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Theorem.

Let p, q be positive prime integers. Then SSp,q is a minimal

non-metabelian variety.
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is the Scrimger variety Spq. (D - H)

Friday, April 12, 13



Theorem.

Let p, q be positive prime integers. Then SSp,q is a minimal

non-metabelian variety.

So, SSp,q covers SSp,q \A2
.

(D - H)

Theorem.

If p and q are distinct positive prime integers,

then SSp,q \A2
is the Scrimger variety Spq. (D - H)

Theorem.

The family {SSp,q : p, q positive prime integers} is a countable infinite set

of minimal non-metabelian `-group varieties which contain no

nonabelian o-groups.

(D - H)
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H1,n = Sn, a Scrimger `-group of width n and shift by 1.
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Let p be a positive prime integer and k any positive integer.
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Every minimal non-metabelian variety which contains no nonabelian o-groups

must be either SSp,q or Mp,p,pk . (D - H)
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H1,n = Sn, a Scrimger `-group of width n and shift by 1.

In general, Hr,s is a generalized Scrimger `-group of width rs and shift by r.

Mn,r,s is the definition of Sn with H replaced by Hr,s.

Sn = Z�!n
Pn�1

i=0 Z = Z�!nH⌃n�1
i=0 HMn,r,s Hr,s

Mn,r,s is the variety generated by Mn,r,s.

The varietiesMp,p,pk are minimal non-metabelian varieties.

Like SSp,q they contain no nonabelian o-groups.

. . . . . . ..
Every minimal non-metabelian variety which contains no nonabelian o-groups

must be either SSp,q or Mp,p,pk . (D - H)
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Let p be a positive prime integer and k any positive integer.
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The known covers of the abelian variety of `-groups are:

Scrimger Sp, p a prime (Scrimger, 1975)
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Is that all?

H o Z

. Are they all ?
Every known cover of B is generated by a totally ordered u`-group.

Are they all?

of the form
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�-Groups

Thank You!!

 MV-algebras
? ?

`-groupsu

Come on, guys. Cooperate!
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