z) z \leq x z \quad$ therefore $x z=(x z / z) z$

Now $(x \wedge y) z \leq x z \wedge y z$ always holds since \cdot is order-preserving $x z \wedge y z=(x z / y z) y z=((x z / z) / y) y z$
$=(y /((x z) / z))(x z / z) z=(y /((x z) / z)) x z$

Multiplication distributes over meet

[Galatos $\sim 04]$ Generalized hoops satisfy $(x \wedge y) z=x z \wedge y z$ Preliminary: $x z \leq x z \Longrightarrow x \leq x z / z \quad$ hence $x z \leq(x z / z) z$ $x z / z \leq x z / z \Longrightarrow(x z / z) z \leq x z \quad$ therefore $x z=(x z / z) z$

Now $(x \wedge y) z \leq x z \wedge y z$ always holds since \cdot is order-preserving $x z \wedge y z=(x z / y z) y z=((x z / z) / y) y z$
$=(y /((x z) / z))(x z / z) z=(y /((x z) / z)) x z$
$\leq(y / x) x z=(y \wedge x) z$

Hoops and GBL-algebras

Commutative generalized hoops are called hoops
In this case $x / y=y \backslash x \quad$ usually written as $y \rightarrow x$
If we expand the signature of generalized hoops with \vee
and add lattice identities then we get integral GBL-algebras
Add bottom 0 , commutativity, and $(x \rightarrow y) \vee(y \rightarrow x)=1$
get Hajek's Basic Logic algebras
Includes BA, Heyting algebras, MV-algebras, GA, PA
Open Problem: Is the equational theory of integral GBL-algebras decidable?

Finite generalized hoops

Finite GH are reducts of integral GBL-algebras
[J. \& Montagna 06] Finite GBL-algebras are commutative Hence finite GH are commutative
[J. \& Montagna 09] Finite GBL-algebras are poset products of Wajsberg chains $W_{n}=\left(\left\{0, a^{n-1}, \ldots, a^{3}, a^{2}, a, 1\right\}, \cdot, 1, \rightarrow\right)$

A poset product is a subalgebra of a direct product over a partially ordered index set

Poset products

For bounded GH or GBL-algebras C_{i} indexed by a poset P

$$
\prod_{\mathbf{P}} C_{i}=\left\{f \in \prod_{i \in P} C_{i}: \forall i>j \in P(f(i) \neq 0 \Longrightarrow f(j)=1)\right\}
$$

The operations \wedge, \vee, \cdot are defined pointwise and the bounds are the constant functions $\mathbf{0}, \mathbf{1}$. The residuals are given by

$$
\begin{aligned}
& (f \backslash g)(i)= \begin{cases}f(i) \backslash g(i) & \text { if } f(j) \leq g(j) \text { for all } j<i \\
0 & \text { otherwise }\end{cases} \\
& (g / f)(i)= \begin{cases}g(i) / f(i) & \text { if } f(j) \leq g(j) \text { for all } j<i \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

If the poset is linear we get an ordinal sum of the factors
If the poset is an antichain, we get the direct product If the factors are Boolean algebras, get a Heyting algebra Can build all finite GH and GBL-algebras: pick a finite poset P

Pick a positive integer n_{i} for each $i \in P$
Get all finite GH and GBL-algebras uniquely up to isomorphism

The algebra is subdirectly irreducible iff poset has a top
Generalized hoops are congruence distributive [Botur, Dvurečenskij, Kowalski 2012]

Can construct lattice of finitely generated subvarieties
W_{m} is a subalgebra of W_{n} iff $m \mid n$
Therefore the varieties $V\left(W_{n}\right)$, ordered by inclusion, form the divisibility lattice \mathbb{D}

The lattice of all finitely generated subvarieties of Wasjberg hoops is isomorphic to the downset lattice of \mathbb{D} [Komori 81]

Theorem. The poset of finitely generated join irreducible BL-varieties is isomorphic to $\mathbb{D}^{*}=\bigcup_{n=0}^{\infty} \mathbb{D}^{n}$ with the order on \mathbb{D}^{*} extending the pointwise divisibility order on each component as follows: The order relation $\left(a_{1}, \ldots, a_{m}\right) \leq\left(b_{1}, \ldots, b_{n}\right)$ is a covering relation if and only if either

- $m=n$ and $\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{i-1}, p a_{i}, a_{i+1}, \ldots, a_{n}\right)$ for some prime p and a unique $i \leq n$, or
- $m+1=n$ and $\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{i-1}, 1, a_{i}, \ldots, a_{m}\right)$ for some $i \in\{2, \ldots, n\}$

SAT-solvers

SAT stands for satisfiability of Boolean formulas
Given a Boolean formula φ with propositional variables p_{1}, \ldots, p_{n}
decide if there is an assignment $h:\left\{p_{1}, \ldots, p_{n}\right\} \rightarrow\{T, F\}$ such that
h extended homomorphically to all formulas makes $h(\varphi)=T$
SAT was the first problem proved to be NP-complete
i.e., there is a nondeterministic Turing machine that decides SAT in polynomial time and every other problem that can be decided in nondeterministic polynomial time has a polynomial time reduction to a SAT problem

SMT-solvers

SMT stands for satisfiability modulo theories
Combines SAT-solving with other decision procedures for fragments of first-order logic and arithmetic

SMT-solvers were developed in computer science for static analysis of programs

Input is a (limited) choice of a decidable theory and a list of Boolean combinations of atomic formulas in the signature of this theory

Quantifier-free decidable theories

QF_LRA quantifier free linear real number arithmetic with,,$+-<,=$
e.g. $\operatorname{not}(0>x+y$ or $x+y>5)$ and $(x+x-y-y=1)$

QF _RA is like QF_LRA but also allows multiplication, division
SMT-solvers decide if there exists an assignment of real numbers to the variables in the list of formulas such that all the formulas are true in \mathbb{R}; return assignment if it exists

How SMT-solvers work

Basic idea: replace atomic formulas by Boolean variables, call a SAT-solver
if the Boolean formulas are not satisfiable, return F else use each possible Boolean assignment to generate a list of linear atomic formulas and call a Linear Programming package
if an assignment is found, return it, but if none of the Boolean assignments work, return F

SMT-solver input for abelian ℓ-groups

Easy, the variety of abelian ℓ-groups is generated by ($\mathbb{R}, \min , \max ,+,-, 0$)

SMT_LIB2 is a standard LISP-like language for SMT-solver input
;Testing abelian l-group equations in SMT (set-logic QF_LRA)
(define-fun wedge ((xReal) (y Real)) Real (ite (>xy) y x))
(define-fun vee ((x Real) (y Real)) Real (ite ($>\mathrm{xy}$) $\times \mathrm{y}$))
(declare-const x Real)
(declare-const y Real)
(assert (> (vee $(+x \mathrm{x})(+\mathrm{y} y))(+($ vee $\mathrm{x} y)($ vee $\mathrm{x} y))))$
; test if $(x+x) \vee(y+y) \leq(x \vee y)+(x \vee y)$ is an identity
(check-sat)

SMT-solver input for infinitely-valued logics

The idea of using SMT-solvers for logics based on intervals of the real numbers is from the following paper:
C. Ansótegui, M. Bofill, F. Manyà and M. Villaret, Building automated theorem provers for infinitely-valued logics with satisfiability modulo theory solvers, in Proceedings, IEEE 42nd International Symposium on Multiple-Valued Logic. ISMVL 2012, 25-30.

They give examples of SMT-LIB2 code for Lukasiewicz logic and product logic

SMT-solver input for MV-algbras

The variety of MV-algebras is $\operatorname{HSP}(([0,1], \wedge, \vee, \cdot, 1,0, \rightarrow))$
;Testing MV-algebra equations in SMT
(set-logic QF_LRA)
(define-fun wedge ((x Real)) y Real)) Real (ite $(>\mathrm{xy}) \mathrm{y} \times$)) (define-fun vee ((xReal) (y Real)) Real (ite ($>x y$) $\times \mathrm{y})$)
(define-fun oplus ((xReal) (y Real)) Real (wedge (+xy) 1))
(define-fun cdot ((xReal) (y Real)) Real (vee (- (+xy)1) 0))
(define-fun neg ((xReal)) Real (-1x))
(define-fun to ((x Real) (y Real)) Real (wedge 1 (- (+ 1 y$) \mathrm{x})$))
(declare-const \times Real) (assert $(<=0 \times$)) (assert $(<=\times 1))$
(declare-const y Real) (assert (<=0 y)) (assert (<=y 1))
(assert (< (to (vee (cdot $\mathrm{x} \times$) (cdot y y)) (cdot (vee $\mathrm{x} y$) (vee x y))) 1))
; test if $\left(x^{2} \vee y^{2}\right) \rightarrow(x \vee y)^{2}<1$ is satisfiable
(check-sat)

Other standard Basic Logic algebras

For Gödel algebras redefine fusion as $\min (x, y)$.
(define-fun cdot ((xReal) (y Real)) Real (ite (>xy) y x))
For product algebras use
(define-fun cdot ((xReal) (y Real)) Real (ite ($>\mathrm{xy}$) y x)) (declare-const \times Real) (assert ($<=\times 0$));
(declare-const \times Real) (assert $(<=\times 0)$);
and do a translation to the formula that adds an extra variable z (for bottom)
replacing variable x by $x \vee z$ and subterms $s \cdot t$ by $s \cdot t \vee z$
Prop 7.4 in Galatos, Tsinakis (2005) Generalized MV-algebras

Checking identities in BL-algebras

To decide propositional basic logic with an SMT-solver requires the following result of Agliano Montagna 2003 (see also Aguzzoli and Bova 2010).

Theorem

Let $A_{n}=\bigoplus_{i=0}^{n}[0,1]$ be the ordinal sum of $n+1$ unit-interval $M V$-algebras, and let \mathcal{V}_{n} be the variety generated by all n-generated $B L$-algebras. Then $\mathcal{V}_{n}=\operatorname{HSP}\left(A_{n}\right)$, hence an n-variable BL-identity holds in A_{n} if and only if it holds in all $B L$-algebras.

By constructing the algebra A_{n} of the above result within the SMT language, one obtains an effective means of checking n-variable BL-identities.

Checking identities in BL-algebras

The universe for A_{n} is taken to be the interval $[0, n+1]$ The definition of fusion and implication are

$$
\begin{gathered}
x \cdot y= \begin{cases}\max (x+y-1-\lfloor y\rfloor,\lfloor x\rfloor) & \text { if }\lfloor x\rfloor=\lfloor y\rfloor \\
\min (x, y) & \text { otherwise }\end{cases} \\
x \rightarrow y= \begin{cases}n+1 & \text { if } x \leq y \\
y & \text { if }\lfloor y\rfloor<\lfloor. \\
\min (1+y-x+\lfloor x\rfloor, 1+\lfloor y\rfloor) & \text { otherwise }\end{cases}
\end{gathered}
$$

A straightforward SMT-LIB2 implementation of these operations uses $n+1$ cases, so the formula does become long even for small values of n

Below we give the implementations for $n=1$ and $n=2$, which can be used to check 1 -variable and 2 -variable BL-identities

Checking identities in BL-algebras

$n=1$:
(define-fun cdot ((x Real) (y Real)) Real (ite (and $(<x 1)$ ($<$ y 1)) (vee (- (+ x y) 1) 0) (ite (and $(>=x 1)(>=y 1)$) (vee (- (+xy) 2) 1) (wedge $x y)$)))
(define-fun to $((x$ Real) $)$ (Real)) Real (ite $(<=x y) 2$ (ite (and $(>=x 1)(<y 1)) y($ wedge $1(-(+1 y) x))))$
$n=2$:
(define-fun cdot ((x Real) (y Real)) Real (ite (and (<x1) (< y 1)) (vee (- (+xy) 1) 0) (ite (and $(>=x 1)(<x 2)(>=y$ 1) $(<y 2))($ vee $(-(+x y) 2)$ 1) (ite (and $(>=x 2)(>=y$ 2)) (vee (- (+xy) 3) 2) (wedge xy)))))
(define-fun to ((x Real) (y Real)) Real (ite ($<=x y$) 3 (ite (and $(<x 1)(<y 1))(+(-1 x) y)$ (ite (and $(<=1 x)(<x$ 2) $(<=1 \mathrm{y})(<\mathrm{y} 2))(+(-2 \mathrm{x}) \mathrm{y})$ (ite (and $(<=2 \mathrm{x})(<=2$ y) $(+(-3 x) y) y))))$

Automating the translation

A Python program is used to parse a $\lfloor\operatorname{LT} E X$ BL-algebra identity
A SMT-LIB2 file is generated using \cdot and \rightarrow of A_{n}
The python program then calls an SMT-solver with the file as input

The result is analyzed and the truth value is returned
If the identity fails, an assignment in $[0, n]$ can be obtained
Demo

Some References

P．Agliano and F．Montagna，Varieties of BL－algebras I：general properties，Journal of Pure and Applied Algebra， 181 （2003），105－129

S．Aguzzoli and S．Bova，The free n－generated BL－algebra，Annals of Pure and Applied Logic 161 （2010），1144－1170

C．Ansótegui，M．Bofill，F．Manyà and M．Villaret，Building automated theorem provers for infinitely－valued logics with satisfiability modulo theory solvers，in Proceedings，IEEE 42nd International Symposium on Multiple－Valued Logic．ISMVL 2012，25－30

M．Botur，A．Dvurečenskij and T．Kowalski，On normal－valued basic pseudo hoops， Soft Computing，16（4）（2012），635－644

N．Galatos and C．Tsinakis，Generalized MV－algebras，Journal of Algebra，283（1） （2005），254－291

P．Jipsen and F．Montagna，The Blok－Ferreirim theorem for normal GBL－algebras and its application，Algebra Universalis， 60 （2009），381－404

Thank You

BLAST 2013，August 5－9，Chapman University，Orange，CA

