Automorphisms of Decompositions

Tim Hannan and John Harding
New Mexico State University www.math.nmsu.edu/~JohnHarding.html
jharding@nmsu.edu

Boulder, April 2013

Introduction

Quantum logic is based on using the orthomodular lattice of closed subspaces of a Hilbert space \mathcal{H} to study the quantum mechanical system associated with \mathcal{H}. Closed subspaces correspond to direct product decompositions

$$
\mathcal{H} \simeq A \times A^{\perp}
$$

Theorem The direct product decompositions of most structures \mathbb{A} (universal algebras, topological spaces, etc.) form an OMP Fact \mathbb{A}.

Here we study automorphisms of Fact \mathbb{A} to help understand these structures, and also for applications to quantum logic.

Note the automorphisms of Fact \mathcal{H} are given by the unitaries and antiunitaries of \mathcal{H} (Wigner).

Basics

Definition $\left(P, \leq,{ }^{\prime}, 0,1\right)$ is an orthomodular poset (OMP) if

1. It is a bounded poset.
2. ' is an order inverting period two complementation.
3. $x \leq y^{\prime} \Rightarrow x \vee y$ exists (written $x \oplus y$).
4. $x \leq y^{\prime} \Rightarrow x \oplus(x \oplus y)^{\prime}=y$.

Definition Aut (P) is the automorphism group of an OMP P.

Basics

Definition A binary decomposition of \mathbb{A} is an isomorphism

$$
f: \mathbb{A} \rightarrow \mathbb{A}_{1} \times \mathbb{A}_{2}
$$

This decomposition is equivalent to $g: \mathbb{A} \rightarrow \mathbb{B}_{1} \times \mathbb{B}_{2}$ if there are isomorphisms from \mathbb{A}_{i} to \mathbb{B}_{i} making a commuting diagram.

Notation $\left[\mathbb{A} \simeq_{f} \mathbb{A}_{1} \times \mathbb{A}_{2}\right]$ for the equivalence class of f.

Definition Fact \mathbb{A} is the set of equivalence classes of binary decompositions of a structure \mathbb{A}.

Basics

Definition $\left[\mathbb{A} \simeq \mathbb{A}_{1} \times \mathbb{A}_{2}\right]^{\perp}=\left[\mathbb{A} \simeq \mathbb{A}_{2} \times \mathbb{A}_{1}\right]$
Definition $\left[\mathbb{A} \simeq \mathbb{A}_{1} \times \mathbb{A}_{2}\right] \leq\left[\mathbb{A} \simeq \mathbb{B}_{1} \times \mathbb{B}_{2}\right]$ iff

1. $\left[\mathbb{A} \simeq \mathbb{A}_{1} \times \mathbb{A}_{2}\right]=\left[\mathbb{A} \simeq \mathbb{C}_{1} \times\left(\mathbb{C}_{2} \times \mathbb{C}_{3}\right)\right]$
2. $\left.\left[\mathbb{A} \simeq \mathbb{B}_{1} \times \mathbb{B}_{2}\right]=\left[\mathbb{A} \simeq\left(\mathbb{C}_{1} \times \mathbb{C}_{2}\right) \times \mathbb{C}_{3}\right)\right]$

For some ternary decomposition $\mathbb{A} \simeq \mathbb{C}_{1} \times \mathbb{C}_{2} \times \mathbb{C}_{3}$.

Theorem If \mathbb{A} is a set, group, vector space, universal algebra, topological space, uniform space, etc., then Fact \mathbb{A} is an OMP.

Basics

Notes:

- Many standard ways to make OMP are special cases of this.
- Such Omps Fact \mathbb{A} are regular.
- Not all Omps are embeddable into some Fact \mathbb{A}, but known examples of OMPs not embeddable into some Fact \mathbb{A} coincide with those known not to be embeddable into some OmL.

Aim Further understand Fact \mathbb{A} by studying its automorphism group. Start with \mathbb{A} a f.d. vector space or finite set.

The f.d. vector space setting

Here Fact \mathbb{V} has an easier description.
Definition For a bounded modular lattice L let $L^{(2)}$ be all ordered pairs of complementary elements of L. Define

1. $\left(a_{1}, a_{2}\right)^{\prime}=\left(a_{2}, a_{1}\right)$.
2. $\left(a_{1}, a_{2}\right) \leq\left(b_{1}, b_{2}\right)$ iff $a_{1} \leq b_{1}$ and $b_{2} \leq a_{2}$

Proposition $L^{(2)}$ is an OMP.
Proposition For a vector space \mathbb{V}, Fact $\mathbb{V} \simeq($ Sub $\mathbb{V}))^{(2)}$.

The f.d. vector space setting

Assume \mathbb{V} is a 3-dimensional, the arguments work in general. One-dimensional subspaces are points a and two-dimensional subspaces are lines A of a projective plane \mathbb{P}.

Proposition Fact \mathbb{V} has height 3 , and

1. atoms are pairs $a A$ with a a point, A a line, and $a \mathbb{H} A$.
2. coatoms are pairs $A a$ with a a point, A a line, and $a \mathbb{\sharp} A$.
3. $a A \leq B b$ iff $a \mathbb{I} B$ and $b \mathbb{I} A$.

Note: These things are quite big. If $\mathbb{V}=\mathbb{Z}_{2}^{3}$, then Fact \mathbb{V} has 28 atoms, 28 blocks (maximal Boolean subalgebras), each block has 3 atoms, and each atom is in 3 blocks.

The f.d. vector space setting

Key observation Atoms $a A$ and $b B$ of Fact \mathbb{V} have at least two coatom upper bounds iff $a=b$ or $A=B$. Call such mates.

Definition For a point a and line A let

1. $X_{a}=$ all atoms having a for a first spot.
2. $X_{A}=$ all atoms having A for a second spot
3. $\mathfrak{X}=\left\{X_{a}, X_{A}: a\right.$ is a point and A is a line $\}$.

Lemma The X_{a} and X_{A} are the maximal sets of pairwise mates.

The f.d. vector space setting

Lemma Let a, b be points and A, B be lines.

1. X_{a} and X_{b} are disjoint.
2. X_{A} and X_{B} are disjoint.
3. X_{a} and X_{A} are disjoint iff $a \leq A$.

Definition For a subspace S let $\mathfrak{X}_{S}=\left\{X_{a}: a \leq S\right\} \cup\left\{X_{A}: S \leq A\right\}$.

Lemma The \mathfrak{X}_{S} are the maximal pairwise disjoint subsets of \mathfrak{X}.

The f.d. vector space setting

An automorphism α of Fact \mathbb{V} induces a permutation of \mathfrak{X}, hence a permutation σ of Sub \mathbb{V} where $\sigma(S)=T$ iff $\alpha\left(\mathfrak{X}_{S}\right)=\mathfrak{X}_{T}$.

Theorem If α is an automorphism of Fact \mathbb{V}, either

1. σ is an automorphism of Sub \mathbb{V} and $\alpha(a A)=(\sigma a)(\sigma A)$.
2. σ is an anti-automorphism of Sub \mathbb{V} and $\alpha(a A)=(\sigma A)(\sigma a)$.

Corollary The automorphism group of Fact \mathbb{V} is isomorphic to the group of automorphisms and anti-automorphisms of Sub \mathbb{V}.

The f.d. vector space setting

Remark The Fundamental Theorem of Projective Geometry allows us to characterize the automorphisms of Fact \mathbb{V} in terms of semi-linear transformations on \mathbb{V} and an involution of Sub \mathbb{V}.

Remark The main result holds also for non-Desarguesian planes considered as modular lattices.

Remark This result shows the automorphism group of Fact \mathbb{V} is transitive on atoms in a very strong way. In fact, any four blocks in "general position" can be moved to any other.

The f.d. vector space setting

Our proof shows more, each order-isomorphism of Fact \mathbb{V} is of the indicated form, so is compatible with the orthocomplementation. This leads the following result.

Theorem Each Omp Fact \mathbb{V} is uniquely orthocomplemented, meaning there is only one orthocomplementation compatible with its order structure.

This final result is a bit unusual. There are many (non-isomorphic) orthocomplementations on the OML of subspaces of \mathbb{R}^{3}.

The finite set setting

Still in progress.

Conjecture If X is a finite set whose cardinality has enough prime factors of sufficient size, then the automorphism group of Fact X is the group of permutations of X.

When $|X|=8$ the result is not true.
When $|X|=27$ we think it holds. Here each automorphism arises from an automorphism of the poset of regular equivalence relations

No computers. If $|X|=27$, then Fact X has $\frac{27!}{9!3!} \simeq 10^{22}$ atoms. We seek permutations of those atoms!

Measures

Definition For P an OMP and G an abelian group, a G-valued measure on P is a map $\sigma: P \rightarrow G$ that is finitely additive, meaning

$$
\sigma(x \oplus y)=\sigma(x)+\sigma(y)
$$

We have several results about measures on Fact \mathbb{V} when V is over a finite field, mostly relating the existence of such measure to the relationship between G and the characteristic of the field.

Thank you for listening.

Papers at www.math.nmsu.edu/~jharding

