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Generalized Hoops

Generalized hoops were first studied by Bosbach [1969, 70] and
the name hoop was introduced by Biichi and Owen [1975].

A generalized hoop (A, -, 1,\,/) is a residuated partially
ordered monoid in which

x <y <= Ju(x =uy) < TJv(x =yv).

l.e. the monoid is naturally ordered, hence integral: x <1

Residuated means: xy <z <= y <x\z < x<z/y
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Other simple identities

X1 (true in integral residuated monoids) ly=y
X

Therefore iy =y
X

Another Basic identity: (x/y)y = (y/x)x
NOT true in residuated monoids, but an axiom of hoops.
Equivalent to x <y = x = (x/y)y

Equivalent to naturally ordered: x <y = Ju(x = uy)



A lemma

If y = (x/x)y and x/(y - z) = ((x/2)/y) and

(x/y)y = (y/x)x then - is associative.

Proof: x(yz) = [((xy)z)/((xy)2)](x(y2))
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A lemma

If y = (x/x)y and x/(y - z) = ((x/z)/y) and
(x/y)y = (y/x)x then - is associative.
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A lemma
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Equational basis for generalized hoops

x1 = x
x/x=1=x\x
x/(yz) = (x/2)/y y\(2\x) = (2y)\x

(x/y)y = (y/x)x = y(y\x)
Generalized hoops are also called pseudo hoops

Note: The term (x/y)y defines a binary operation that is
commutative and idempotent ((x/x)x = 1x = x).
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A meet-semilattice term

Lemma: (x/y)y is associative, hence written as x A y. It is a
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Multiplication distributes over meet
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— /(@) )52/ 2)z = (v/((x2) /)

< (y/x)xz=(y Ax)z



Hoops and GBL-algebras
Commutative generalized hoops are called hoops
In this case x/y = y\x usually written as y — x
If we expand the signature of generalized hoops with Vv
and add lattice identities then we get integral GBL-algebras
Add bottom 0, commutativity, and (x - y)V (y — x) =1
get Hajek's Basic Logic algebras
Includes BA, Heyting algebras, MV-algebras, GA, PA

Open Problem: |s the equational theory of integral
GBL-algebras decidable?



Finite generalized hoops

Finite GH are reducts of integral GBL-algebras

[J. & Montagna 06] Finite GBL-algebras are commutative
Hence finite GH are commutative

[J. & Montagna 09] Finite GBL-algebras are poset products
of Wajsberg chains W, = ({0,a"},... 2% a% a,1},-,1,—)

A poset product is a subalgebra of a direct product over a
partially ordered index set



Poset products
For bounded GH or GBL-algebras C; indexed by a poset P

[IG={fe]]C:Vi>jeP (fli) #0 = f(j) =1)}

ieP

The operations A, V, - are defined pointwise and the bounds
are the constant functions 0, 1. The residuals are given by

f(MN\eg(i) iff() <g() forall j<i
0 otherwise

(F\g)(i) = {

g(N/f(i) iff(j) < g(j) for all j < i
0 otherwise.

(g/f)(i) = {



If the poset is linear we get an ordinal sum of the factors
If the poset is an antichain, we get the direct product
If the factors are Boolean algebras, get a Heyting algebra

Can build all finite GH and GBL-algebras: pick a finite
poset P

Pick a positive integer n; for each i € P

Get all finite GH and GBL-algebras uniquely up to
isomorphism

The algebra is subdirectly irreducible iff poset has a top

Generalized hoops are congruence distributive [Botur,
Dvurecenskij, Kowalski 2012]

Can construct lattice of finitely generated subvarieties



W,, is a subalgebra of W, iff m|n

Therefore the varieties V(W,), ordered by inclusion, form the
divisibility lattice D

The lattice of all finitely generated subvarieties of Wasjberg
hoops is isomorphic to the downset lattice of D [Komori 81]

Theorem. The poset of finitely generated join
irreducible BL-varieties is isomorphic to D* = | J,~, D"
with the order on D* extending the pointwise divisibility order
on each component as follows: The order relation

(a1,...,am) < (b1,...,b,) is a covering relation if and only
if either
» m=n and (bl,...,bn) = (al,...,a,-,l,pa,-,a,-H,...,a,,)

for some prime p and a unique i < n, or
» m+1=nand (by,...,b,) =(a1,...,8-1,1,8;,...,am)
for some i € {2,...,n}






SAT-solvers

SAT stands for satisfiability of Boolean formulas

Given a Boolean formula ¢ with propositional variables
P1s---5Pn

decide if there is an assignment h: {py,...,pn} = {T,F}
such that

h extended homomorphically to all formulas makes h(yp) = T
SAT was the first problem proved to be NP-complete

i.e., there is a nondeterministic Turing machine that decides
SAT in polynomial time and every other problem that can be
decided in nondeterministic polynomial time has a polynomial
time reduction to a SAT problem



SMT-solvers

SMT stands for satisfiability modulo theories

Combines SAT-solving with other decision procedures for
fragments of first-order logic and arithmetic

SMT-solvers were developed in computer science for static
analysis of programs

Input is a (limited) choice of a decidable theory and a list of
Boolean combinations of atomic formulas in the signature of
this theory



Quantifier-free decidable theories

QF LRA quantifier free linear real number arithmetic
with +, —, <, =

eg. not(0>x+yorx+y>5)and (x+x—y—y=1)
QF RA is like QF LRA but also allows multiplication, division

SMT-solvers decide if there exists an assignment of real
numbers to the variables in the list of formulas such that all
the formulas are true in R; return assignment if it exists



How SMT-solvers work

Basic idea: replace atomic formulas by Boolean variables, call
a SAT-solver

if the Boolean formulas are not satisfiable, return F

else use each possible Boolean assignment to generate a list of
linear atomic formulas and call a Linear Programming
package

if an assignment is found, return it, but if none of the Boolean
assignments work, return F



SMT-solver input for abelian ¢-groups

Easy, the variety of abelian /-groups is generated by
(R, min, max, +, —, 0)

SMT LIB2 is a standard LISP-like language for SMT-solver
input

; Testing abelian |-group equations in SMT

set-logic QF LRA)

define-fun wedge ((x Real) (y Real)) Real (ite (> xy) y x))
define-fun vee ((x Real) (y Real)) Real (ite (> x y) x y))
declare-const x Real)

declare-const y Real)

assert (> (vee (+xx) (+yy)) (+ (vee x y) (vee x y))))
ctestif (x +x)V(y+y) <(xVy)+(xVy)is an identity
(check—sat)

(
(
(
(
(
(



SMT-solver input for infinitely-valued logics

The idea of using SMT-solvers for logics based on intervals of
the real numbers is from the following paper:

C. Ansétegui, M. Bofill, F. Manya and M. Villaret, Building
automated theorem provers for infinitely-valued logics
with satisfiability modulo theory solvers, in Proceedings,

IEEE 42nd International Symposium on Multiple-Valued Logic.
ISMVL 2012, 25-30.

They give examples of SMT-LIB2 code for Lukasiewicz logic
and product logic



SMT-solver input for MV-algbras
The variety of MV-algebras is HSP(([0, 1], A, V,+,1,0,—))

; Testing MV-algebra equations in SMT
(set-logic QF LRA)

(define-fun wedge ((x Real) (y Real)) Real (ite (> xy) y x))
(define-fun vee ((x Real) (y Real)) Real (ite (> x y) xy))
(define-fun oplus ((x Real) (y Real)) Real (wedge (+ x y) 1))
(define-fun cdot ((x Real) (y Real)) Real (vee (- (+ x y) 1) 0))
(define-fun neg ((x Real)) Real (- 1 x))

(define-fun to ((x Real) (y Real)) Real (wedge 1 (- (+ 1y) x)))
(declare-const x Real) (assert (<= 0 x)) (assert (<= x 1))
(declare-const y Real) (assert (<= 0y)) (assert (<=1y 1))
(assert (< ) (
xy))) 1))
; test if (x> V y?) — (x V y)? < 1 is satisfiable
(check-sat)

(to (vee (cdot x x) (cdot y y)) (cdot (vee x y) (vee



Other standard Basic Logic algebras
For Godel algebras redefine fusion as min(x,y).
(define-fun cdot ((x Real) (y Real)) Real (ite (> xy) y x))
For product algebras use

(define-fun cdot ((x Real) (y Real)) Real (ite (> xy) y x))
(declare-const x Real) (assert (<= x 0));
(declare-const x Real) (assert (<= x 0));

and do a translation to the formula that adds an extra variable
z (for bottom)

replacing variable x by x V z and subterms s-t by s-tV z

Prop 7.4 in Galatos, Tsinakis (2005) Generalized MV-algebras



Checking identities in BL-algebras

To decide propositional basic logic with an SMT-solver
requires the following result of Agliano Montagna 2003 (see
also Aguzzoli and Bova 2010).

Theorem

Let A, = @7_,[0, 1] be the ordinal sum of n+ 1 unit-interval
MV-algebras, and let V, be the variety generated by all
n-generated Bl-algebras. ThenV, = HSP(A,), hence an
n-variable BL-identity holds in A, if and only if it holds in all
BL-algebras.

By constructing the algebra A, of the above result within the
SMT language, one obtains an effective means of checking
n-variable BL-identities.



Checking identities in BL-algebras

The universe for A, is taken to be the interval [0, n + 1]
The definition of fusion and implication are

XWZFMHvA—mwnwm:m

min(x, y) otherwise

n+1 ifx<y
xy =14y f Lyl < Lx
min(14+y —x+ |x],1+4|y]) otherwise

A straightforward SMT-LIB2 implementation of these
operations uses n + 1 cases, so the formula does become long
even for small values of n

Below we give the implementations for n = 1 and n = 2, which
can be used to check 1-variable and 2-variable BL-identities



Checking identities in BL-algebras
n=1:
(define-fun cdot ((x Real) (y Real)) Real (ite (and (< x 1) (<
y 1)) (vee (- (+ xy) 1) 0) (ite (and (>=x 1) (>=1y 1)) (vee
(- (+xy) 2) 1) (wedge xy) ) ) )
(define-fun to ((x Real) (y Real)) Real (ite (<= xy) 2 (ite
(and (>=x1) (<y 1))y (wedge 1 (- (+ 1y)x)))))

I
RN

fine-fun cdot ((x Real) (y Real)) Real (ite (and (< x 1) (<
1)) (vee (- (+xy) 1) 0) (ite (and (>=x1) (< x2) (>=y
(<y2)) (vee (- (+xvy)2)1) (ite (and (>=x2) (>=y
(vee (- (+ xy) 3) 2) (wedge xy)) )))

fine-fun to ((x Real) (y Real)) Real (ite (<= xy) 3 (ite

d(<x1)(<y1l)(+(-1x)y) (ite (and (<=1 x) (< x
) (<=1y) (<y2)(+ (-2x)y) (ite (and (<= 2 x) (<=2

y)) (+(-3%)y)¥)))

> 0 N—r



Automating the translation

A Python program is used to parse a IKTEX BL-algebra identity
A SMT-LIB2 file is generated using - and — of A,

The python program then calls an SMT-solver with the file as
input

The result is analyzed and the truth value is returned
If the identity fails, an assignment in [0, n] can be obtained

Demo
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