Latest on Varieties of ℓ -Groups, Unital ℓ -Groups, and Related Things

W. Charles Holland University of Colorado

Boulder 2013

History

History

History

1847 Boolean Algebra

History

1847 Boolean Algebra

~1900 Quantum things

History

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

History

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

and MV-Algebra

History

Lattice-Ordered Groups

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

and MV-Algebra

History

Lattice-Ordered Groups

1847 Boolean Algebra

1890 Bettazzi Axioms of Size

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

and MV-Algebra

History

Lattice-Ordered Groups

1847 Boolean Algebra

~1900 Quantum things

1890 Bettazzi Axioms of Size

1901 Hölder Axioms of Quantity

1917 Łukasiewicz Multi-Valued Logic

and MV-Algebra

History

Lattice-Ordered Groups

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

and MV-Algebra

1958 Chang Completeness Theorem

1890 Bettazzi Axioms of Size

1901 Hölder Axioms of Quantity

1907 Hahn Totally Ordered Group

History

Lattice-Ordered Groups

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

and MV-Algebra

1958 Chang Completeness Theorem

1890 Bettazzi Axioms of Size

1901 Hölder Axioms of Quantity

1907 Hahn Totally Ordered Group

History

Lattice-Ordered Groups

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

and MV-Algebra

1958 Chang Completeness Theorem

1890 Bettazzi Axioms of Size

1901 Hölder Axioms of Quantity

1907 Hahn Totally Ordered Group

History

Lattice-Ordered Groups

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

and MV-Algebra

1958 Chang Completeness Theorem

1890 Bettazzi Axioms of Size

1901 Hölder Axioms of Quantity

1907 Hahn Totally Ordered Group

History

Lattice-Ordered Groups

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

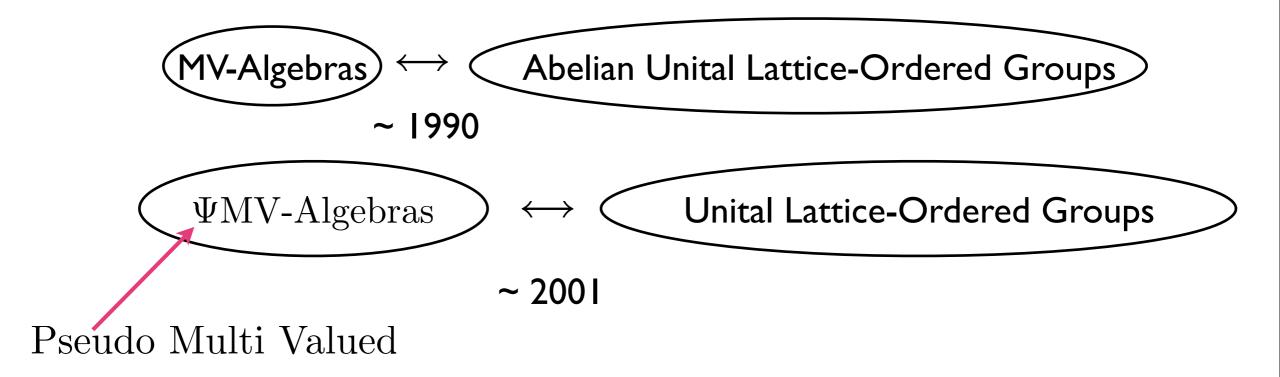
and MV-Algebra

1958 Chang Completeness Theorem

1890 Bettazzi Axioms of Size

1901 Hölder Axioms of Quantity

1907 Hahn Totally Ordered Group



1. Darnel & Holland, More covers of the boolean variety of unital ℓ -groups. (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ -groups which contain no nonabelian o-groups.

1. Darnel & Holland, More covers of the boolean variety of unital ℓ -groups. (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ -groups which contain no nonabelian o-groups.

Unital lattice-ordered group (G, u) (u ℓ -group): ℓ -group GWith a chosen unit u such that $e \leq u \in G$, and $\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n$

1. Darnel & Holland, More covers of the boolean variety of unital ℓ -groups. (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ -groups which contain no nonabelian o-groups.

1.

Unital lattice-ordered group (G, u) (u ℓ -group): ℓ -group GWith a chosen unit u such that $e \leq u \in G$, and $\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n$

Varieties of $u\ell$ -groups

1. Darnel & Holland, More covers of the boolean variety of unital ℓ -groups. (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ -groups which contain no nonabelian o-groups.

1.

Unital lattice-ordered group (G, u) (u ℓ -group): ℓ -group GWith a chosen unit u such that $e \leq u \in G$, and $\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n$

Varieties of $u\ell$ -groups (= defined by a set of equations)

1. Darnel & Holland, More covers of the boolean variety of unital ℓ -groups. (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ -groups which contain no nonabelian o-groups.

1.

Unital lattice-ordered group (G, u) (u ℓ -group): ℓ -group GWith a chosen unit u such that $e \leq u \in G$, and $\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n$

Varieties of $u\ell$ -groups (= defined by a set of equations) The unital ℓ -groups in any variety of ℓ -groups, and much more.

1. Darnel & Holland, More covers of the boolean variety of unital ℓ -groups. (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ -groups which contain no nonabelian o-groups.

1.

Unital lattice-ordered group (G, u) (u ℓ -group): ℓ -group GWith a chosen unit u such that $e \leq u \in G$, and $\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n$

Varieties of $u\ell$ -groups (= defined by a set of equations) The unital ℓ -groups in any variety of ℓ -groups, and much more.

Examples: $\forall x$

1. Darnel & Holland, More covers of the boolean variety of unital ℓ -groups. (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ -groups which contain no nonabelian o-groups.

1. Unital lattice-ordered group (G, u) (u ℓ -group): ℓ -group GWith a chosen unit u such that $e \leq u \in G$, and $\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n$

Varieties of $u\ell$ -groups (= defined by a set of equations) The unital ℓ -groups in any variety of ℓ -groups, and much more.

Examples: $\forall x$ $\mathcal{C}: xu = ux$

1. Darnel & Holland, More covers of the boolean variety of unital ℓ -groups. (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ -groups which contain no nonabelian o-groups.

) Unital lattice-ordered group (G, u) (u ℓ -group): ℓ -group GWith a chosen unit u such that $e \leq u \in G$, and $\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n$

Varieties of $u\ell$ -groups (= defined by a set of equations) The unital ℓ -groups in any variety of ℓ -groups, and much more.

Examples: $\forall x$ $\mathcal{C}: xu = ux$ $\mathcal{C}_n: xu^n = u^n x$

1. Darnel & Holland, More covers of the boolean variety of unital ℓ -groups. (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ -groups which contain no nonabelian o-groups.

) Unital lattice-ordered group (G, u) (u ℓ -group): ℓ -group GWith a chosen unit u such that $e \leq u \in G$, and $\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n$

Varieties of $u\ell$ -groups (= defined by a set of equations) The unital ℓ -groups in any variety of ℓ -groups, and much more.

Examples: $\forall x$ $\mathcal{C} : xu = ux$ $\mathcal{C}_n : xu^n = u^n x$ $\mathcal{C}_m \subseteq \mathcal{C}_n \Leftrightarrow m|n$

1. Darnel & Holland, More covers of the boolean variety of unital ℓ -groups. (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ -groups which contain no nonabelian o-groups.

) Unital lattice-ordered group (G, u) (u ℓ -group): ℓ -group GWith a chosen unit u such that $e \leq u \in G$, and $\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n$

Varieties of $u\ell$ -groups (= defined by a set of equations) The unital ℓ -groups in any variety of ℓ -groups, and much more.

Examples: $\forall x$ $\mathcal{C}: xu = ux$ $\mathcal{C}_n: xu^n = u^n x$ $\mathcal{C}_m \subseteq \mathcal{C}_n \Leftrightarrow m | n$ $\bigvee_{n \in \mathbb{N}} \mathcal{C}_n = \text{all } u\ell\text{-groups}$

1. Darnel & Holland, More covers of the boolean variety of unital ℓ -groups. (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ -groups which contain no nonabelian o-groups.

) Unital lattice-ordered group (G, u) (u ℓ -group): ℓ -group GWith a chosen unit u such that $e \leq u \in G$, and $\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n$

Varieties of $u\ell$ -groups (= defined by a set of equations) The unital ℓ -groups in any variety of ℓ -groups, and much more.

Examples: $\forall x$ $\mathcal{C} : xu = ux$ $\mathcal{C}_n : xu^n = u^n x$ $\mathcal{C}_m \subseteq \mathcal{C}_n \Leftrightarrow m | n$ $\bigvee_{n \in \mathbb{N}} \mathcal{C}_n = \text{all } u\ell\text{-groups}$ Boolean $\mathcal{B} = \operatorname{Var}(\mathbb{Z}, 1) = \text{smallest proper variety.}$

1. Darnel & Holland, More covers of the boolean variety of unital ℓ -groups. (accepted by Algebra Universalis)

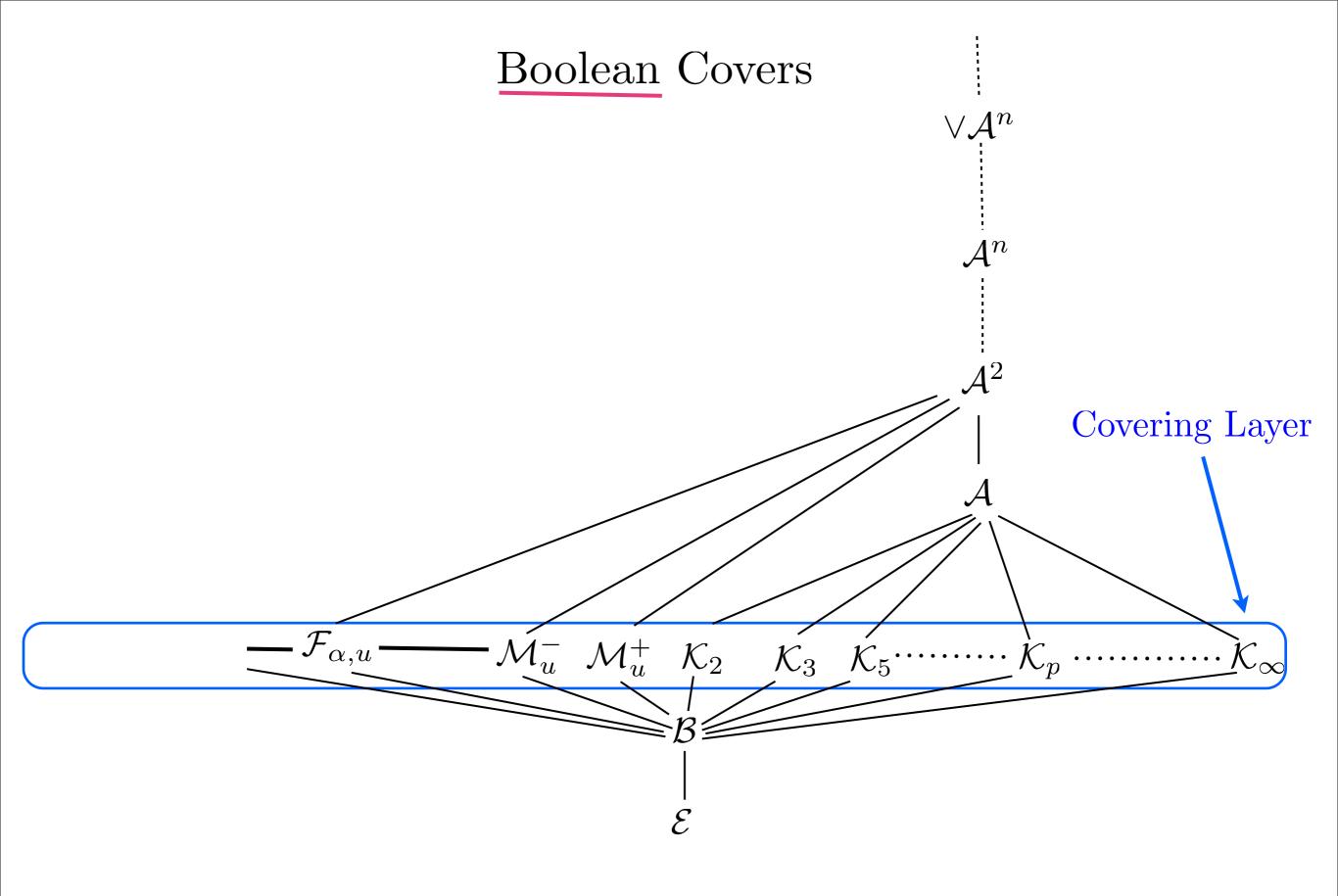
2. Darnel & Holland, Minimal non-metabelian varieties of ℓ -groups which contain no nonabelian o-groups.

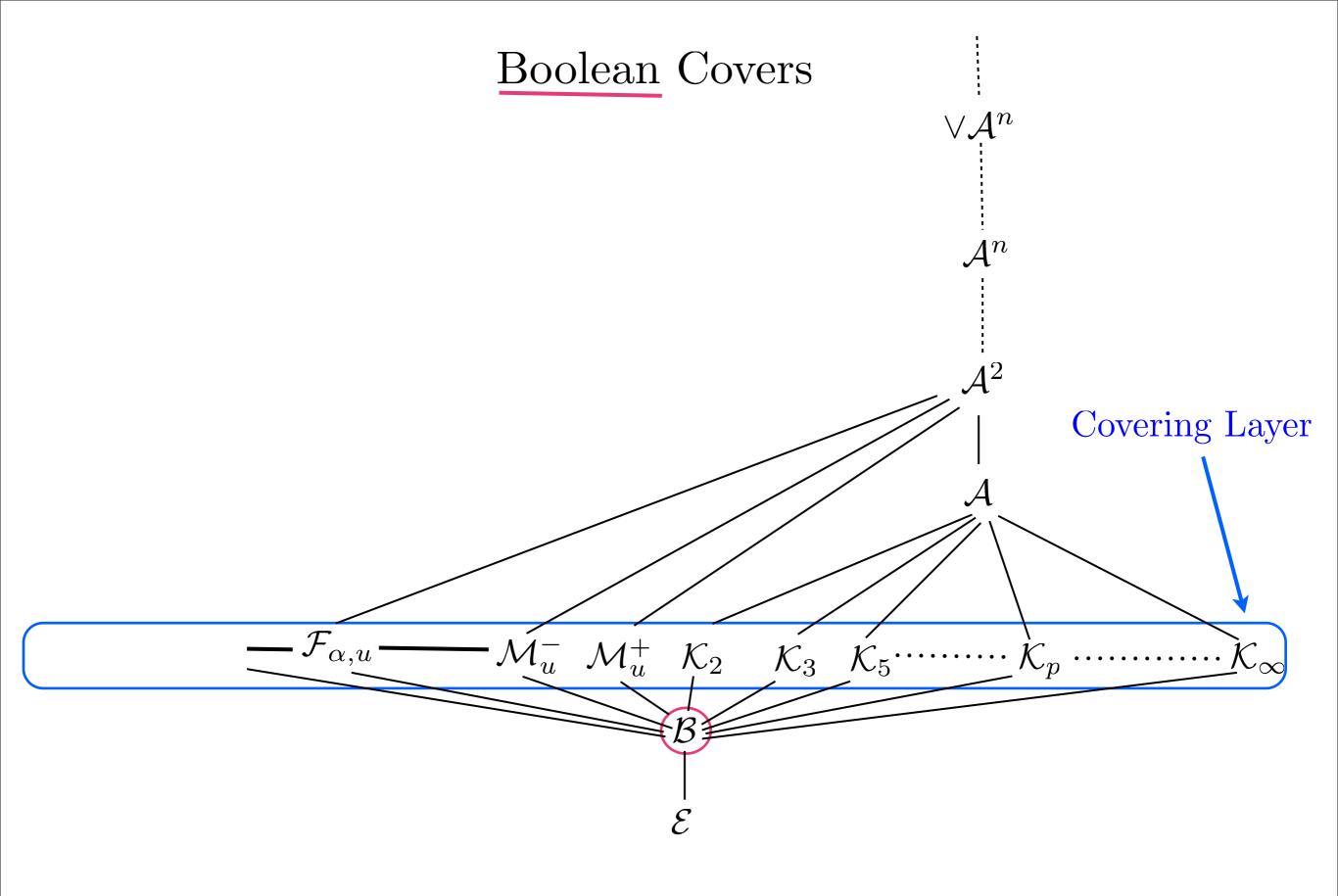
1.

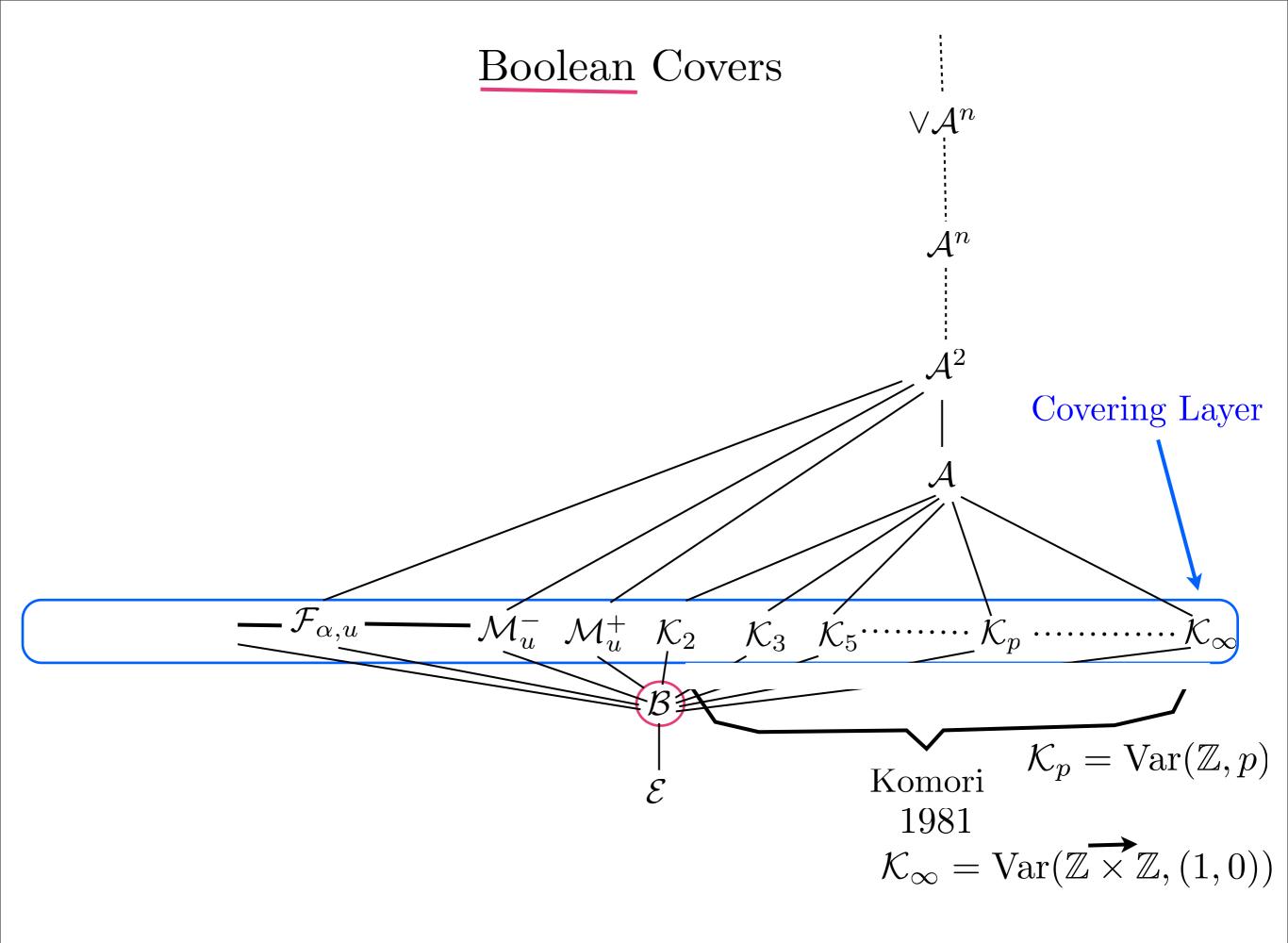
Unital lattice-ordered group (G, u) (u ℓ -group): ℓ -group GWith a chosen unit u such that $e \leq u \in G$, and $\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n$

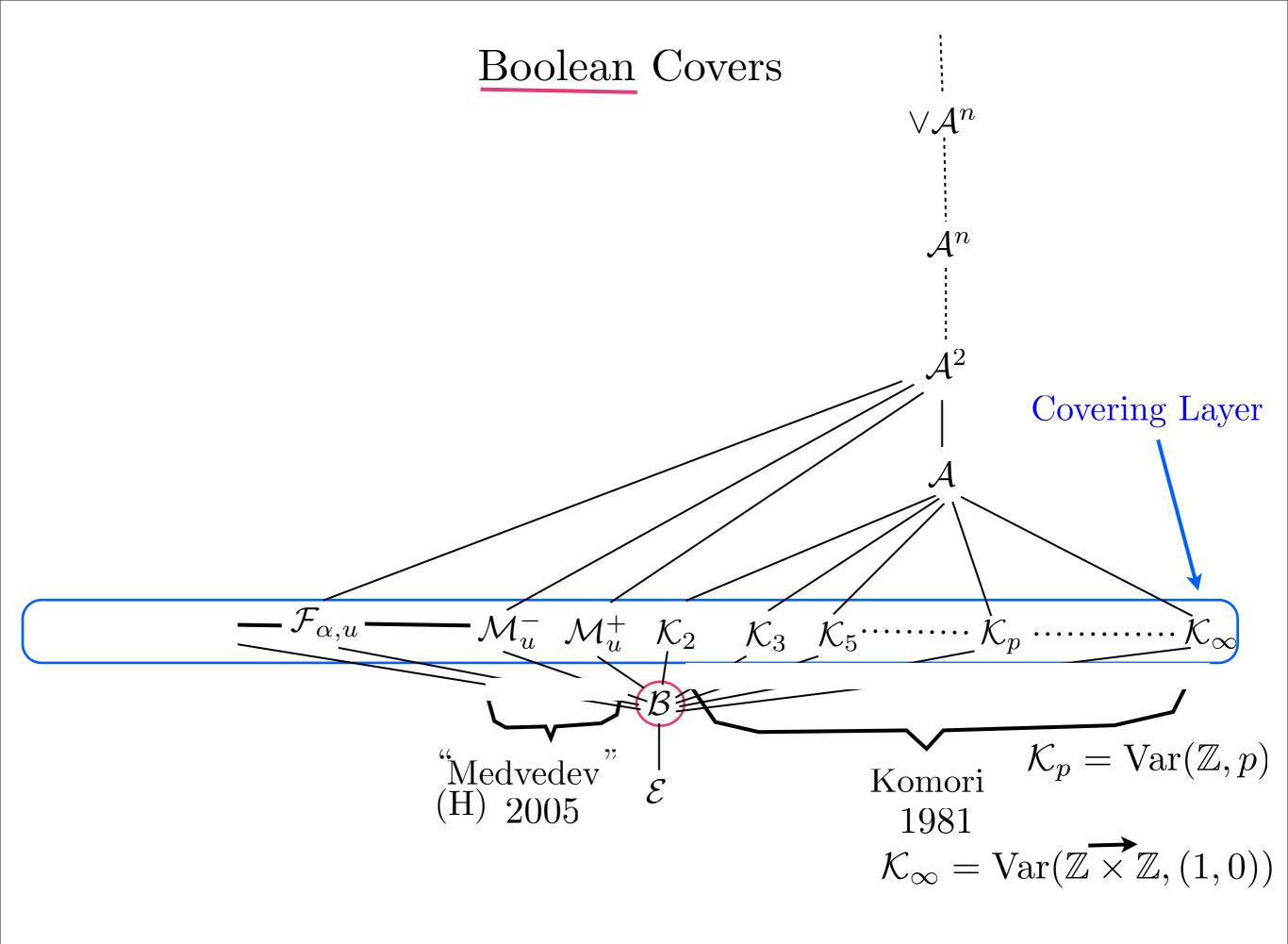
Varieties of $u\ell$ -groups (= defined by a set of equations) The unital ℓ -groups in any variety of ℓ -groups, and much more.

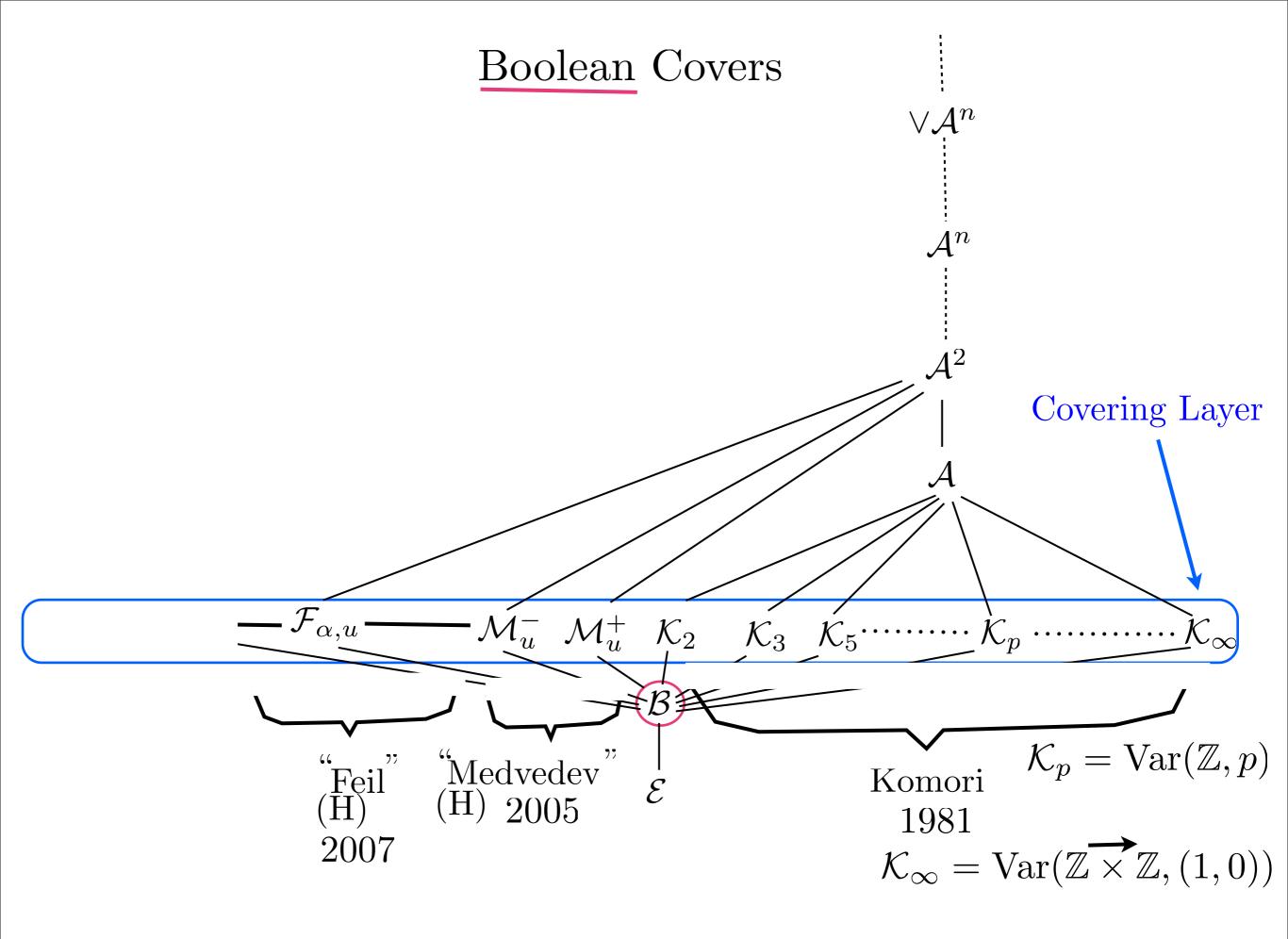
Examples: $\forall x$ $\exists x \qquad \mathcal{C}: xu = ux$ $\mathcal{C}_n: xu^n = u^n x$ $\mathcal{C}_m \subseteq \mathcal{C}_n \Leftrightarrow m | n$ $\bigvee_{n \in \mathbb{N}} \mathcal{C}_n = \text{all } u\ell\text{-groups}$ Boolean $\mathcal{B} = \operatorname{Var}(\mathbb{Z}, 1) = \text{smallest proper variety.}$

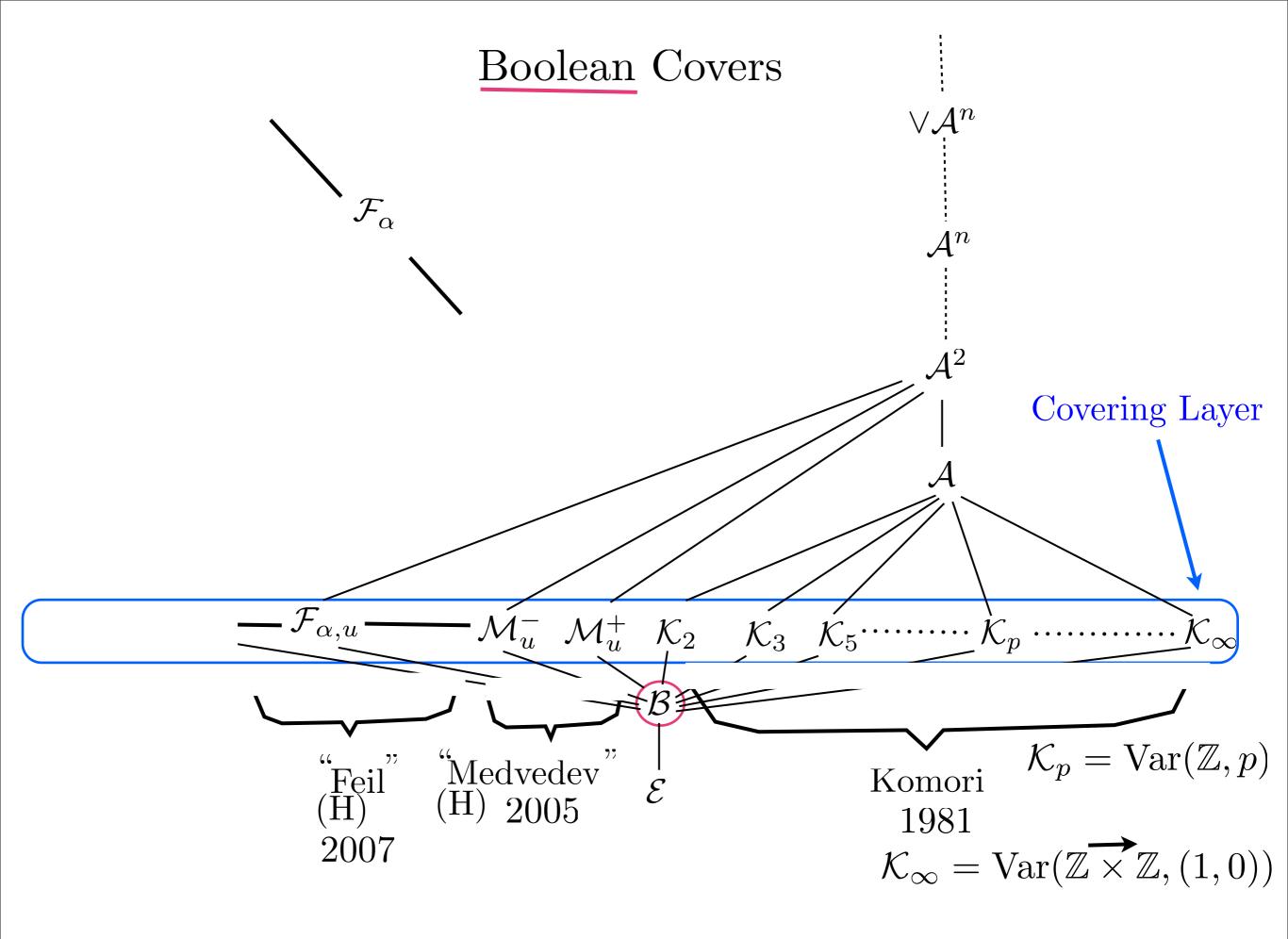


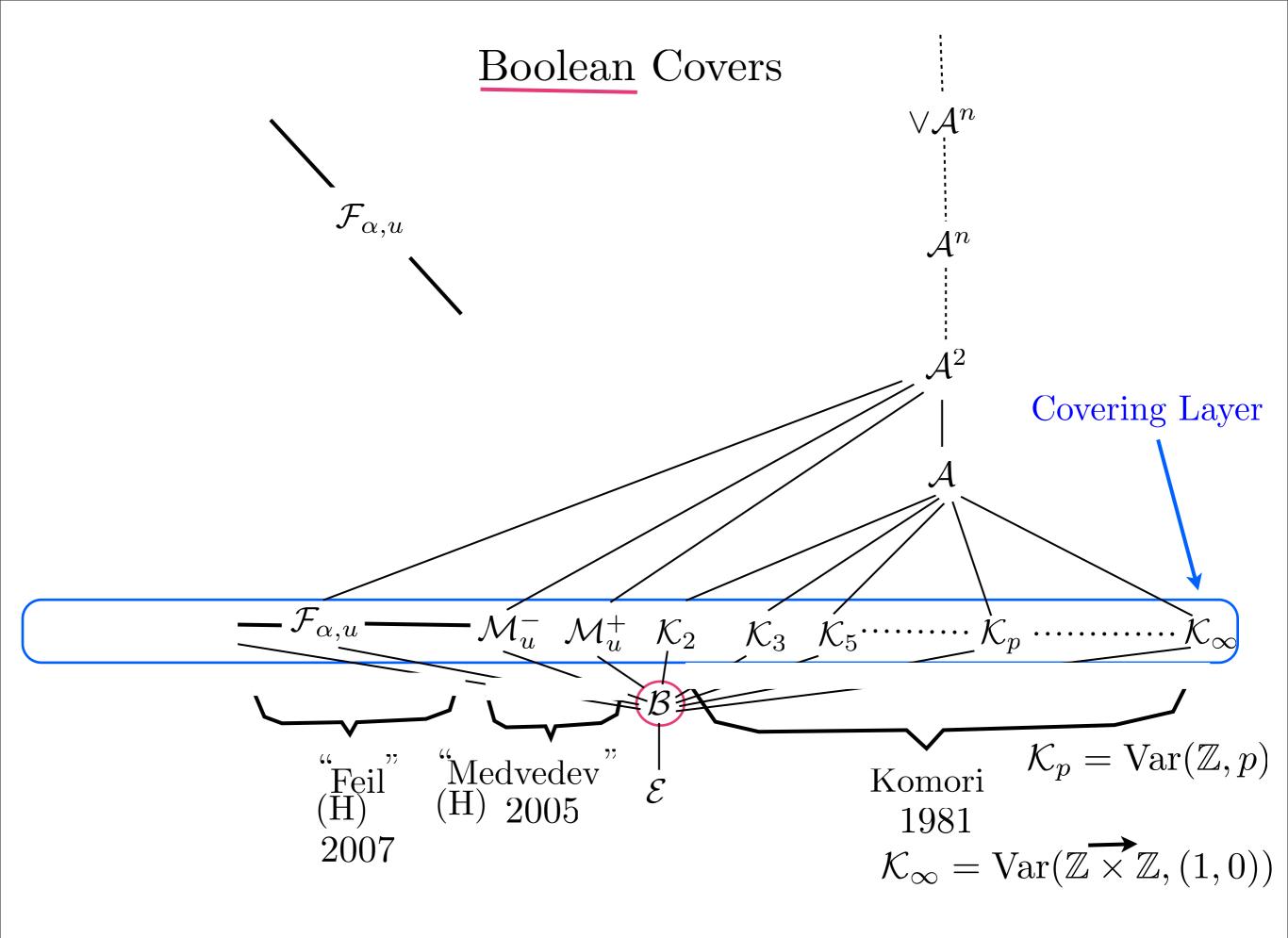


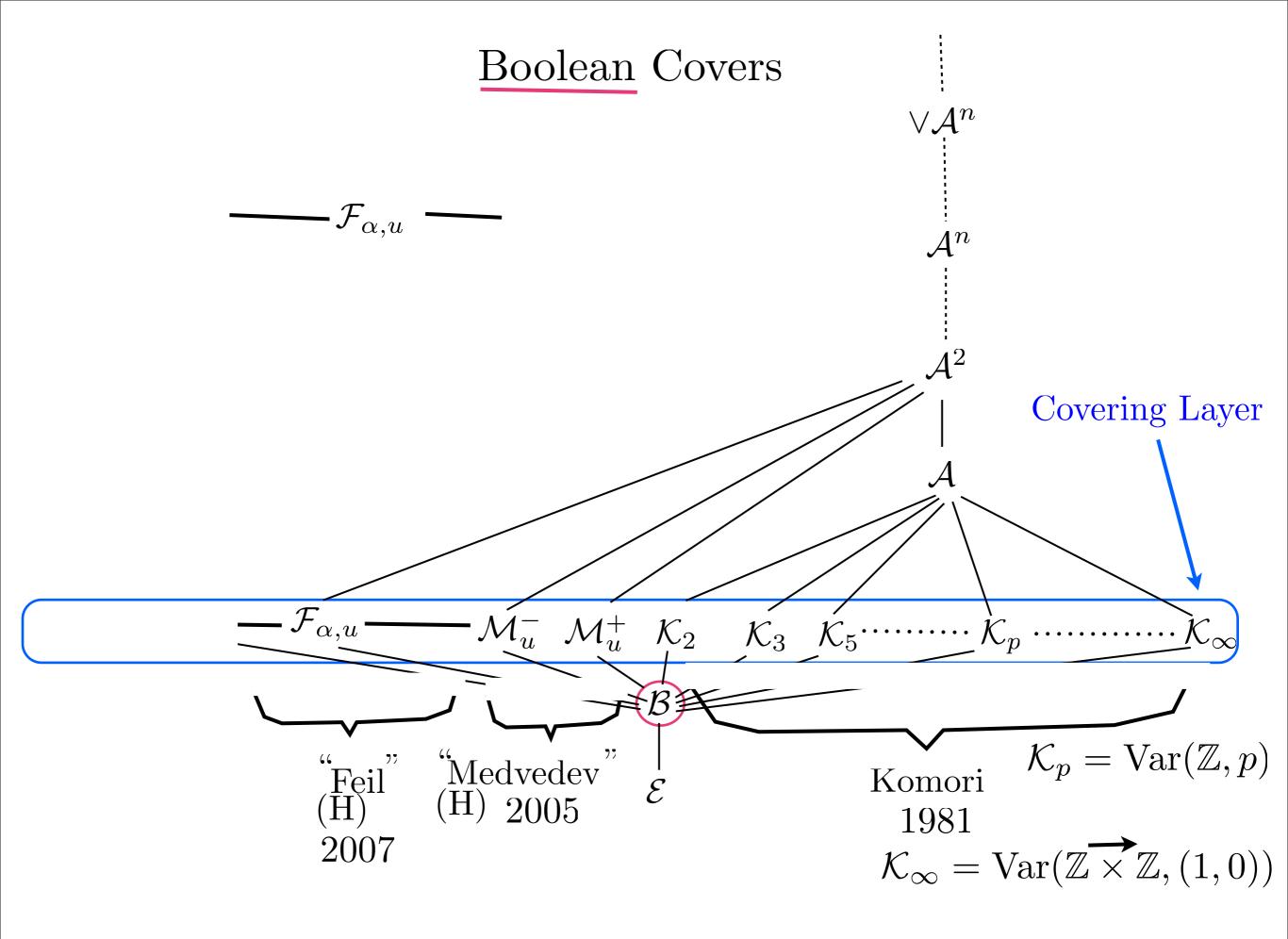


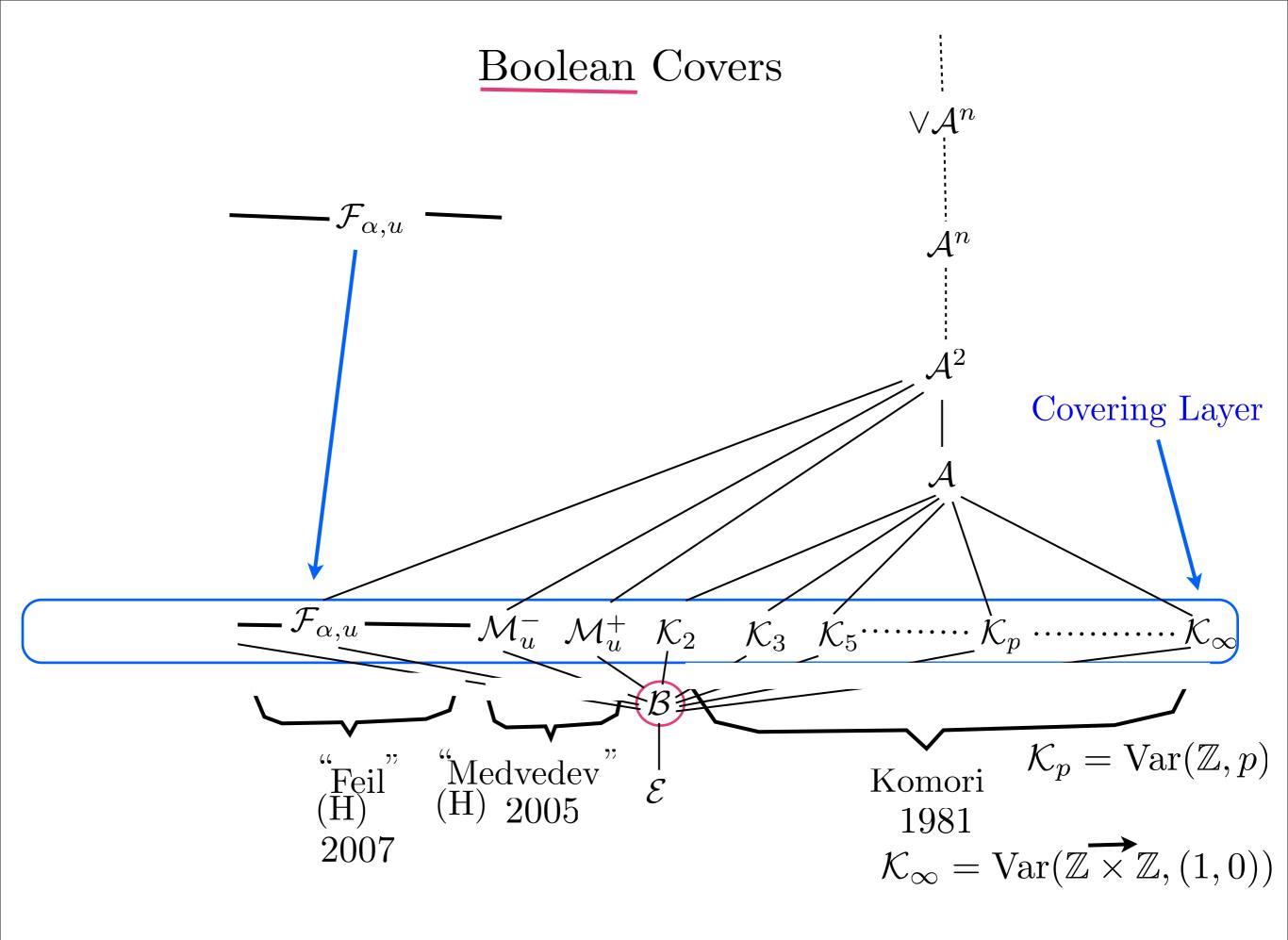


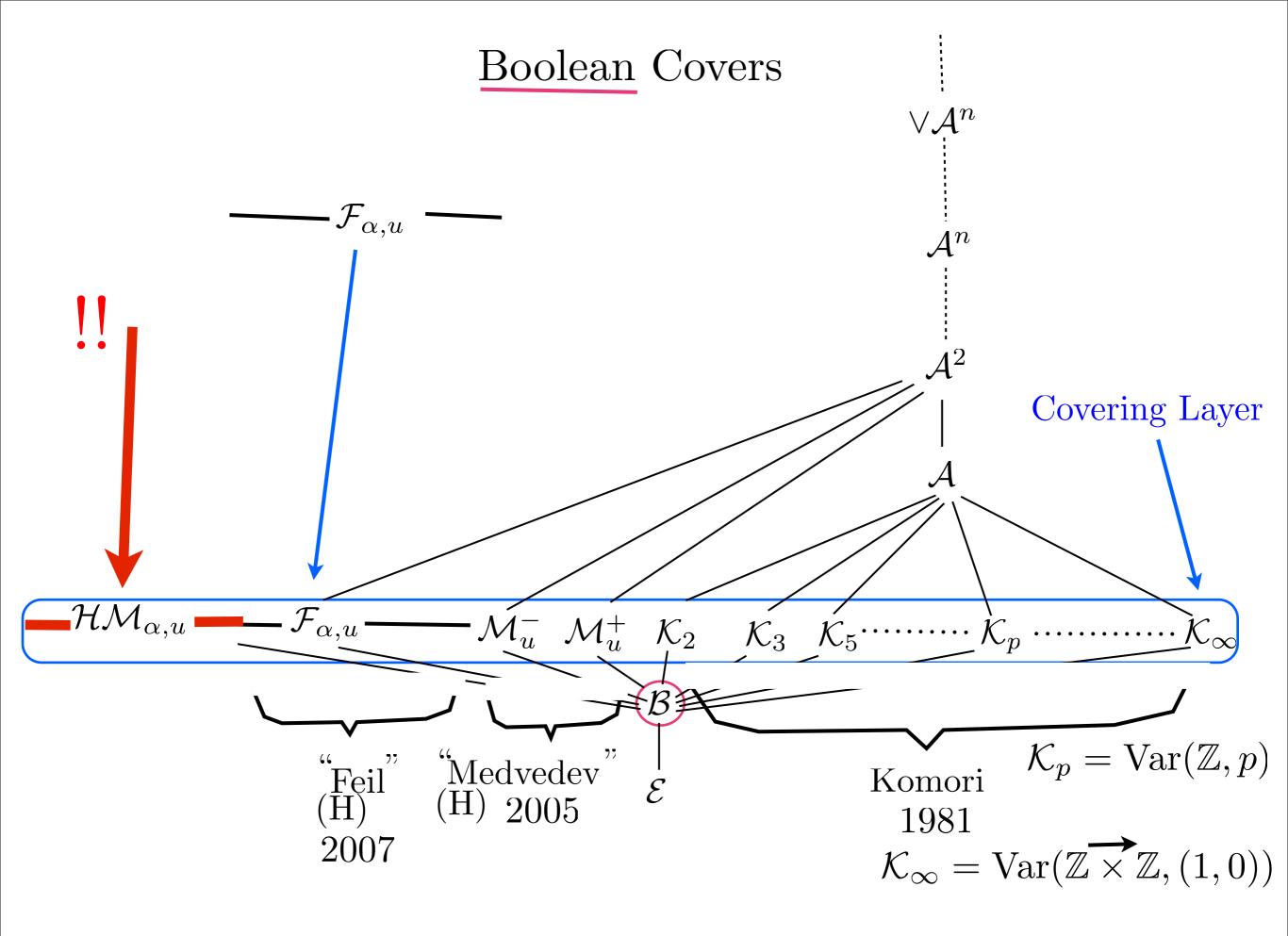


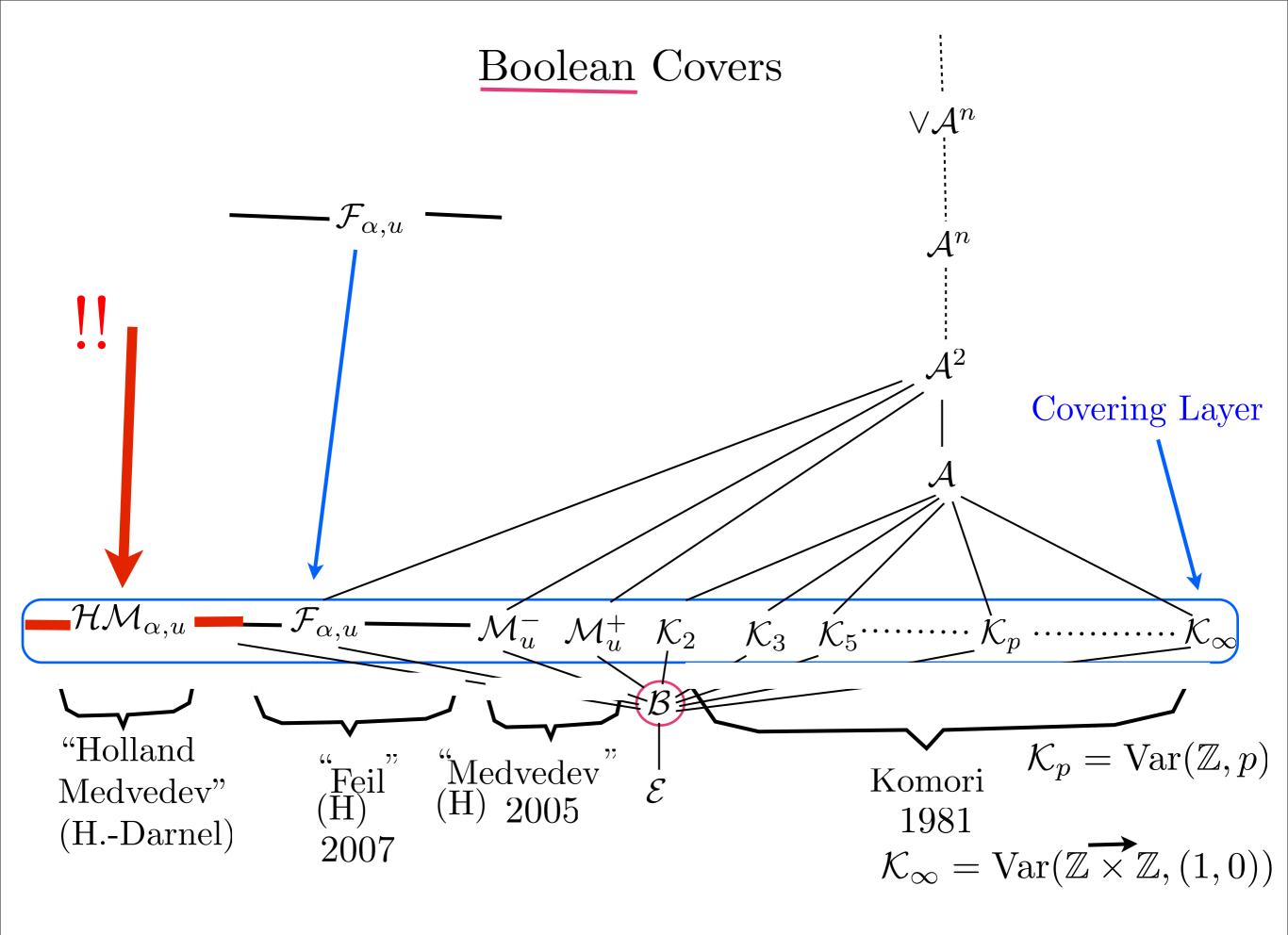












D-H covers of \mathcal{B} :

 $x \ll y \Leftrightarrow \forall n \in \mathbb{Z}, x^n < y$

D-H covers of \mathcal{B} :

 $x \ll y \Leftrightarrow \forall n \in \mathbb{Z}, x^n < y$

Let $s = (s_1, s_2, \dots, s_i, \dots), s_i \in \{-1, +1\}.$

D-H covers of \mathcal{B} :

 $x \ll y \Leftrightarrow \forall n \in \mathbb{Z}, x^n < y$

Let
$$s = (s_1, s_2, \dots, s_i, \dots), s_i \in \{-1, +1\}.$$

 (F_s, u) is a totally ordered group with unit uand $e < b \ll u$. If $s_1 = +1$ then $b \ll b^u$, and if $s_1 = -1$ then $b^u \ll b$. D-H covers of \mathcal{B} : $x \ll x$

 $x \ll y \Leftrightarrow \forall n \in \mathbb{Z}, x^n < y$

Let $s = (s_1, s_2, \dots, s_i, \dots), s_i \in \{-1, +1\}.$

 (F_s, u) is a totally ordered group with unit uand $e < b \ll u$. If $s_1 = +1$ then $b \ll b^u$, and if $s_1 = -1$ then $b^u \ll b$.

Similarly, if $s_1 = -1$ and $s_2 = +1$ then $b^u \ll b$ and $b^u \ll (b^u)^b$, etc.

Let
$$s = (s_1, s_2, \dots, s_i, \dots), s_i \in \{-1, +1\}.$$

 (F_s, u) is a totally ordered group with unit uand $e < b \ll u$. If $s_1 = +1$ then $b \ll b^u$, and if $s_1 = -1$ then $b^u \ll b$.

Similarly, if $s_1 = -1$ and $s_2 = +1$ then $b^u \ll b$ and $b^u \ll (b^u)^b$, etc.

Theorem.

Let \mathcal{B}_s be the variety generated by (F_s, u) . Then \mathcal{B}_s is a cover of the boolean variety \mathcal{B} , and if $s \neq t$ then $\mathcal{B}_s \neq \mathcal{B}_t$.

Let
$$s = (s_1, s_2, \dots, s_i, \dots), s_i \in \{-1, +1\}.$$

 (F_s, u) is a totally ordered group with unit uand $e < b \ll u$. If $s_1 = +1$ then $b \ll b^u$, and if $s_1 = -1$ then $b^u \ll b$.

Similarly, if $s_1 = -1$ and $s_2 = +1$ then $b^u \ll b$ and $b^u \ll (b^u)^b$, etc.

Theorem.

Let \mathcal{B}_s be the variety generated by (F_s, u) . Then \mathcal{B}_s is a cover of the boolean variety \mathcal{B} , and if $s \neq t$ then $\mathcal{B}_s \neq \mathcal{B}_t$.

Therefore, there are uncountably many of these.

Let
$$s = (s_1, s_2, \dots, s_i, \dots), s_i \in \{-1, +1\}.$$

 (F_s, u) is a totally ordered group with unit uand $e < b \ll u$. If $s_1 = +1$ then $b \ll b^u$, and if $s_1 = -1$ then $b^u \ll b$.

Similarly, if $s_1 = -1$ and $s_2 = +1$ then $b^u \ll b$ and $b^u \ll (b^u)^b$, etc.

Theorem.

Let \mathcal{B}_s be the variety generated by (F_s, u) . Then \mathcal{B}_s is a cover of the boolean variety \mathcal{B} , and if $s \neq t$ then $\mathcal{B}_s \neq \mathcal{B}_t$.

Therefore, there are uncountably many of these. (Darnel-Holland)

Let
$$s = (s_1, s_2, \dots, s_i, \dots), s_i \in \{-1, +1\}.$$

 (F_s, u) is a totally ordered group with unit uand $e < b \ll u$. If $s_1 = +1$ then $b \ll b^u$, and if $s_1 = -1$ then $b^u \ll b$.

Similarly, if $s_1 = -1$ and $s_2 = +1$ then $b^u \ll b$ and $b^u \ll (b^u)^b$, etc.

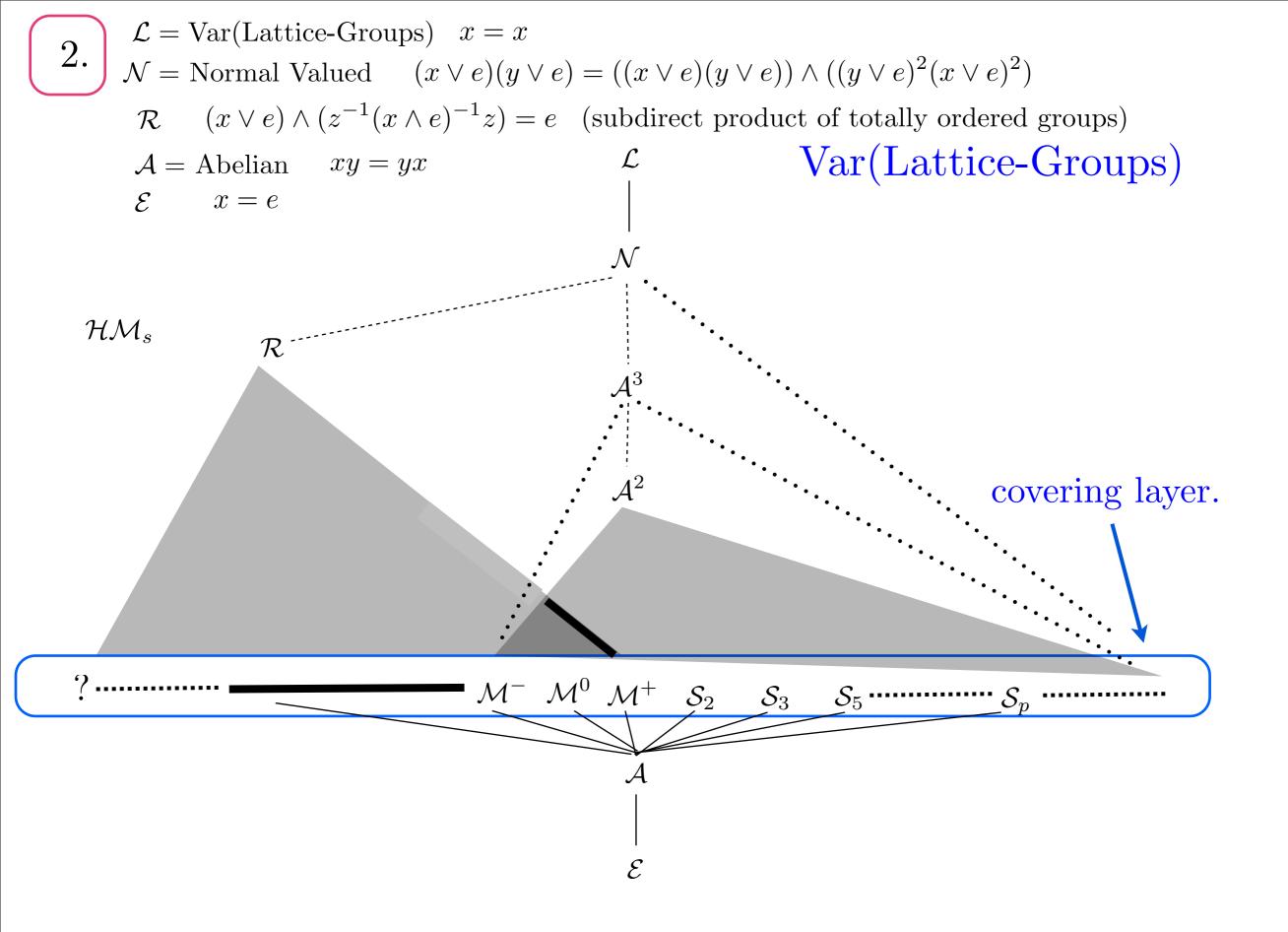
Theorem.

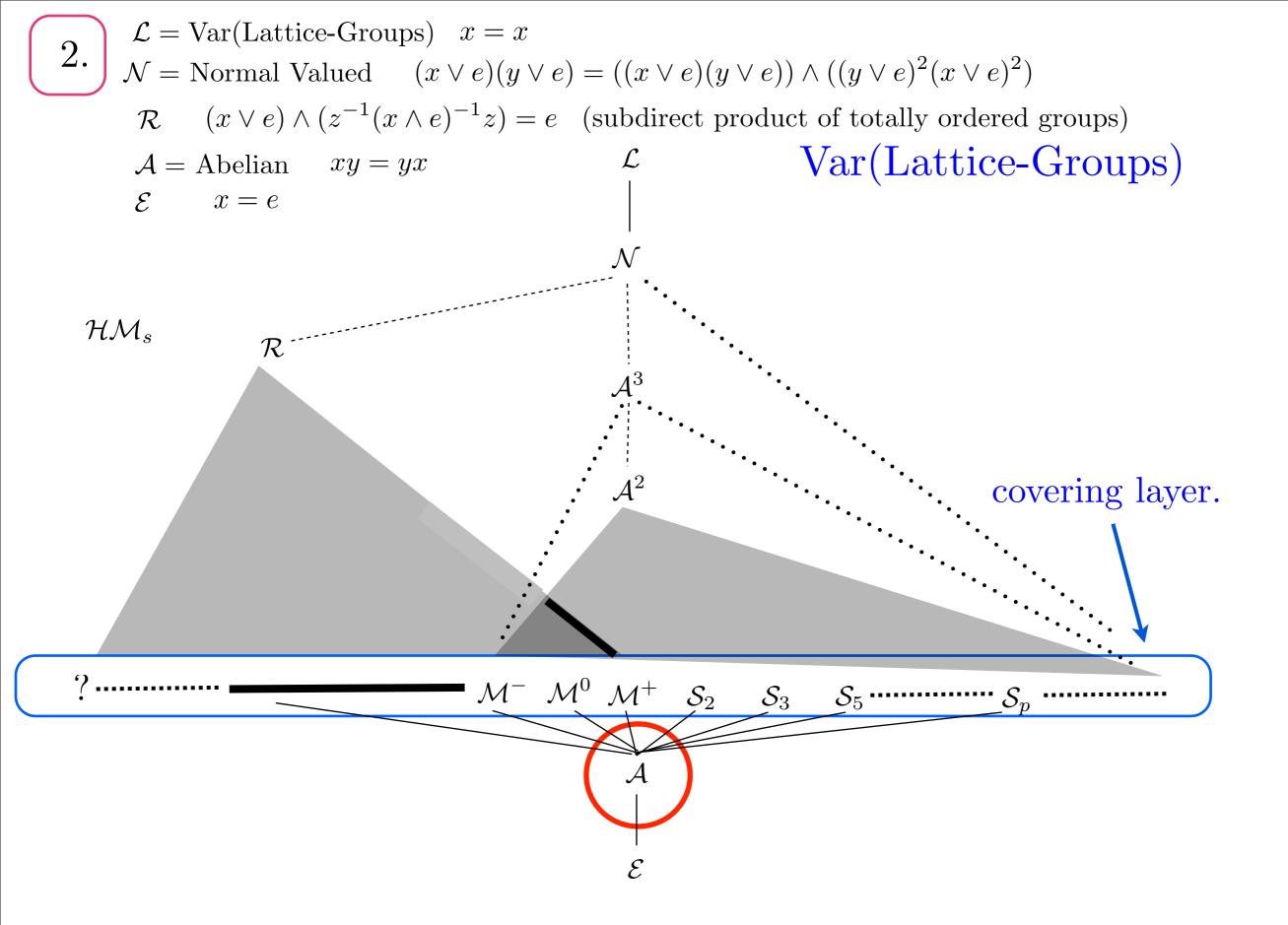
Let \mathcal{B}_s be the variety generated by (F_s, u) . Then \mathcal{B}_s is a cover of the boolean variety \mathcal{B} , and if $s \neq t$ then $\mathcal{B}_s \neq \mathcal{B}_t$.

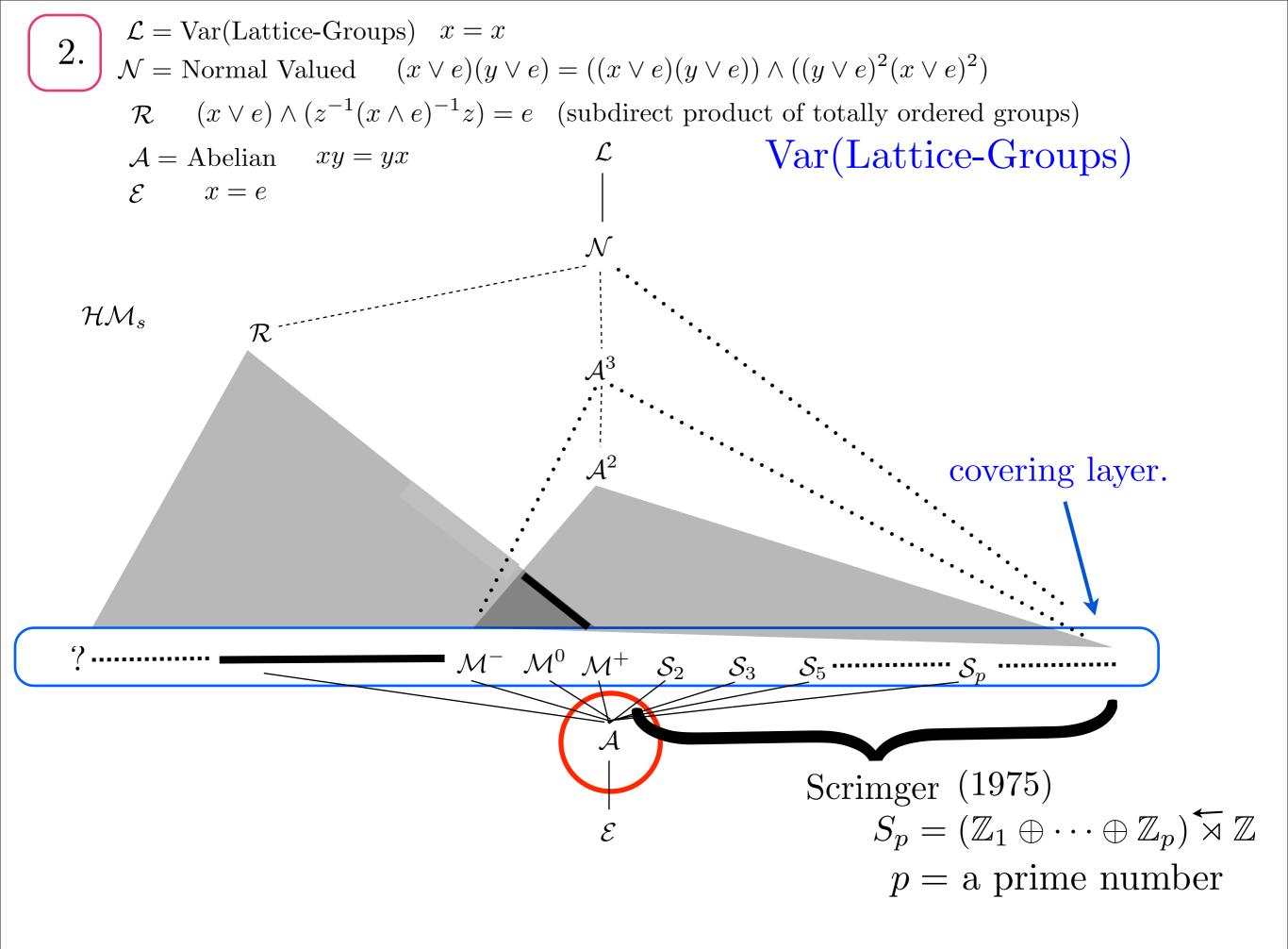
Therefore, there are uncountably many of these. (Darnel-Holland)

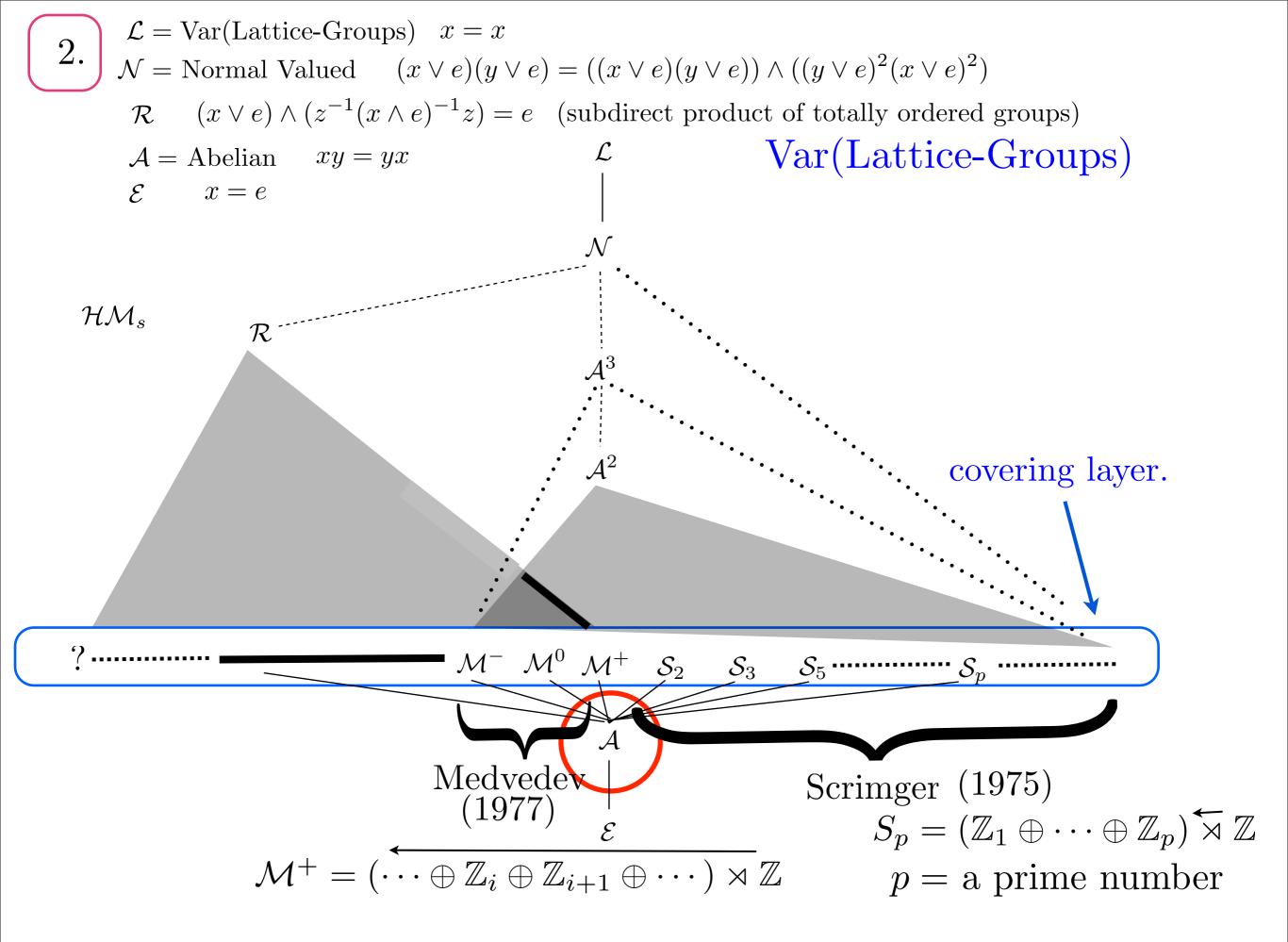
Are there more covers of \mathcal{B} ?

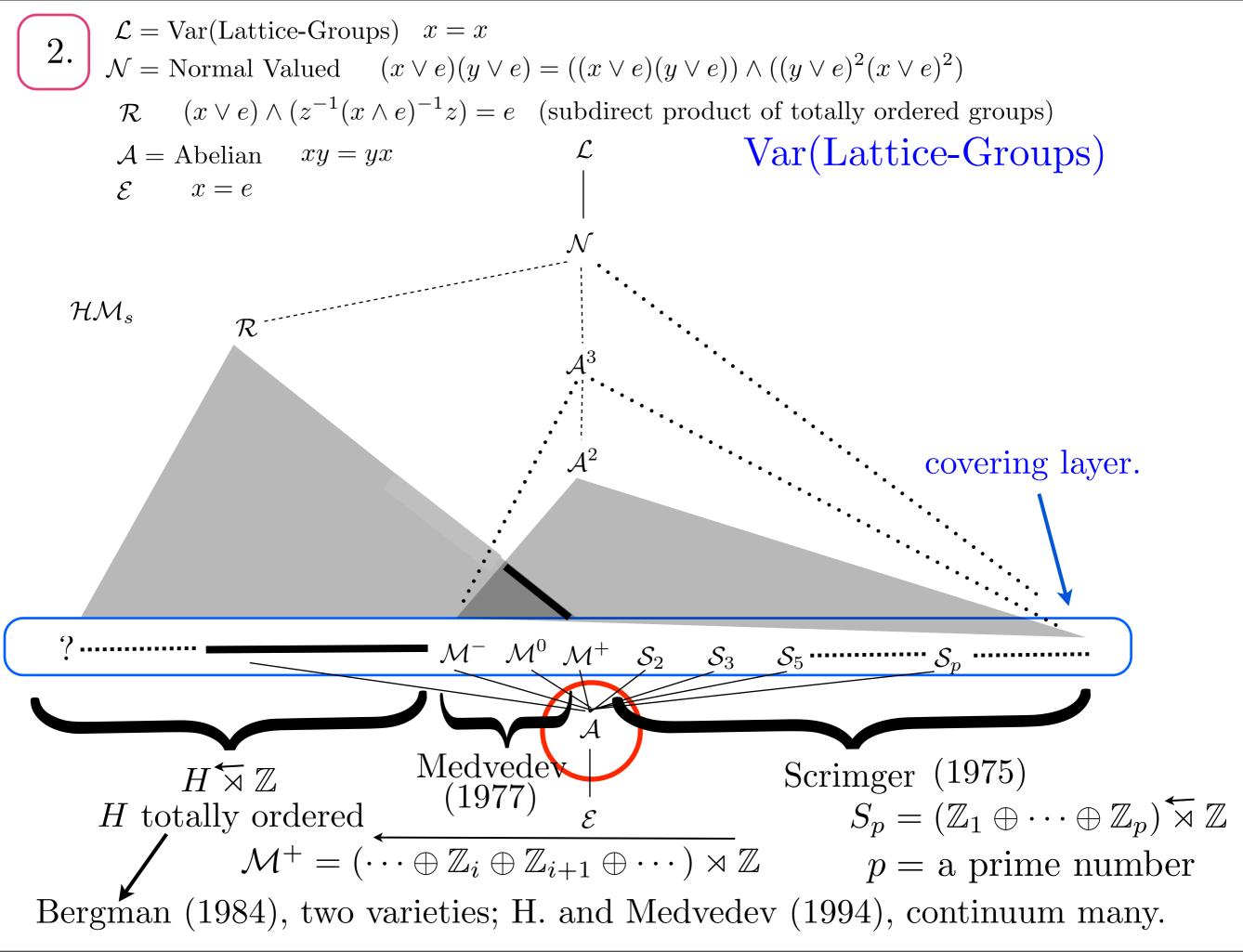
* * * * * * * * * * * * * *

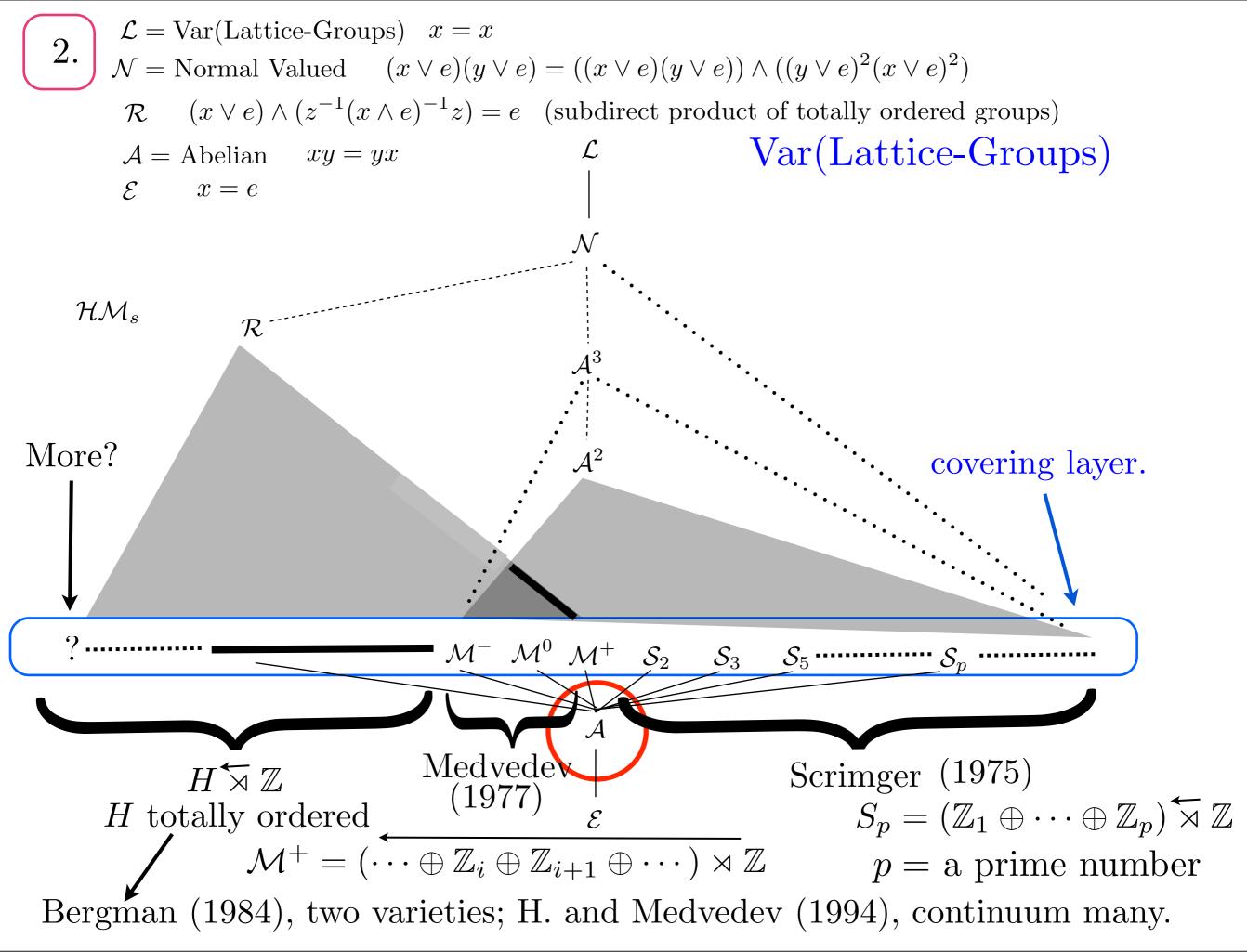


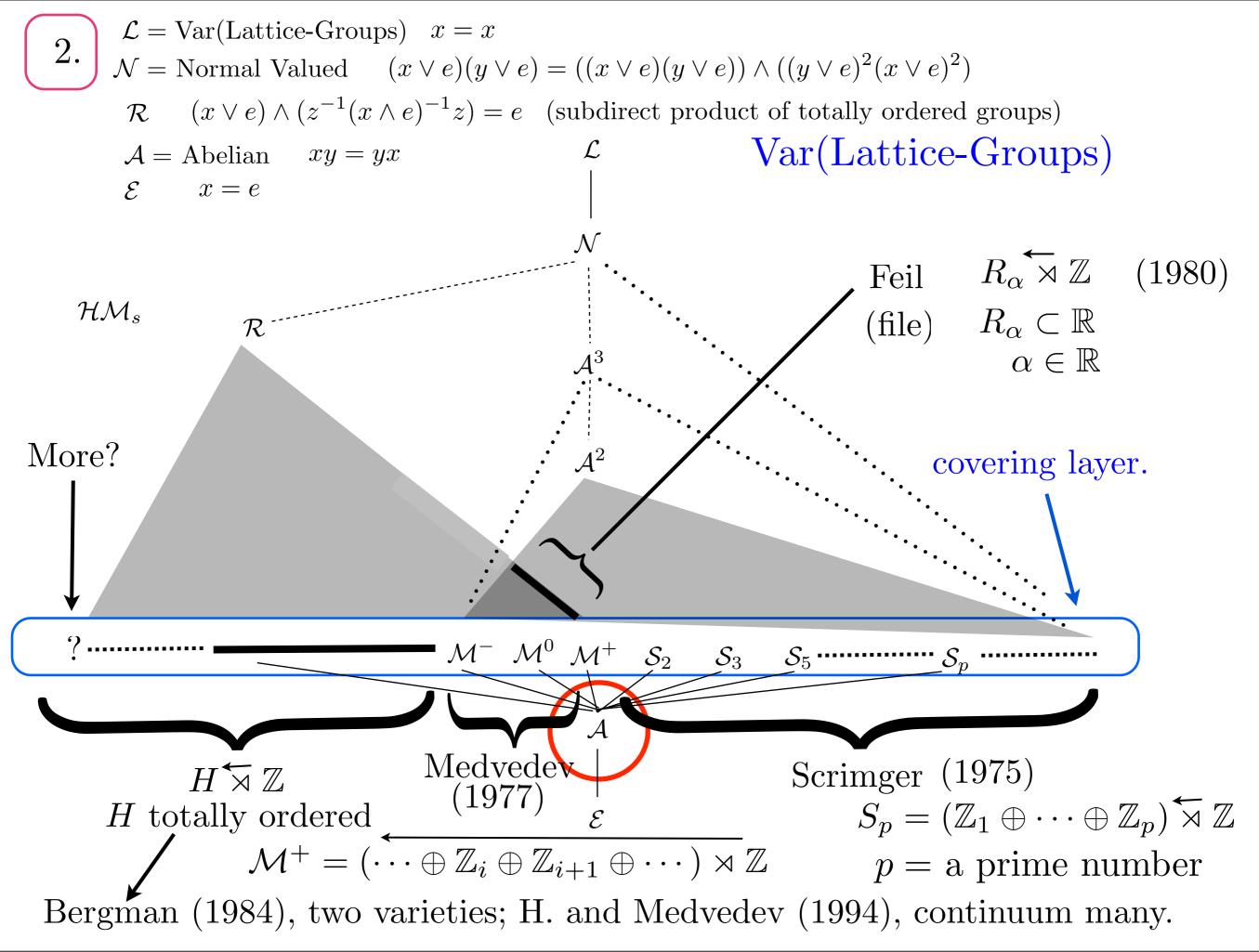


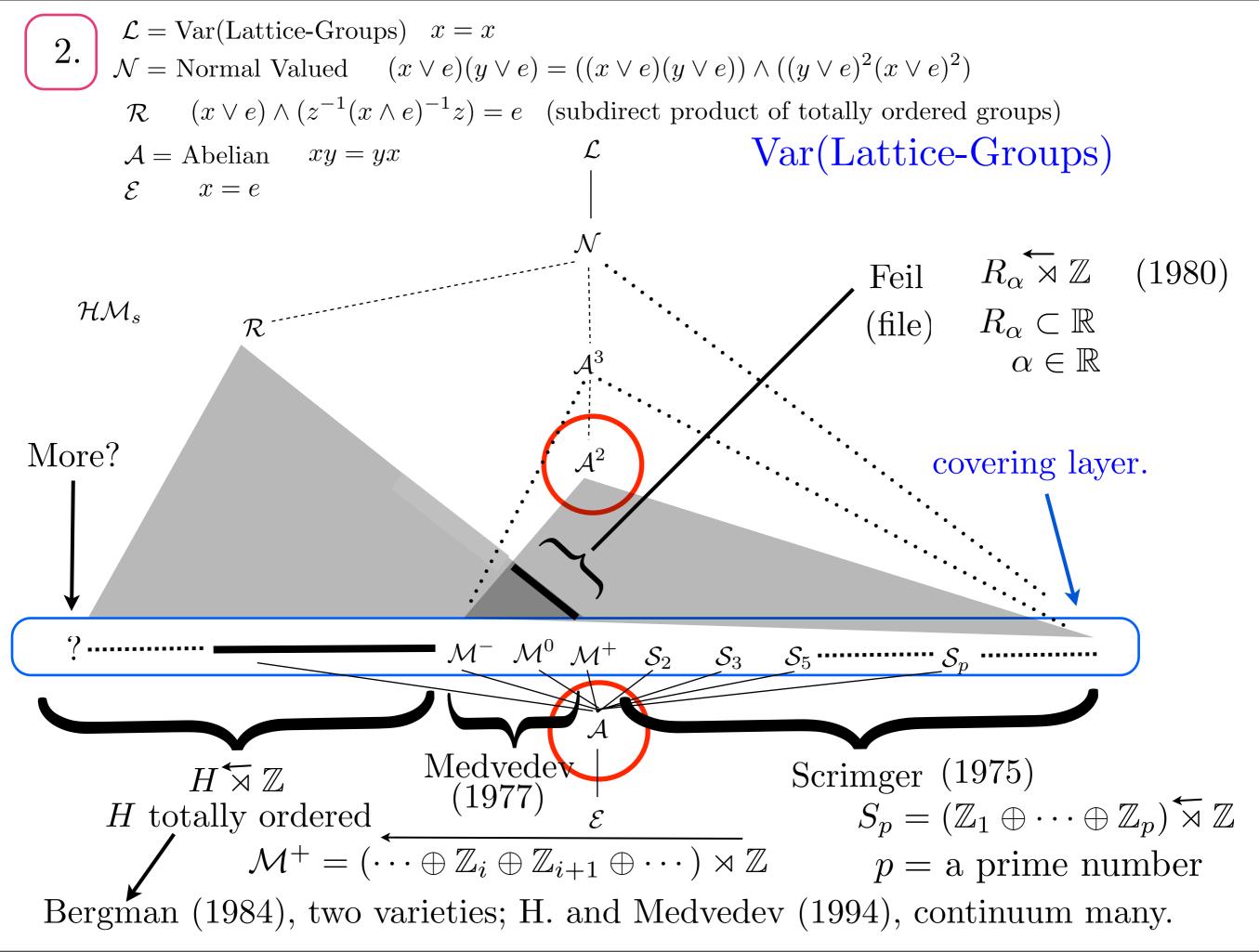


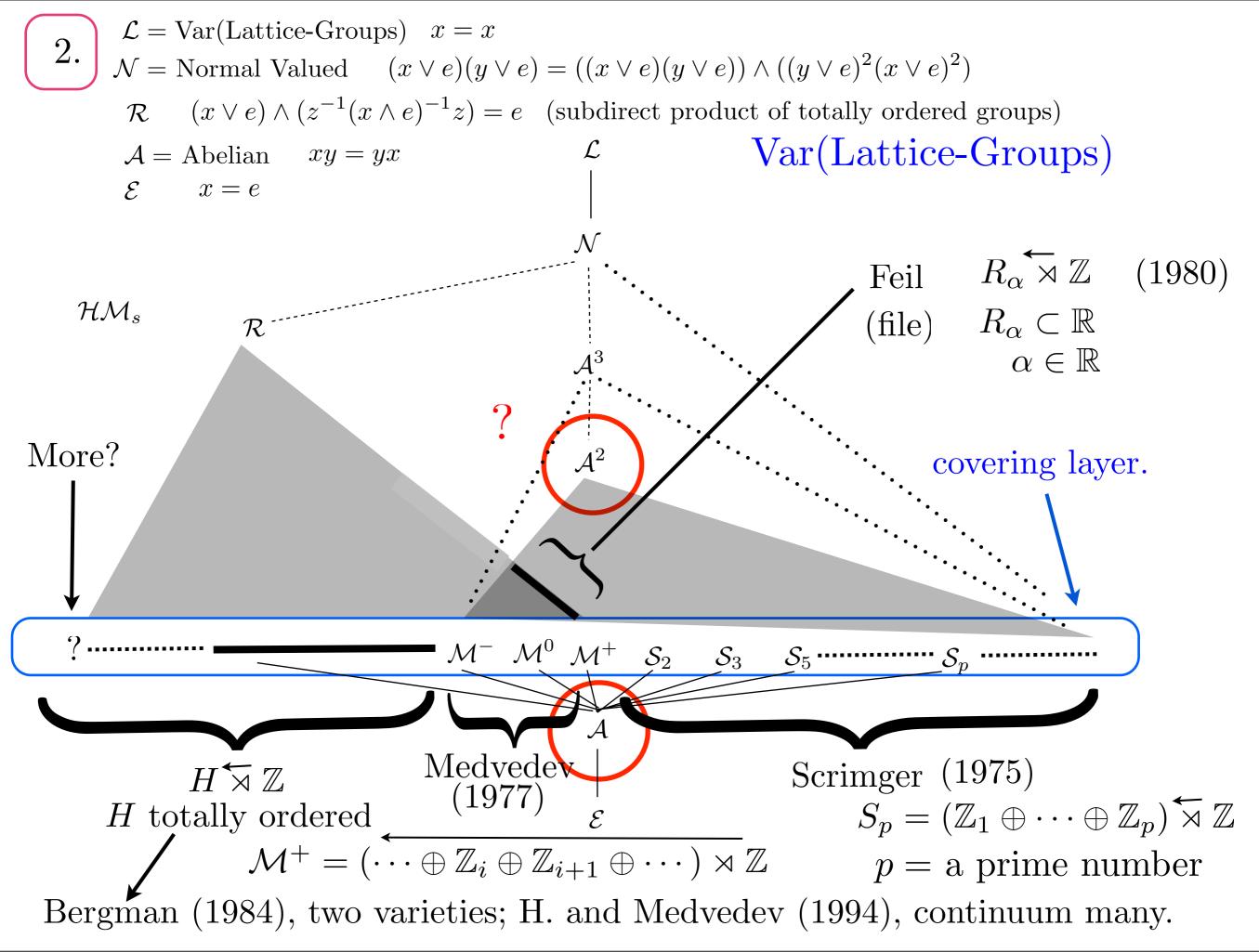










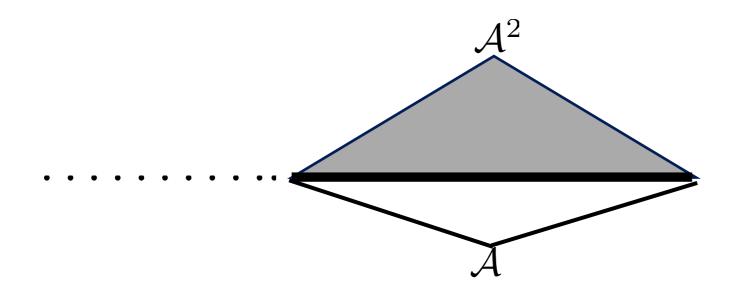


Metabelian ℓ -group V: \mathcal{A}^2

There exists a normal abelian convex ℓ -subgroup $A \subseteq V$ such that V/A is abelian.

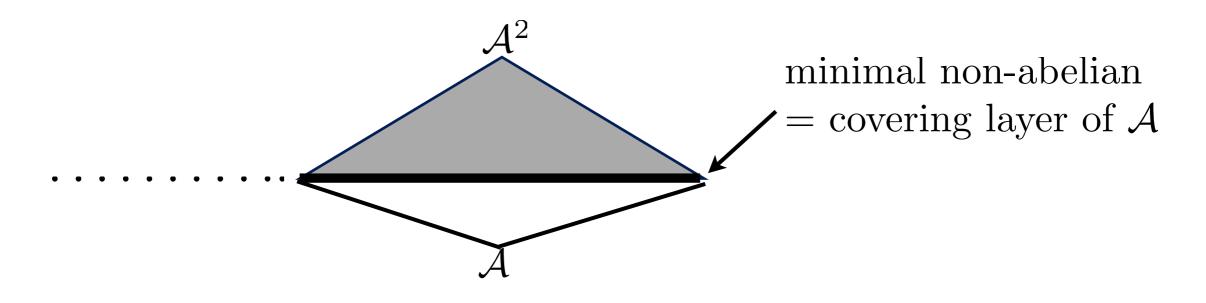
Metabelian ℓ -group V: \mathcal{A}^2

There exists a normal abelian convex ℓ -subgroup $A \subseteq V$ such that V/A is abelian.



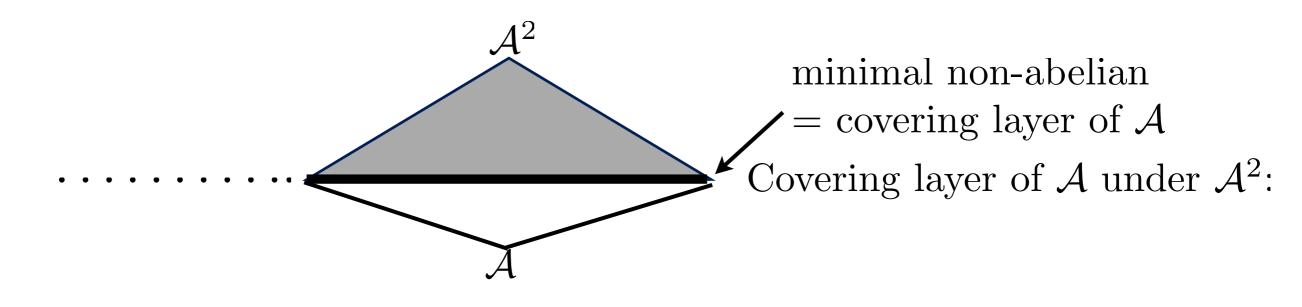
There exists a normal abelian convex ℓ -subgroup $A \subseteq V$ such that V/A is abelian.

 \mathcal{A}^2



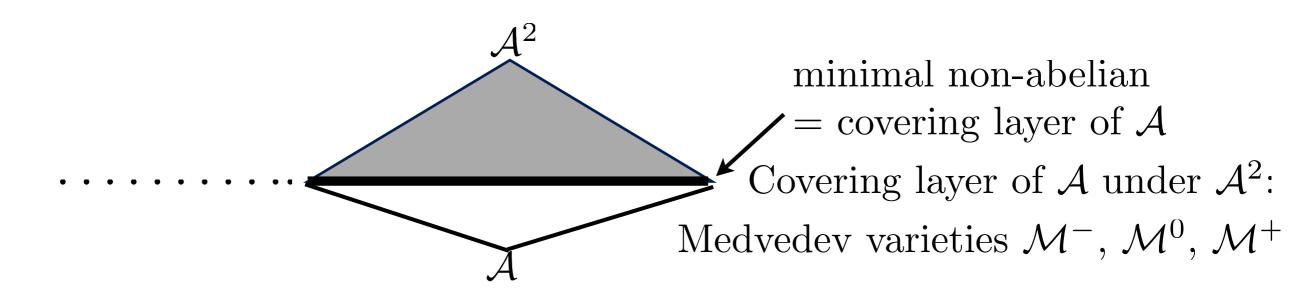
There exists a normal abelian convex ℓ -subgroup $A \subseteq V$ such that V/A is abelian.

 \mathcal{A}^2



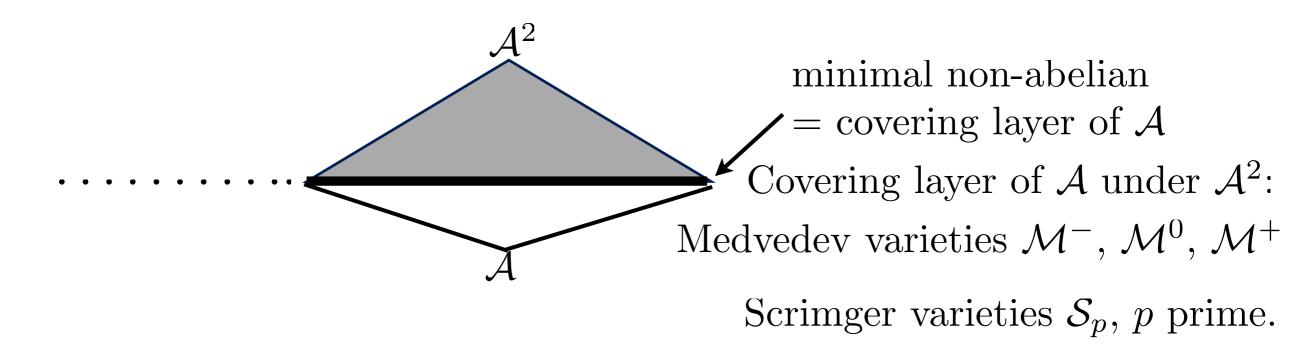
There exists a normal abelian convex ℓ -subgroup $A \subseteq V$ such that V/A is abelian.

 \mathcal{A}^2



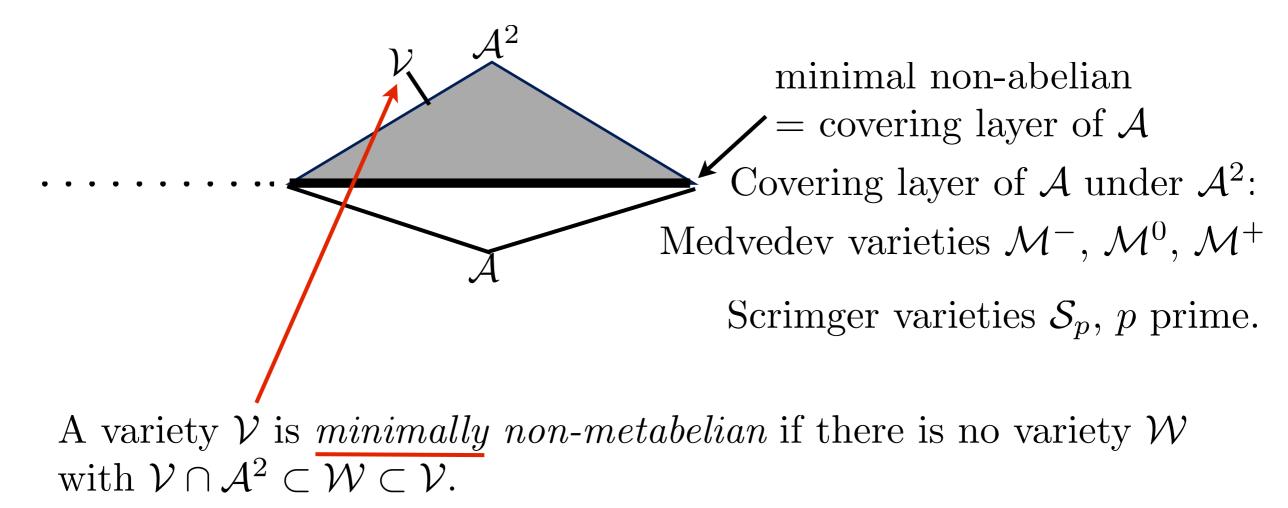
There exists a normal abelian convex ℓ -subgroup $A \subseteq V$ such that V/A is abelian.

 \mathcal{A}^2



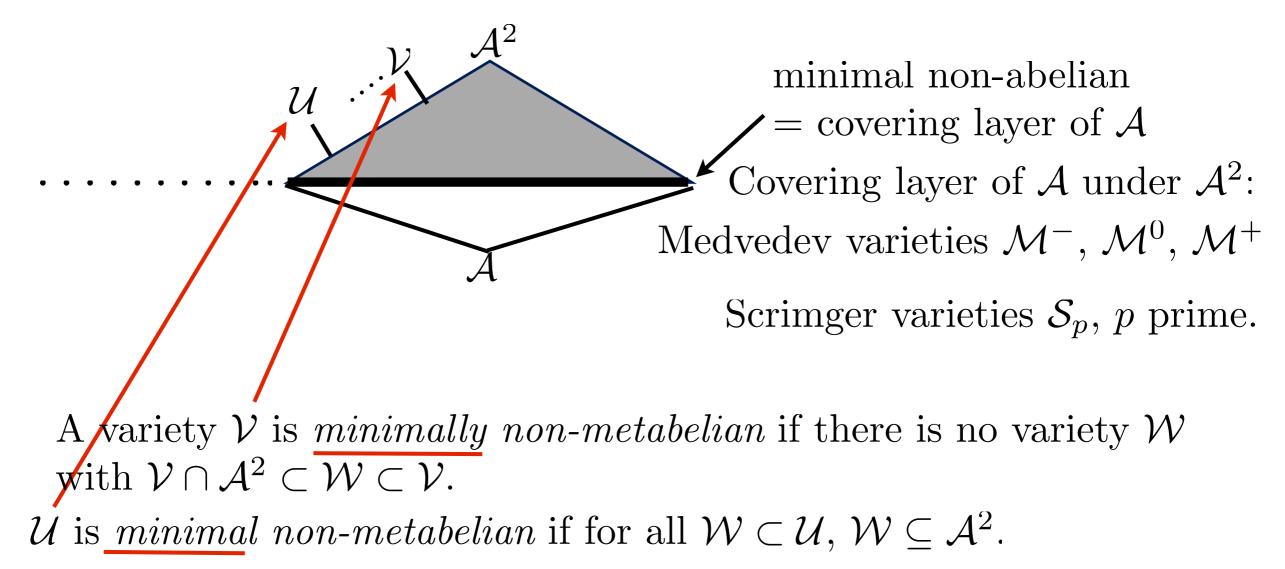
There exists a normal abelian convex ℓ -subgroup $A \subseteq V$ such that V/A is abelian.

 \mathcal{A}^2



There exists a normal abelian convex ℓ -subgroup $A \subseteq V$ such that V/A is abelian.

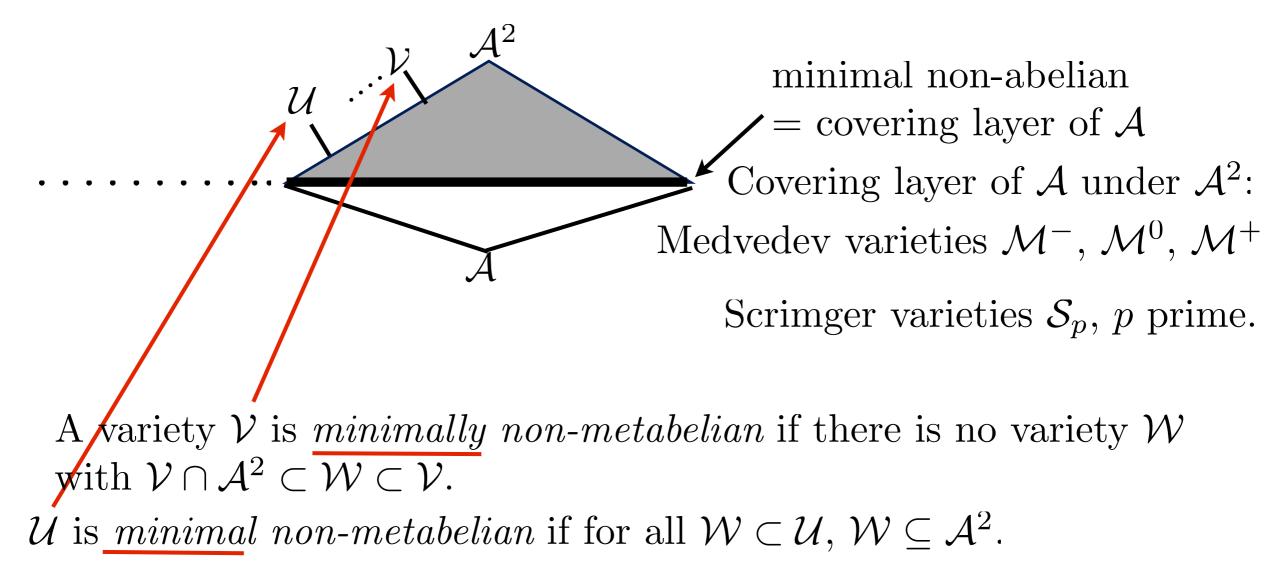
 \mathcal{A}^2



There exists a normal abelian convex ℓ -subgroup $A \subseteq V$ such that V/A is abelian.

 \mathcal{A}^2

The collection \mathcal{A}^2 of all metabelian ℓ -groups is a variety with $\mathcal{A} \subset \mathcal{A}^2$.



If ${\mathcal U}$ is minimal non-metabelian, it is minimally non-metabelian.

$$S_n = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H$$

$$S_{n} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H$$

For $a, b \in S_{n}$
 $ab = (a', (a_{0}, a_{1}, \dots, a_{n-1}))(b', (b_{0}, b_{1}, \dots, b_{n-1}))$
 $= (a' + b', (a_{0} + b_{0-a'}, a_{1} + b_{1-a'}, \dots, a_{n-1} + b_{n-1-a'}))$

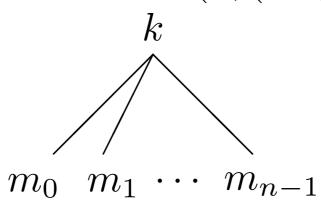
$$S_{n} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H$$

For $a, b \in S_{n}$
 $ab = (a', (a_{0}, a_{1}, \dots, a_{n-1}))(b', (b_{0}, b_{1}, \dots, b_{n-1}))$
 $= (a' + b', (a_{0} + b_{0-a'}, a_{1} + b_{1-a'}, \dots, a_{n-1} + b_{n-1-a'}))$

A useful representation of $(k, (m_0, m_1, \ldots, m_{n-1})) \in S_n$ is:

$$S_n = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H$$

For $a, b \in S_n$
 $ab = (a', (a_0, a_1, \dots, a_{n-1}))(b', (b_0, b_1, \dots, b_{n-1}))$
 $= (a' + b', (a_0 + b_{0-a'}, a_1 + b_{1-a'}, \dots, a_{n-1} + b_{n-1-a'}))$
A useful representation of $(k, (m_0, m_1, \dots, m_{n-1})) \in S_n$ is:



$$S_{n} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H$$

For $a, b \in S_{n}$
 $ab = (a', (a_{0}, a_{1}, \dots, a_{n-1}))(b', (b_{0}, b_{1}, \dots, b_{n-1}))$
 $= (a' + b', (a_{0} + b_{0-a'}, a_{1} + b_{1-a'}, \dots, a_{n-1} + b_{n-1-a'}))$
A useful representation of $(k, (m_{0}, m_{1}, \dots, m_{n-1})) \in S_{n}$ is:
$$k$$

 $S_n \in \mathcal{A}^2$ is metabelian.

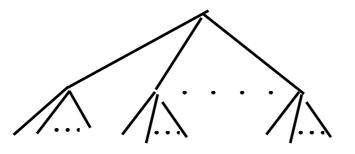
 $m_0 m_1 \cdots m_{n-1}$

$$S_{n} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H$$

For $a, b \in S_{n}$
 $ab = (a', (a_{0}, a_{1}, \dots, a_{n-1}))(b', (b_{0}, b_{1}, \dots, b_{n-1}))$
 $= (a' + b', (a_{0} + b_{0-a'}, a_{1} + b_{1-a'}, \dots, a_{n-1} + b_{n-1-a'}))$
A useful representation of $(k, (m_{0}, m_{1}, \dots, m_{n-1})) \in S_{n}$ is:
$$k$$

 $M_{0} \quad m_{1} \cdot \cdots \cdot m_{n-1}$
 $S_{n} \in \mathcal{A}^{2}$ is metabelian.

An extension is $S_{m,n}$ with H in S_n replaced by S_m .

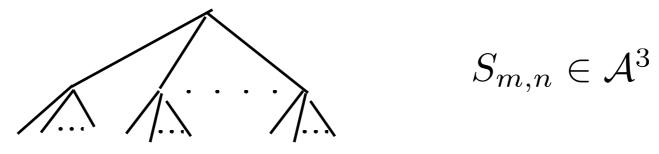


$$S_{n} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H$$

For $a, b \in S_{n}$
 $ab = (a', (a_{0}, a_{1}, \dots, a_{n-1}))(b', (b_{0}, b_{1}, \dots, b_{n-1}))$
 $= (a' + b', (a_{0} + b_{0-a'}, a_{1} + b_{1-a'}, \dots, a_{n-1} + b_{n-1-a'}))$
A useful representation of $(k, (m_{0}, m_{1}, \dots, m_{n-1})) \in S_{n}$ is:
$$k$$

 $S_{n} \in \mathcal{A}^{2}$ is metabelian.

An extension is $S_{m,n}$ with H in S_n replaced by S_m .

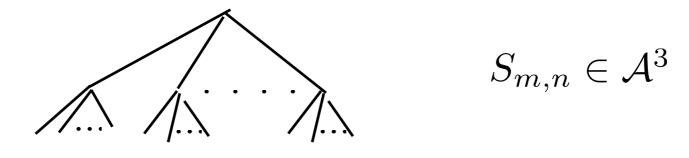


$$S_{n} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H$$

For $a, b \in S_{n}$
 $ab = (a', (a_{0}, a_{1}, \dots, a_{n-1}))(b', (b_{0}, b_{1}, \dots, b_{n-1}))$
 $= (a' + b', (a_{0} + b_{0-a'}, a_{1} + b_{1-a'}, \dots, a_{n-1} + b_{n-1-a'}))$
A useful representation of $(k, (m_{0}, m_{1}, \dots, m_{n-1})) \in S_{n}$ is:
$$k$$

 $S_{n} \in \mathcal{A}^{2}$ is metabelian.

An extension is $S_{m,n}$ with H in S_n replaced by S_m .



 $\operatorname{Var}(S_n) = \mathcal{S}_n \text{ and } \operatorname{Var}(S_{m,n}) = \mathcal{S}_{m,n}$

So, $\mathscr{S}_{p,q}$ covers $\mathscr{S}_{p,q} \cap \mathcal{A}^2$. (D - H)

So,
$$\mathscr{S}_{p,q}$$
 covers $\mathscr{S}_{p,q} \cap \mathcal{A}^2$. (D - H)

Theorem.

n. If p and q are distinct positive prime integers, then $\mathscr{S}_{p,q} \cap \mathcal{A}^2$ is the Scrimger variety \mathscr{S}_{pq} . (D - H)

So,
$$\mathscr{S}_{p,q}$$
 covers $\mathscr{S}_{p,q} \cap \mathcal{A}^2$. (D - H)

Theorem. If p and q are distinct positive prime integers, then $\mathscr{S}_{p,q} \cap \mathcal{A}^2$ is the Scrimger variety \mathscr{S}_{pq} . (D - H)

Theorem.

The family $\{\mathcal{S}_{p,q} : p, q \text{ positive prime integers}\}$ is a countable infinite set of minimal non-metabelian ℓ -group varieties which contain no nonabelian o-groups. (D - H)

In general, $H_{r,s}$ is a generalized Scrimger ℓ -group of width rs and shift by r.

In general, $H_{r,s}$ is a generalized Scrimger ℓ -group of width rs and shift by r.

 $M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.

In general, $H_{r,s}$ is a generalized Scrimger ℓ -group of width rs and shift by r.

 $M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.

$$M_{n,r,s} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H_{r,s}$$

In general, $H_{r,s}$ is a generalized Scrimger ℓ -group of width rs and shift by r.

 $M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.

$$M_{n,r,s} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H_{r,s}$$

 $\mathcal{M}_{n,r,s}$ is the variety generated by $M_{n,r,s}$.

In general, $H_{r,s}$ is a generalized Scrimger ℓ -group of width rs and shift by r.

 $M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.

$$M_{n,r,s} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H_{r,s}$$

 $\mathcal{M}_{n,r,s}$ is the variety generated by $M_{n,r,s}$.

Theorem. Let p be a positive prime integer and k any positive integer.

In general, $H_{r,s}$ is a generalized Scrimger ℓ -group of width rs and shift by r.

 $M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.

$$M_{n,r,s} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H_{r,s}$$

 $\mathcal{M}_{n,r,s}$ is the variety generated by $M_{n,r,s}$.

Theorem. Let p be a positive prime integer and k any positive integer. The varieties \mathcal{M}_{p,p,p^k} are minimal non-metabelian varieties.

In general, $H_{r,s}$ is a generalized Scrimger ℓ -group of width rs and shift by r.

 $M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.

$$M_{n,r,s} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H_{r,s}$$

 $\mathcal{M}_{n,r,s}$ is the variety generated by $M_{n,r,s}$.

Theorem. Let p be a positive prime integer and k any positive integer. The varieties \mathcal{M}_{p,p,p^k} are minimal non-metabelian varieties.

Like $\mathfrak{S}_{p,q}$ they contain no nonabelian o-groups.

In general, $H_{r,s}$ is a generalized Scrimger ℓ -group of width rs and shift by r.

 $M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.

$$M_{n,r,s} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H_{r,s}$$

 $\mathcal{M}_{n,r,s}$ is the variety generated by $M_{n,r,s}$.

Theorem. Let p be a positive prime integer and k any positive integer. The varieties \mathcal{M}_{p,p,p^k} are minimal non-metabelian varieties.

Like $\mathfrak{S}_{p,q}$ they contain no nonabelian o-groups.

Every minimal non-metabelian variety which contains no nonabelian o-groups must be either $\mathscr{S}_{p,q}$ or \mathcal{M}_{p,p,p^k} . (D - H)

In general, $H_{r,s}$ is a generalized Scrimger ℓ -group of width rs and shift by r.

 $M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.

$$M_{n,r,s} = \mathbb{Z} \overrightarrow{\ltimes} \sum_{i=0}^{n-1} H_{r,s}$$

 $\mathcal{M}_{n,r,s}$ is the variety generated by $M_{n,r,s}$.

Theorem. Let p be a positive prime integer and k any positive integer. The varieties \mathcal{M}_{p,p,p^k} are minimal non-metabelian varieties.

Like $\mathfrak{S}_{p,q}$ they contain no nonabelian o-groups.

Every minimal non-metabelian variety which contains no nonabelian o-groups must be either $\mathscr{S}_{p,q}$ or \mathcal{M}_{p,p,p^k} . (D - H)

• • • • • • •

The known covers of the abelian variety of ℓ -groups are:

The known covers of the abelian variety of ℓ -groups are:

Scrimger S_p , p a prime (Scrimger, 1975)

The known covers of the abelian variety of ℓ -groups are:

Scrimger S_p , p a prime (Scrimger, 1975) $\mathcal{M}^-, \mathcal{M}^0, \mathcal{M}^+$ (Medvedev, 1977)

The known covers of the abelian variety of ℓ -groups are:

Scrimger S_p , p a prime (Scrimger, 1975)

 $\mathcal{M}^-, \mathcal{M}^0, \mathcal{M}^+$ (Medvedev, 1977)

 $H_r \rtimes \mathbb{Z}$, continuum many (Holland, Medvedev, 1994)

The known covers of the abelian variety of ℓ -groups are:

Scrimger S_p , p a prime (Scrimger, 1975) $\mathcal{M}^-, \mathcal{M}^0, \mathcal{M}^+$ (Medvedev, 1977) $H_r \stackrel{\checkmark}{\times} \mathbb{Z}$, continuum many (Holland, Medvedev, 1994)

Is that all?

The known covers of the abelian variety of ℓ -groups are:

Scrimger S_p , p a prime (Scrimger, 1975) $\mathcal{M}^-, \mathcal{M}^0, \mathcal{M}^+$ (Medvedev, 1977) $H_r \overleftarrow{\times} \mathbb{Z}$, continuum many (Holland, Medvedev, 1994) Is that all?

Every known cover of \mathcal{B} is generated by a *totally* ordered u*l*-group. of the form $H \stackrel{\leftarrow}{\rtimes} \mathbb{Z}$.

The known covers of the abelian variety of ℓ -groups are:

Scrimger S_p , p a prime (Scrimger, 1975) $\mathcal{M}^-, \mathcal{M}^0, \mathcal{M}^+$ (Medvedev, 1977) $H_r \overleftarrow{\times} \mathbb{Z}$, continuum many (Holland, Medvedev, 1994) Is that all?

Every known cover of \mathcal{B} is generated by a *totally* ordered u*l*-group. of the form $H \bowtie \mathbb{Z}$.

Is that all?

The known covers of the abelian variety of ℓ -groups are:

Scrimger S_p , p a prime (Scrimger, 1975) $\mathcal{M}^-, \mathcal{M}^0, \mathcal{M}^+$ (Medvedev, 1977) $H_r \overleftarrow{\times} \mathbb{Z}$, continuum many (Holland, Medvedev, 1994) Is that all?

Every known cover of \mathcal{B} is generated by a *totally* ordered $\mathfrak{u}\ell$ -group. of the form $H \bowtie \mathbb{Z}$.

Is that all?

Some References

1. Holland, *Small varieties of lattice-ordered groups and MV-algebras*, Contributions to General Algebra 16, 107–114, Heyn, Klagenfurt, (2005).

2. Holland, Covers of the Boolean variety in the lattice of varieties of unital lattice-ordered groups and GMV-algebras, Izbrannie Voprosi Algebra (2007), Memorial Volume for N. Ya. Medvedev, 208–217.

3. Holland and Darnel, Solvable varieties of unital lattice-ordered groups which cover the boolean variety, Algebra Universalis, 62 (2009), 185–199.

4. Darnel and Holland, More covers of the boolean variety of $unital \ l$ -groups, to appear in Algebra Universalis.

5. Darnel and Holland, Minimal non-metabelian varieties of ℓ -groups which contain no nonabelian o-groups, submitted.

 $u\,\ell\text{-groups}$

Ψ MV-algebras

