Automorphisms of Decompositions

Tim Hannan and John Harding

 $\label{eq:linear} \begin{array}{l} \mbox{New Mexico State University} \\ \mbox{www.math.nmsu.edu}/{\sim}\mbox{JohnHarding.html} \end{array}$

jharding@nmsu.edu

Boulder, April 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction

Quantum logic is based on using the orthomodular lattice of closed subspaces of a Hilbert space \mathcal{H} to study the quantum mechanical system associated with \mathcal{H} . Closed subspaces correspond to direct product decompositions

 $\mathcal{H} \simeq \mathcal{A} \times \mathcal{A}^{\perp}$

Theorem The direct product decompositions of most structures \mathbb{A} (universal algebras, topological spaces, etc.) form an OMP Fact \mathbb{A} .

Here we study automorphisms of Fact $\mathbb A$ to help understand these structures, and also for applications to quantum logic.

Note the automorphisms of Fact \mathcal{H} are given by the unitaries and antiunitaries of \mathcal{H} (Wigner).

Definition $(P, \leq, ', 0, 1)$ is an orthomodular poset (OMP) if

- 1. It is a bounded poset.
- 2. ' is an order inverting period two complementation.
- 3. $x \leq y' \Rightarrow x \lor y$ exists (written $x \oplus y$).

4.
$$x \leq y' \Rightarrow x \oplus (x \oplus y)' = y$$
.

Definition Aut (P) is the automorphism group of an OMP P.

Definition A binary decomposition of \mathbb{A} is an isomorphism

$$f: \mathbb{A} \to \mathbb{A}_1 \times \mathbb{A}_2$$

This decomposition is equivalent to $g : \mathbb{A} \to \mathbb{B}_1 \times \mathbb{B}_2$ if there are isomorphisms from \mathbb{A}_i to \mathbb{B}_i making a commuting diagram.

Notation $[\mathbb{A} \simeq_f \mathbb{A}_1 \times \mathbb{A}_2]$ for the equivalence class of f.

Definition Fact \mathbb{A} is the set of equivalence classes of binary decompositions of a structure \mathbb{A} .

Definition
$$[\mathbb{A} \simeq \mathbb{A}_1 \times \mathbb{A}_2]^{\perp} = [\mathbb{A} \simeq \mathbb{A}_2 \times \mathbb{A}_1]$$

Definition $[\mathbb{A} \simeq \mathbb{A}_1 \times \mathbb{A}_2] \leq [\mathbb{A} \simeq \mathbb{B}_1 \times \mathbb{B}_2]$ iff
1. $[\mathbb{A} \simeq \mathbb{A}_1 \times \mathbb{A}_2] = [\mathbb{A} \simeq \mathbb{C}_1 \times (\mathbb{C}_2 \times \mathbb{C}_3)]$
2. $[\mathbb{A} \simeq \mathbb{B}_1 \times \mathbb{B}_2] = [\mathbb{A} \simeq (\mathbb{C}_1 \times \mathbb{C}_2) \times \mathbb{C}_3)]$

For some ternary decomposition $\mathbb{A} \simeq \mathbb{C}_1 \times \mathbb{C}_2 \times \mathbb{C}_3$.

Theorem If \mathbb{A} is a set, group, vector space, universal algebra, topological space, uniform space, etc., then Fact \mathbb{A} is an OMP.

Notes:

- Many standard ways to make OMP are special cases of this.
- Such OMPs Fact A are regular.
- Not all OMPs are embeddable into some Fact A, but known examples of OMPs not embeddable into some Fact A coincide with those known not to be embeddable into some OML.

Aim Further understand Fact \mathbb{A} by studying its automorphism group. Start with \mathbb{A} a f.d. vector space or finite set.

Here Fact \mathbb{V} has an easier description.

Definition For a bounded modular lattice L let $L^{(2)}$ be all ordered pairs of complementary elements of L. Define

7/16

1.
$$(a_1, a_2)' = (a_2, a_1)$$
.
2. $(a_1, a_2) \le (b_1, b_2)$ iff $a_1 \le b_1$ and $b_2 \le a_2$

Proposition $L^{(2)}$ is an OMP.

Proposition For a vector space \mathbb{V} , Fact $\mathbb{V} \simeq (Sub \mathbb{V})^{(2)}$.

Assume V is a 3-dimensional, the arguments work in general. One-dimensional subspaces are points *a* and two-dimensional subspaces are lines *A* of a projective plane \mathbb{P} .

Proposition Fact V has height 3, and

- 1. atoms are pairs aA with a a point, A a line, and $a \not \! \! I A$.
- 2. coatoms are pairs Aa with a a point, A a line, and $a \not \! \! I A$.
- 3. $aA \leq Bb$ iff $a \mathbb{I} B$ and $b \mathbb{I} A$.

Note: These things are quite big. If $\mathbb{V} = \mathbb{Z}_2^3$, then Fact \mathbb{V} has 28 atoms, 28 blocks (maximal Boolean subalgebras), each block has 3 atoms, and each atom is in 3 blocks.

Key observation Atoms aA and bB of Fact \mathbb{V} have at least two coatom upper bounds iff a = b or A = B. Call such mates.

Definition For a point *a* and line *A* let

Lemma The X_a and X_A are the maximal sets of pairwise mates.

Lemma Let a, b be points and A, B be lines.

- 1. X_a and X_b are disjoint.
- 2. X_A and X_B are disjoint.
- 3. X_a and X_A are disjoint iff $a \leq A$.

Definition For a subspace S let $\mathfrak{X}_S = \{X_a : a \leq S\} \cup \{X_A : S \leq A\}.$

Lemma The \mathfrak{X}_S are the maximal pairwise disjoint subsets of \mathfrak{X} .

An automorphism α of Fact \mathbb{V} induces a permutation of \mathfrak{X} , hence a permutation σ of Sub \mathbb{V} where $\sigma(S) = T$ iff $\alpha(\mathfrak{X}_S) = \mathfrak{X}_T$.

Theorem If α is an automorphism of Fact \mathbb{V} , either

- 1. σ is an automorphism of Sub \mathbb{V} and $\alpha(aA) = (\sigma a)(\sigma A)$.
- 2. σ is an anti-automorphism of Sub \mathbb{V} and $\alpha(aA) = (\sigma A)(\sigma a)$.

Corollary The automorphism group of Fact \mathbb{V} is isomorphic to the group of automorphisms and anti-automorphisms of Sub \mathbb{V} .

Remark The Fundamental Theorem of Projective Geometry allows us to characterize the automorphisms of Fact \mathbb{V} in terms of semi-linear transformations on \mathbb{V} and an involution of Sub \mathbb{V} .

Remark The main result holds also for non-Desarguesian planes considered as modular lattices.

Remark This result shows the automorphism group of Fact \mathbb{V} is transitive on atoms in a very strong way. In fact, any four blocks in "general position" can be moved to any other.

Our proof shows more, each order-isomorphism of Fact $\mathbb V$ is of the indicated form, so is compatible with the orthocomplementation. This leads the following result.

Theorem Each OMP Fact $\mathbb V$ is uniquely orthocomplemented, meaning there is only one orthocomplementation compatible with its order structure.

This final result is a bit unusual. There are many (non-isomorphic) orthocomplementations on the OML of subspaces of \mathbb{R}^3 .

The finite set setting

Still in progress.

Conjecture If X is a finite set whose cardinality has enough prime factors of sufficient size, then the automorphism group of Fact X is the group of permutations of X.

When |X| = 8 the result is not true.

When |X| = 27 we think it holds. Here each automorphism arises from an automorphism of the poset of regular equivalence relations

No computers. If |X| = 27, then Fact X has $\frac{27!}{9!3!} \simeq 10^{22}$ atoms. We seek permutations of those atoms!

Measures

Definition For P an OMP and G an abelian group, a G-valued measure on P is a map $\sigma : P \to G$ that is finitely additive, meaning

$$\sigma(x\oplus y)=\sigma(x)+\sigma(y)$$

We have several results about measures on Fact \mathbb{V} when V is over a finite field, mostly relating the existence of such measure to the relationship between G and the characteristic of the field.

Thank you for listening.

Papers at www.math.nmsu.edu/~jharding

