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Metabelian ¢-group V: A2

There exists a normal abelian convex ¢-subgroup A C V
such that V/A is abelian.

The collection A? of all metabelian /-groups is a variety with A C A2,
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/ — covering layer of A
----------- Covering layer of A under A4%:

Medvedev varieties M~, MY, MT

Scrimger varieties Sy, p prime.

A variety V is minimally non-metabelian if there is no variety W

with VN A2 C W C V.
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Metabelian ¢-group V: A2

There exists a normal abelian convex ¢-subgroup A C V
such that V/A is abelian.

The collection A? of all metabelian /-groups is a variety with A C A2,
2
o.V A

minimal non-abelian

/ — covering layer of A
--------- : Covering layer of A under A4%:

Medvedev varieties M~, MY, MT

U

Scrimger varieties Sy, p prime.

A Aariety V is miunimally non-metabelian if there is no variety W

ithYNnA?cWwWcV.
U is minimal non-metabelian if for all W Cc U, W C A=

If 4 is minimal non-metabelian, it is minimally non-metabelian.
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The Scrimger £-groups:
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The Scrimger /-groups:
— —n—1 NN —
Sy =7ZX>S " L =LxKE g H
For a, b Sn
ab = (CLI, (Cl(), ayy..., Cl,n_l))(b/, (b07 bl’ "t bn—l))
— (CL/ —+ b/7 (a’O + bO—CL’7 aq + bl—a’7 ey Upn—1 T bn—l—a’))

A useful representation of (k, (mg, m1,...,mp_1)) € S, is:

k
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mo My -+ Mnp-1
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/\ S, € A? is metabelian.

mo My -+ Mnp-1
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The Scrimger /-groups:
Sy =ZK " 7 =K H
For a,be s,
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A useful representation of (k, (mg, m1,...,mp_1)) € S, is:

S, € A? is metabelian.

An extension is S, , with H in 5, replaced by S,,.
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The Scrimger /-groups:
Sy =ZK " 7 =K H
For a,be s,

ab= (a’, (ag,a1,...,0,_1

(bla (b07 bl) LI bn—l))
= (' + 0, (a0 +bo—a a1 + b1, Q-1+ bp—1-0))

A useful representation of (k, (mg, m1,...,mp_1)) € S, is:

S, € A? is metabelian.

An extension is S, , with H in 5, replaced by S,,.

A Sy € A
N /IN /N

Var(S,) = S, and Var(S,,») = Sm.n
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Theorem. Let p,q be positive prime integers. Then &, , 1S a minimal
non-metabelian variety:.
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Theorem. Let p,q be positive prime integers. Then &, , 1S a minimal
non-metabelian variety.

So, &, covers &, , N A= (D - H)

Theorem. It p and ¢ are distinct positive prime integers,
then &, , N .A? is the Scrimger variety S,,. (D - H)

Theorem.

The family {&,, : p,q positive prime integers} is a countable infinite set
of minimal non-metabelian ¢-group varieties which contain no

nonabelian o-groups. (D - H)
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Hy , = 5y, a Scrimger ¢-group of width n and shift by 1.
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Hy , = 5y, a Scrimger ¢-group of width n and shift by 1.

In general, H, s 1s a generalized Scrimger ¢-group of width rs and shitt by r.
M, r s 1s the definition ot 5,, with H replaced by H, ;.
— —1
Mn,r,s — 7, X Z?:O Hr,s
M, r.s 18 the variety generated by M, , s.

Theorem. Let p be a positive prime integer and k any positive integer.
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The known covers of the abelian variety of /-groups are:
Scrimger Sy, p a prime  (Scrimger, 1975)
M= M Mt (Medvedev, 1977)
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Come on, guys. Cooperate!
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