
Varieties of Generalized Hoops and
Integral GBL-algebras

Peter Jipsen

Chapman University, Orange, California

AMS Section Meeting, April 13, 2013, Boulder Colorado



Generalized Hoops

Generalized hoops were first studied by Bosbach [1969, 70] and
the name hoop was introduced by Büchi and Owen [1975].

A generalized hoop (A, ·, 1, \, /) is a residuated partially
ordered monoid in which

x ≤ y ⇐⇒ ∃u(x = uy) ⇐⇒ ∃v(x = yv).

I.e. the monoid is naturally ordered, hence integral: x ≤ 1

Residuated means: xy ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y



Two simple identities

(xy )

z
=

1
z
(
x
y
) =

x
zy

(x/y)/z = x/(zy)

x\(y\z) = (yx)\z



Two simple identities

(xy )

z
=

1
z
(
x
y
) =

x
zy

(x/y)/z = x/(zy)

x\(y\z) = (yx)\z



Two simple identities

(xy )

z
=

1
z
(
x
y
) =

x
zy

(x/y)/z = x/(zy)

x\(y\z) = (yx)\z



Two simple identities

(xy )

z
=

1
z
(
x
y
) =

x
zy

(x/y)/z =

x/(zy)

x\(y\z) = (yx)\z



Two simple identities

(xy )

z
=

1
z
(
x
y
) =

x
zy

(x/y)/z = x/(zy)

x\(y\z) = (yx)\z



Two simple identities

(xy )

z
=

1
z
(
x
y
) =

x
zy

(x/y)/z = x/(zy)

x\(y\z) =

(yx)\z



Two simple identities

(xy )

z
=

1
z
(
x
y
) =

x
zy

(x/y)/z = x/(zy)

x\(y\z) = (y

x)\z



Two simple identities

(xy )

z
=

1
z
(
x
y
) =

x
zy

(x/y)/z = x/(zy)

x\(y\z) = (yx)

\z



Two simple identities

(xy )

z
=

1
z
(
x
y
) =

x
zy

(x/y)/z = x/(zy)

x\(y\z) = (yx)\z



Other simple identities

x
x
= 1 (true in integral residuated monoids) 1y = y

Therefore
x
x
y = y

Another Basic identity: (x/y)y = (y/x)x

NOT true in residuated monoids, but an axiom of hoops.

Equivalent to x ≤ y =⇒ x = (x/y)y

Equivalent to naturally ordered: x ≤ y =⇒ ∃u(x = uy)



A lemma

If y = (x/x)y and x/(y · z) = ((x/z)/y) and

(x/y)y = (y/x)x then · is associative.

Proof: x(yz) = [((xy)z)/((xy)z)](x(yz))

= [(((xy)z)/z)/(xy)](x(yz))

= [((((xy)z)/z)/y)/x ](x(yz))

= [(((xy)z)/(yz))/x ](x(yz))

= [((xy)z)/(x(yz))](x(yz))

= [(x(yz))/((xy)z)]((xy)z) = reverse steps to get = (xy)z



A lemma

If y = (x/x)y and x/(y · z) = ((x/z)/y) and

(x/y)y = (y/x)x then · is associative.

Proof: x(yz) = [((xy)z)/((xy)z)](x(yz))

= [(((xy)z)/z)/(xy)](x(yz))

= [((((xy)z)/z)/y)/x ](x(yz))

= [(((xy)z)/(yz))/x ](x(yz))

= [((xy)z)/(x(yz))](x(yz))

= [(x(yz))/((xy)z)]((xy)z) = reverse steps to get = (xy)z



A lemma

If y = (x/x)y and x/(y · z) = ((x/z)/y) and

(x/y)y = (y/x)x then · is associative.

Proof: x(yz) = [((xy)z)/((xy)z)](x(yz))

= [(((xy)z)/z)/(xy)](x(yz))

= [((((xy)z)/z)/y)/x ](x(yz))

= [(((xy)z)/(yz))/x ](x(yz))

= [((xy)z)/(x(yz))](x(yz))

= [(x(yz))/((xy)z)]((xy)z) = reverse steps to get = (xy)z



A lemma

If y = (x/x)y and x/(y · z) = ((x/z)/y) and

(x/y)y = (y/x)x then · is associative.

Proof: x(yz) = [((xy)z)/((xy)z)](x(yz))

= [(((xy)z)/z)/(xy)](x(yz))

= [((((xy)z)/z)/y)/x ](x(yz))

= [(((xy)z)/(yz))/x ](x(yz))

= [((xy)z)/(x(yz))](x(yz))

= [(x(yz))/((xy)z)]((xy)z) = reverse steps to get = (xy)z



A lemma

If y = (x/x)y and x/(y · z) = ((x/z)/y) and

(x/y)y = (y/x)x then · is associative.

Proof: x(yz) = [((xy)z)/((xy)z)](x(yz))

= [(((xy)z)/z)/(xy)](x(yz))

= [((((xy)z)/z)/y)/x ](x(yz))

= [(((xy)z)/(yz))/x ](x(yz))

= [((xy)z)/(x(yz))](x(yz))

= [(x(yz))/((xy)z)]((xy)z) = reverse steps to get = (xy)z



A lemma

If y = (x/x)y and x/(y · z) = ((x/z)/y) and

(x/y)y = (y/x)x then · is associative.

Proof: x(yz) = [((xy)z)/((xy)z)](x(yz))

= [(((xy)z)/z)/(xy)](x(yz))

= [((((xy)z)/z)/y)/x ](x(yz))

= [(((xy)z)/(yz))/x ](x(yz))

= [((xy)z)/(x(yz))](x(yz))

= [(x(yz))/((xy)z)]((xy)z) =

reverse steps to get = (xy)z



A lemma

If y = (x/x)y and x/(y · z) = ((x/z)/y) and

(x/y)y = (y/x)x then · is associative.

Proof: x(yz) = [((xy)z)/((xy)z)](x(yz))

= [(((xy)z)/z)/(xy)](x(yz))

= [((((xy)z)/z)/y)/x ](x(yz))

= [(((xy)z)/(yz))/x ](x(yz))

= [((xy)z)/(x(yz))](x(yz))

= [(x(yz))/((xy)z)]((xy)z) = reverse steps to get = (xy)z



Equational basis for generalized hoops

x1 = x

x/x = 1 = x\x

x/(yz) = (x/z)/y y\(z\x) = (zy)\x

(x/y)y = (y/x)x = y(y\x)

Generalized hoops are also called pseudo hoops

Note: The term (x/y)y defines a binary operation that is
commutative and idempotent ((x/x)x = 1x = x).



A meet-semilattice term

Lemma: (x/y)y is associative, hence written as x ∧ y . It is a
meet since x ≤ y ⇐⇒ 1 = y/x ⇐⇒ x = (x/y)y

Proof. (x ∧ y) ∧ z = (((x/y)y)/z)z

= (z/(x/y)y)(x/y)y

= ((z/y)/(x/y))(x/y)y

= ((x/y)/(z/y))(z/y)y

= (x/(z/y)y)(z/y)y = x ∧ (z ∧ y) = x ∧ (y ∧ z)



A meet-semilattice term

Lemma: (x/y)y is associative, hence written as x ∧ y . It is a
meet since x ≤ y ⇐⇒ 1 = y/x ⇐⇒ x = (x/y)y

Proof. (x ∧ y) ∧ z = (((x/y)y)/z)z = (z/(x/y)y)(x/y)y

= ((z/y)/(x/y))(x/y)y

= ((x/y)/(z/y))(z/y)y

= (x/(z/y)y)(z/y)y = x ∧ (z ∧ y) = x ∧ (y ∧ z)



A meet-semilattice term

Lemma: (x/y)y is associative, hence written as x ∧ y . It is a
meet since x ≤ y ⇐⇒ 1 = y/x ⇐⇒ x = (x/y)y

Proof. (x ∧ y) ∧ z = (((x/y)y)/z)z = (z/(x/y)y)(x/y)y

= ((z/y)/(x/y))(x/y)y

= ((x/y)/(z/y))(z/y)y

= (x/(z/y)y)(z/y)y = x ∧ (z ∧ y) = x ∧ (y ∧ z)



A meet-semilattice term

Lemma: (x/y)y is associative, hence written as x ∧ y . It is a
meet since x ≤ y ⇐⇒ 1 = y/x ⇐⇒ x = (x/y)y

Proof. (x ∧ y) ∧ z = (((x/y)y)/z)z = (z/(x/y)y)(x/y)y

= ((z/y)/(x/y))(x/y)y

= ((x/y)/(z/y))(z/y)y

= (x/(z/y)y)(z/y)y = x ∧ (z ∧ y) = x ∧ (y ∧ z)



A meet-semilattice term

Lemma: (x/y)y is associative, hence written as x ∧ y . It is a
meet since x ≤ y ⇐⇒ 1 = y/x ⇐⇒ x = (x/y)y

Proof. (x ∧ y) ∧ z = (((x/y)y)/z)z = (z/(x/y)y)(x/y)y

= ((z/y)/(x/y))(x/y)y

= ((x/y)/(z/y))(z/y)y

= (x/(z/y)y)(z/y)y

= x ∧ (z ∧ y) = x ∧ (y ∧ z)



A meet-semilattice term

Lemma: (x/y)y is associative, hence written as x ∧ y . It is a
meet since x ≤ y ⇐⇒ 1 = y/x ⇐⇒ x = (x/y)y

Proof. (x ∧ y) ∧ z = (((x/y)y)/z)z = (z/(x/y)y)(x/y)y

= ((z/y)/(x/y))(x/y)y

= ((x/y)/(z/y))(z/y)y

= (x/(z/y)y)(z/y)y = x ∧ (z ∧ y) = x ∧ (y ∧ z)



Multiplication distributes over meet

[Galatos ~04] Generalized hoops satisfy (x ∧ y)z = xz ∧ yz

Preliminary: xz ≤ xz =⇒ x ≤ xz/z

hence xz ≤ (xz/z)z

xz/z ≤ xz/z =⇒ (xz/z)z ≤ xz therefore xz = (xz/z)z

Now (x ∧ y)z ≤ xz ∧ yz always holds since · is order-preserving

xz ∧ yz = (xz/yz)yz = ((xz/z)/y)yz

= (y/((xz)/z))(xz/z)z = (y/((xz)/z))xz

≤ (y/x)xz = (y ∧ x)z



Multiplication distributes over meet

[Galatos ~04] Generalized hoops satisfy (x ∧ y)z = xz ∧ yz

Preliminary: xz ≤ xz =⇒ x ≤ xz/z hence xz ≤ (xz/z)z

xz/z ≤ xz/z =⇒ (xz/z)z ≤ xz therefore xz = (xz/z)z

Now (x ∧ y)z ≤ xz ∧ yz always holds since · is order-preserving

xz ∧ yz = (xz/yz)yz = ((xz/z)/y)yz

= (y/((xz)/z))(xz/z)z = (y/((xz)/z))xz

≤ (y/x)xz = (y ∧ x)z



Multiplication distributes over meet

[Galatos ~04] Generalized hoops satisfy (x ∧ y)z = xz ∧ yz

Preliminary: xz ≤ xz =⇒ x ≤ xz/z hence xz ≤ (xz/z)z

xz/z ≤ xz/z =⇒ (xz/z)z ≤ xz

therefore xz = (xz/z)z

Now (x ∧ y)z ≤ xz ∧ yz always holds since · is order-preserving

xz ∧ yz = (xz/yz)yz = ((xz/z)/y)yz

= (y/((xz)/z))(xz/z)z = (y/((xz)/z))xz

≤ (y/x)xz = (y ∧ x)z



Multiplication distributes over meet

[Galatos ~04] Generalized hoops satisfy (x ∧ y)z = xz ∧ yz

Preliminary: xz ≤ xz =⇒ x ≤ xz/z hence xz ≤ (xz/z)z

xz/z ≤ xz/z =⇒ (xz/z)z ≤ xz therefore xz = (xz/z)z

Now (x ∧ y)z ≤ xz ∧ yz always holds since · is order-preserving

xz ∧ yz = (xz/yz)yz = ((xz/z)/y)yz

= (y/((xz)/z))(xz/z)z = (y/((xz)/z))xz

≤ (y/x)xz = (y ∧ x)z



Multiplication distributes over meet

[Galatos ~04] Generalized hoops satisfy (x ∧ y)z = xz ∧ yz

Preliminary: xz ≤ xz =⇒ x ≤ xz/z hence xz ≤ (xz/z)z

xz/z ≤ xz/z =⇒ (xz/z)z ≤ xz therefore xz = (xz/z)z

Now (x ∧ y)z ≤ xz ∧ yz always holds since · is order-preserving

xz ∧ yz = (xz/yz)yz = ((xz/z)/y)yz

= (y/((xz)/z))(xz/z)z = (y/((xz)/z))xz

≤ (y/x)xz = (y ∧ x)z



Multiplication distributes over meet

[Galatos ~04] Generalized hoops satisfy (x ∧ y)z = xz ∧ yz

Preliminary: xz ≤ xz =⇒ x ≤ xz/z hence xz ≤ (xz/z)z

xz/z ≤ xz/z =⇒ (xz/z)z ≤ xz therefore xz = (xz/z)z

Now (x ∧ y)z ≤ xz ∧ yz always holds since · is order-preserving

xz ∧ yz = (xz/yz)yz = ((xz/z)/y)yz

= (y/((xz)/z))(xz/z)z = (y/((xz)/z))xz

≤ (y/x)xz = (y ∧ x)z



Multiplication distributes over meet

[Galatos ~04] Generalized hoops satisfy (x ∧ y)z = xz ∧ yz

Preliminary: xz ≤ xz =⇒ x ≤ xz/z hence xz ≤ (xz/z)z

xz/z ≤ xz/z =⇒ (xz/z)z ≤ xz therefore xz = (xz/z)z

Now (x ∧ y)z ≤ xz ∧ yz always holds since · is order-preserving

xz ∧ yz = (xz/yz)yz = ((xz/z)/y)yz

= (y/((xz)/z))(xz/z)z

= (y/((xz)/z))xz

≤ (y/x)xz = (y ∧ x)z



Multiplication distributes over meet

[Galatos ~04] Generalized hoops satisfy (x ∧ y)z = xz ∧ yz

Preliminary: xz ≤ xz =⇒ x ≤ xz/z hence xz ≤ (xz/z)z

xz/z ≤ xz/z =⇒ (xz/z)z ≤ xz therefore xz = (xz/z)z

Now (x ∧ y)z ≤ xz ∧ yz always holds since · is order-preserving

xz ∧ yz = (xz/yz)yz = ((xz/z)/y)yz

= (y/((xz)/z))(xz/z)z = (y/((xz)/z))xz

≤ (y/x)xz = (y ∧ x)z



Multiplication distributes over meet

[Galatos ~04] Generalized hoops satisfy (x ∧ y)z = xz ∧ yz

Preliminary: xz ≤ xz =⇒ x ≤ xz/z hence xz ≤ (xz/z)z

xz/z ≤ xz/z =⇒ (xz/z)z ≤ xz therefore xz = (xz/z)z

Now (x ∧ y)z ≤ xz ∧ yz always holds since · is order-preserving

xz ∧ yz = (xz/yz)yz = ((xz/z)/y)yz

= (y/((xz)/z))(xz/z)z = (y/((xz)/z))xz

≤ (y/x)xz = (y ∧ x)z



Hoops and GBL-algebras

Commutative generalized hoops are called hoops

In this case x/y = y\x usually written as y → x

If we expand the signature of generalized hoops with ∨

and add lattice identities then we get integral GBL-algebras

Add bottom 0, commutativity, and (x → y) ∨ (y → x) = 1

get Hajek’s Basic Logic algebras

Includes BA, Heyting algebras, MV-algebras, GA, PA

Open Problem: Is the equational theory of integral
GBL-algebras decidable?



Finite generalized hoops

Finite GH are reducts of integral GBL-algebras

[J. & Montagna 06] Finite GBL-algebras are commutative

Hence finite GH are commutative

[J. & Montagna 09] Finite GBL-algebras are poset products

of Wajsberg chains Wn = ({0, an−1, . . . , a3, a2, a, 1}, ·, 1,→)

A poset product is a subalgebra of a direct product over a
partially ordered index set



Poset products
For bounded GH or GBL-algebras Ci indexed by a poset P

∏
P

Ci = {f ∈
∏
i∈P

Ci : ∀i > j ∈ P (f (i) 6= 0 =⇒ f (j) = 1)}

The operations ∧,∨, · are defined pointwise and the bounds
are the constant functions 0,1. The residuals are given by

(f \g)(i) =

{
f (i)\g(i) if f (j) ≤ g(j) for all j < i
0 otherwise

(g/f )(i) =

{
g(i)/f (i) if f (j) ≤ g(j) for all j < i
0 otherwise.



If the poset is linear we get an ordinal sum of the factors

If the poset is an antichain, we get the direct product

If the factors are Boolean algebras, get a Heyting algebra

Can build all finite GH and GBL-algebras: pick a finite
poset P

Pick a positive integer ni for each i ∈ P

Get all finite GH and GBL-algebras uniquely up to
isomorphism

The algebra is subdirectly irreducible iff poset has a top

Generalized hoops are congruence distributive [Botur,
Dvurečenskij, Kowalski 2012]

Can construct lattice of finitely generated subvarieties



Wm is a subalgebra of Wn iff m|n

Therefore the varieties V (Wn), ordered by inclusion, form the
divisibility lattice D

The lattice of all finitely generated subvarieties of Wasjberg
hoops is isomorphic to the downset lattice of D [Komori 81]

Theorem. The poset of finitely generated join
irreducible BL-varieties is isomorphic to D∗ =

⋃∞
n=0Dn

with the order on D∗ extending the pointwise divisibility order
on each component as follows: The order relation
(a1, . . . , am) ≤ (b1, . . . , bn) is a covering relation if and only
if either

I m = n and (b1, . . . , bn) = (a1, . . . , ai−1, pai , ai+1, . . . , an)
for some prime p and a unique i ≤ n, or

I m + 1 = n and (b1, . . . , bn) = (a1, . . . , ai−1, 1, ai , . . . , am)
for some i ∈ {2, . . . , n}



B0
B1

B11

B111

B1111

···

D

D2

D3

D4

···

D = the divisibility lattice on Z+



SAT-solvers
SAT stands for satisfiability of Boolean formulas

Given a Boolean formula ϕ with propositional variables
p1, . . . , pn

decide if there is an assignment h : {p1, . . . , pn} → {T ,F}
such that

h extended homomorphically to all formulas makes h(ϕ) = T

SAT was the first problem proved to be NP-complete

i.e., there is a nondeterministic Turing machine that decides
SAT in polynomial time and every other problem that can be
decided in nondeterministic polynomial time has a polynomial
time reduction to a SAT problem



SMT-solvers

SMT stands for satisfiability modulo theories

Combines SAT-solving with other decision procedures for
fragments of first-order logic and arithmetic

SMT-solvers were developed in computer science for static
analysis of programs

Input is a (limited) choice of a decidable theory and a list of
Boolean combinations of atomic formulas in the signature of
this theory



Quantifier-free decidable theories

QF_LRA quantifier free linear real number arithmetic
with +,−, <,=

e.g. not(0 > x + y or x + y > 5) and (x + x − y − y = 1)

QF_RA is like QF_LRA but also allows multiplication, division

SMT-solvers decide if there exists an assignment of real
numbers to the variables in the list of formulas such that all
the formulas are true in R; return assignment if it exists



How SMT-solvers work

Basic idea: replace atomic formulas by Boolean variables, call
a SAT-solver

if the Boolean formulas are not satisfiable, return F

else use each possible Boolean assignment to generate a list of
linear atomic formulas and call a Linear Programming
package

if an assignment is found, return it, but if none of the Boolean
assignments work, return F



SMT-solver input for abelian `-groups

Easy, the variety of abelian `-groups is generated by
(R,min,max,+,−, 0)

SMT_LIB2 is a standard LISP-like language for SMT-solver
input

;Testing abelian l-group equations in SMT
(set-logic QF_LRA)
(define-fun wedge ((x Real) (y Real)) Real (ite (> x y) y x))
(define-fun vee ((x Real) (y Real)) Real (ite (> x y) x y))
(declare-const x Real)
(declare-const y Real)
(assert (> (vee (+ x x) (+ y y)) (+ (vee x y) (vee x y))))
; test if (x + x) ∨ (y + y) ≤ (x ∨ y) + (x ∨ y) is an identity
(check-sat)



SMT-solver input for infinitely-valued logics

The idea of using SMT-solvers for logics based on intervals of
the real numbers is from the following paper:

C. Ansótegui, M. Bofill, F. Manyà and M. Villaret, Building
automated theorem provers for infinitely-valued logics
with satisfiability modulo theory solvers, in Proceedings,
IEEE 42nd International Symposium on Multiple-Valued Logic.
ISMVL 2012, 25–30.

They give examples of SMT-LIB2 code for Lukasiewicz logic
and product logic



SMT-solver input for MV-algbras
The variety of MV-algebras is HSP(([0, 1],∧,∨, ·, 1, 0,→))

;Testing MV-algebra equations in SMT
(set-logic QF_LRA)
(define-fun wedge ((x Real) (y Real)) Real (ite (> x y) y x))
(define-fun vee ((x Real) (y Real)) Real (ite (> x y) x y))
(define-fun oplus ((x Real) (y Real)) Real (wedge (+ x y) 1))
(define-fun cdot ((x Real) (y Real)) Real (vee (- (+ x y) 1) 0))
(define-fun neg ((x Real)) Real (- 1 x))
(define-fun to ((x Real) (y Real)) Real (wedge 1 (- (+ 1 y) x)))
(declare-const x Real) (assert (<= 0 x)) (assert (<= x 1))
(declare-const y Real) (assert (<= 0 y)) (assert (<= y 1))
(assert (< (to (vee (cdot x x) (cdot y y)) (cdot (vee x y) (vee
x y))) 1))
; test if (x2 ∨ y 2)→ (x ∨ y)2 < 1 is satisfiable
(check-sat)



Other standard Basic Logic algebras
For Gödel algebras redefine fusion as min(x,y).

(define-fun cdot ((x Real) (y Real)) Real (ite (> x y) y x))

For product algebras use

(define-fun cdot ((x Real) (y Real)) Real (ite (> x y) y x))
(declare-const x Real) (assert (<= x 0));
(declare-const x Real) (assert (<= x 0));

and do a translation to the formula that adds an extra variable
z (for bottom)

replacing variable x by x ∨ z and subterms s · t by s · t ∨ z

Prop 7.4 in Galatos, Tsinakis (2005) Generalized MV-algebras



Checking identities in BL-algebras

To decide propositional basic logic with an SMT-solver
requires the following result of Agliano Montagna 2003 (see
also Aguzzoli and Bova 2010).

Theorem

Let An =
⊕n

i=0[0, 1] be the ordinal sum of n + 1 unit-interval
MV-algebras, and let Vn be the variety generated by all
n-generated BL-algebras. Then Vn = HSP(An), hence an
n-variable BL-identity holds in An if and only if it holds in all
BL-algebras.

By constructing the algebra An of the above result within the
SMT language, one obtains an effective means of checking
n-variable BL-identities.



Checking identities in BL-algebras
The universe for An is taken to be the interval [0, n + 1]
The definition of fusion and implication are

x · y =

{
max(x + y − 1− byc, bxc) if bxc = byc
min(x , y) otherwise

x → y =


n + 1 if x ≤ y
y if byc < bxc
min(1+ y − x + bxc, 1+ byc) otherwise

A straightforward SMT-LIB2 implementation of these
operations uses n + 1 cases, so the formula does become long
even for small values of n

Below we give the implementations for n = 1 and n = 2, which
can be used to check 1-variable and 2-variable BL-identities



Checking identities in BL-algebras
n = 1:
(define-fun cdot ((x Real) (y Real)) Real (ite (and (< x 1) (<
y 1)) (vee (- (+ x y) 1) 0) (ite (and (>= x 1) (>= y 1)) (vee
(- (+ x y) 2) 1) (wedge x y) ) ) )

(define-fun to ((x Real) (y Real)) Real (ite (<= x y) 2 (ite
(and (>= x 1) (< y 1)) y (wedge 1 (- (+ 1 y) x)) ) ) )

n = 2:
(define-fun cdot ((x Real) (y Real)) Real (ite (and (< x 1) (<
y 1)) (vee (- (+ x y) 1) 0) (ite (and (>= x 1) (< x 2) (>= y
1) (< y 2)) (vee (- (+ x y) 2) 1) (ite (and (>= x 2) (>= y
2)) (vee (- (+ x y) 3) 2) (wedge x y)) )))

(define-fun to ((x Real) (y Real)) Real (ite (<= x y) 3 (ite
(and (< x 1) (< y 1)) (+ (- 1 x) y) (ite (and (<= 1 x) (< x
2) (<= 1 y) (< y 2)) (+ (- 2 x) y) (ite (and (<= 2 x) (<= 2
y) ) (+ (- 3 x) y) y)))))



Automating the translation

A Python program is used to parse a LATEX BL-algebra identity

A SMT-LIB2 file is generated using · and → of An

The python program then calls an SMT-solver with the file as
input

The result is analyzed and the truth value is returned

If the identity fails, an assignment in [0, n] can be obtained

Demo



Some References
P. Agliano and F. Montagna, Varieties of BL-algebras I: general properties, Journal of
Pure and Applied Algebra, 181 (2003), 105–129

S. Aguzzoli and S. Bova, The free n-generated BL-algebra, Annals of Pure and
Applied Logic 161 (2010), 1144–1170

C. Ansótegui, M. Bofill, F. Manyà and M. Villaret, Building automated theorem
provers for infinitely-valued logics with satisfiability modulo theory solvers, in
Proceedings, IEEE 42nd International Symposium on Multiple-Valued Logic. ISMVL
2012, 25–30

M. Botur, A. Dvurečenskij and T. Kowalski, On normal-valued basic pseudo hoops,
Soft Computing, 16(4) (2012), 635–644

N. Galatos and C. Tsinakis, Generalized MV-algebras, Journal of Algebra, 283(1)
(2005), 254–291

P. Jipsen and F. Montagna, The Blok-Ferreirim theorem for normal GBL-algebras and
its application, Algebra Universalis, 60 (2009), 381–404

Thank You

BLAST 2013, August 5-9, Chapman University, Orange, CA


