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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

Fact. If K is finitely axiomatizable, then it’s universal theory is
decidable.
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

Fact. If K is finitely axiomatizable, then it’s universal theory is
decidable.

Fact. Varieties with FEP are generated as quasivarieties by their
finite members.

Fact. If K forms the algebraic semantics of a logical system ⊢, then
the latter has the strong finite model property:
if Φ 6⊢ ψ, for finite Φ, then there is a finite counter-model.
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

Fact. If K is finitely axiomatizable, then it’s universal theory is
decidable.

Fact. Varieties with FEP are generated as quasivarieties by their
finite members.

Fact. If K forms the algebraic semantics of a logical system ⊢, then
the latter has the strong finite model property:
if Φ 6⊢ ψ, for finite Φ, then there is a finite counter-model.

A residuated lattice, is an algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.
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DIRL: the variety of distributive, integral (x ≤ 1) residuated lattices.
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DIRL: the variety of distributive, integral (x ≤ 1) residuated lattices.

Examples of DIRLs include:

■ Boolean algebras (classical logic)

■ Heyting algebras (intuitionistic logic)

■ MV-algebras (many-valued logic)

■ BL-algebras

■ negative cones of lattice-ordered groups

■ ideals of Prüfer domains
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DIRL: the variety of distributive, integral (x ≤ 1) residuated lattices.

Examples of DIRLs include:

■ Boolean algebras (classical logic)

■ Heyting algebras (intuitionistic logic)

■ MV-algebras (many-valued logic)

■ BL-algebras

■ negative cones of lattice-ordered groups

■ ideals of Prüfer domains

Theorem. Every subvariety of DIRL axiomatized over {∨,∧, ·, 1} has
the FEP.
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Let V be a subvariety of DIRL axiomatized over {∨,∧, ·, 1}. To
establish the FEP for V, for every A in V and B a finite partial
subalgebra of A, we construct an algebra D such that

■ D ∈ V

■ B embeds in D

■ D is finite
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Let V be a subvariety of DIRL axiomatized over {∨,∧, ·, 1}. To
establish the FEP for V, for every A in V and B a finite partial
subalgebra of A, we construct an algebra D such that

■ D ∈ V

■ B embeds in D

■ D is finite

The corresponding result for subvarieties of IRL axiomatized over
{∨, ·, 1} is contained in

N. Galatos and P. Jipsen. Residuated frames and applications to
decidability, Transactions of the AMS.

and it is essentially based on Dedekind-MacNeille completions.
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Let V be a subvariety of DIRL axiomatized over {∨,∧, ·, 1}. To
establish the FEP for V, for every A in V and B a finite partial
subalgebra of A, we construct an algebra D such that

■ D ∈ V

■ B embeds in D

■ D is finite

The corresponding result for subvarieties of IRL axiomatized over
{∨, ·, 1} is contained in

N. Galatos and P. Jipsen. Residuated frames and applications to
decidability, Transactions of the AMS.

and it is essentially based on Dedekind-MacNeille completions. The
latter do not preserve distributivity so we use a distributive version of
the Dedekind-MacNeille completion defined in

N. Galatos and P. Jipsen. Cut elimination and the finite model
property for distributive FL, manuscript.
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Consider the {·,∧, 1}-subreduct of A generated by B, which we
denote by (W, ◦,©∧ , 1); this is possibly infinite. Then D will consist
of certain subsets of W .
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Consider the {·,∧, 1}-subreduct of A generated by B, which we
denote by (W, ◦,©∧ , 1); this is possibly infinite. Then D will consist
of certain subsets of W . To specify these subsets we define
W ′ = SW ×B, where SW contains all unary linear polynomials (aka
sections) over (W, ◦,©∧ , 1). Also we define and

x⊑(u, b) iff u(x) ≤A b.



Galois algebra
FEP

FEP for DIRL

The plan

Galois algebra

Residuated frames

Distributive frames

The embedding

DGN

Equations

Structural rules

Free algebra

Finiteness

Proof (cont)

Nikolaos Galatos, AMS Sectional, Boulder, April 2013 DIRL have the FEP – 5 / 14

Consider the {·,∧, 1}-subreduct of A generated by B, which we
denote by (W, ◦,©∧ , 1); this is possibly infinite. Then D will consist
of certain subsets of W . To specify these subsets we define
W ′ = SW ×B, where SW contains all unary linear polynomials (aka
sections) over (W, ◦,©∧ , 1). Also we define and

x⊑(u, b) iff u(x) ≤A b.

Then W = (W,W ′,⊑) is an example of a lattice frame. (Dedekind,
McNeille, Birkhoff) These play the role of Kripke frames for
non-distributive logics. We have two set of worlds: W for the
join-irreducibles and W ′ for the meet-irreducibles.



Galois algebra
FEP

FEP for DIRL

The plan

Galois algebra

Residuated frames

Distributive frames

The embedding

DGN

Equations

Structural rules

Free algebra

Finiteness

Proof (cont)

Nikolaos Galatos, AMS Sectional, Boulder, April 2013 DIRL have the FEP – 5 / 14

Consider the {·,∧, 1}-subreduct of A generated by B, which we
denote by (W, ◦,©∧ , 1); this is possibly infinite. Then D will consist
of certain subsets of W . To specify these subsets we define
W ′ = SW ×B, where SW contains all unary linear polynomials (aka
sections) over (W, ◦,©∧ , 1). Also we define and

x⊑(u, b) iff u(x) ≤A b.

Then W = (W,W ′,⊑) is an example of a lattice frame. (Dedekind,
McNeille, Birkhoff) These play the role of Kripke frames for
non-distributive logics. We have two set of worlds: W for the
join-irreducibles and W ′ for the meet-irreducibles.

The Galois algebra of W is W
+ = (P(W )γ⊑

,∩,∪γ⊑
) and it is a

complete lattice.
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Consider the {·,∧, 1}-subreduct of A generated by B, which we
denote by (W, ◦,©∧ , 1); this is possibly infinite. Then D will consist
of certain subsets of W . To specify these subsets we define
W ′ = SW ×B, where SW contains all unary linear polynomials (aka
sections) over (W, ◦,©∧ , 1). Also we define and

x⊑(u, b) iff u(x) ≤A b.

Then W = (W,W ′,⊑) is an example of a lattice frame. (Dedekind,
McNeille, Birkhoff) These play the role of Kripke frames for
non-distributive logics. We have two set of worlds: W for the
join-irreducibles and W ′ for the meet-irreducibles.

The Galois algebra of W is W
+ = (P(W )γ⊑

,∩,∪γ⊑
) and it is a

complete lattice. For X ⊆W and Y ⊆W ′ we define

X⊲ = {b ∈W ′ : x⊑b, for all x ∈ X}
Y ⊳ = {a ∈W : a⊑y, for all y ∈ Y }
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Consider the {·,∧, 1}-subreduct of A generated by B, which we
denote by (W, ◦,©∧ , 1); this is possibly infinite. Then D will consist
of certain subsets of W . To specify these subsets we define
W ′ = SW ×B, where SW contains all unary linear polynomials (aka
sections) over (W, ◦,©∧ , 1). Also we define and

x⊑(u, b) iff u(x) ≤A b.

Then W = (W,W ′,⊑) is an example of a lattice frame. (Dedekind,
McNeille, Birkhoff) These play the role of Kripke frames for
non-distributive logics. We have two set of worlds: W for the
join-irreducibles and W ′ for the meet-irreducibles.

The Galois algebra of W is W
+ = (P(W )γ⊑

,∩,∪γ⊑
) and it is a

complete lattice. For X ⊆W and Y ⊆W ′ we define

X⊲ = {b ∈W ′ : x⊑b, for all x ∈ X}
Y ⊳ = {a ∈W : a⊑y, for all y ∈ Y }

γ⊑ : P(W ) → P(W ), γ⊑(X) = X⊲⊳, is a closure operator.
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In our case, we have more structure and W
+ becomes a residuated

lattice.
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In our case, we have more structure and W
+ becomes a residuated

lattice.

(W, ◦, 1) is a monoid.
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In our case, we have more structure and W
+ becomes a residuated

lattice.

(W, ◦, 1) is a monoid. Also, W acts (as a monoid) on
W ′ = SW ×B ≡W ×B ×W on both sides.
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In our case, we have more structure and W
+ becomes a residuated

lattice.

(W, ◦, 1) is a monoid. Also, W acts (as a monoid) on
W ′ = SW ×B ≡W ×B ×W on both sides. Also, the relation ⊑
connects the monoid operation with the actions: it satisfies the
nuclear condition:

(x ◦ y)⊑z ⇔ y⊑(x 
 z) ⇔ x⊑(z � y)

Here x 
 (u, b) = (u ◦ x, b).
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In our case, we have more structure and W
+ becomes a residuated

lattice.

(W, ◦, 1) is a monoid. Also, W acts (as a monoid) on
W ′ = SW ×B ≡W ×B ×W on both sides. Also, the relation ⊑
connects the monoid operation with the actions: it satisfies the
nuclear condition:

(x ◦ y)⊑z ⇔ y⊑(x 
 z) ⇔ x⊑(z � y)

Here x 
 (u, b) = (u ◦ x, b).

Then W
+ is a residuated lattice (NG - P. Jipsen), where

multiplication is given by: X ◦γ Y = γ(X ◦ Y ).

(This is because γN is a nucleus.)
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We also have additional structure, as W acts on W ′ with actions
corresponding to ©∧ , as well.
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We also have additional structure, as W acts on W ′ with actions
corresponding to ©∧ , as well.

(x©∧ y) N w ⇔ y N (x©
 w) ⇔ x N (w©� y)

x©∧ (y©∧ w)⊑z

(x©∧ y)©∧ w⊑z
(©∧ a)

x©∧ y⊑z

y©∧ x⊑z
(©∧ e)

x⊑z

x©∧ y⊑z
(©∧ i)

x©∧ x⊑z

x⊑z
(©∧ c)
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We also have additional structure, as W acts on W ′ with actions
corresponding to ©∧ , as well.

(x©∧ y) N w ⇔ y N (x©
 w) ⇔ x N (w©� y)

x©∧ (y©∧ w)⊑z

(x©∧ y)©∧ w⊑z
(©∧ a)

x©∧ y⊑z

y©∧ x⊑z
(©∧ e)

x⊑z

x©∧ y⊑z
(©∧ i)

x©∧ x⊑z

x⊑z
(©∧ c)

Results in [G - Jipsen] guarantee that W
+ is a distributive residuated

lattice. (This is because γN is a distributive nucleus; in particular,
©∧ γ⊑

= ∩.)
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In our case, we have further structure: B is a partial algebra and
copies of B sit inside both W and W ′ (b ≡ (id, b)). Furthermore, ⊑
satisfies special properties reminiscent of a proof-theoretic sequent
calculus for distributive FL.
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In our case, we have further structure: B is a partial algebra and
copies of B sit inside both W and W ′ (b ≡ (id, b)). Furthermore, ⊑
satisfies special properties reminiscent of a proof-theoretic sequent
calculus for distributive FL.

We call such pairs (W,B) Gentzen frames.
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In our case, we have further structure: B is a partial algebra and
copies of B sit inside both W and W ′ (b ≡ (id, b)). Furthermore, ⊑
satisfies special properties reminiscent of a proof-theoretic sequent
calculus for distributive FL.

We call such pairs (W,B) Gentzen frames.

Theorem. [G.-Jipsen] Given a Gentzen frame (W,B), the map
{}⊳ : B → W

+, b 7→ {b}⊳ = {b}⊲⊳ is a homomorphism.

I.e., {a•B b}
⊳ = {a}⊳ •W+ {b}⊳, for all a, b ∈ B. (• is a connective)
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In our case, we have further structure: B is a partial algebra and
copies of B sit inside both W and W ′ (b ≡ (id, b)). Furthermore, ⊑
satisfies special properties reminiscent of a proof-theoretic sequent
calculus for distributive FL.

We call such pairs (W,B) Gentzen frames.

Theorem. [G.-Jipsen] Given a Gentzen frame (W,B), the map
{}⊳ : B → W

+, b 7→ {b}⊳ = {b}⊲⊳ is a homomorphism.

I.e., {a•B b}
⊳ = {a}⊳ •W+ {b}⊳, for all a, b ∈ B. (• is a connective)

If ⊑ is antysymmetric, then the map is an embedding.
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In our case, we have further structure: B is a partial algebra and
copies of B sit inside both W and W ′ (b ≡ (id, b)). Furthermore, ⊑
satisfies special properties reminiscent of a proof-theoretic sequent
calculus for distributive FL.

We call such pairs (W,B) Gentzen frames.

Theorem. [G.-Jipsen] Given a Gentzen frame (W,B), the map
{}⊳ : B → W

+, b 7→ {b}⊳ = {b}⊲⊳ is a homomorphism.

I.e., {a•B b}
⊳ = {a}⊳ •W+ {b}⊳, for all a, b ∈ B. (• is a connective)

If ⊑ is antysymmetric, then the map is an embedding.

In the following slide, a, b ∈ B; x, y ∈W ; z ∈W ′.
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x⊑a a⊑z
x⊑z

(CUT)
a⊑a

(Id)

x©∧ (y©∧ w)⊑z

(x©∧ y)©∧ w⊑z
(©∧ a)

x©∧ y⊑z

y©∧ x⊑z
(©∧ e)

x⊑z

x©∧ y⊑z
(©∧ i)

x©∧ x⊑z

x⊑z
(©∧ c)

x⊑a b⊑z

x ◦ (a\b)⊑z
(\L)

a ◦ x⊑b

x⊑a\b
(\R)

x⊑a b⊑z

(b/a) ◦ x⊑z
(/L)

x ◦ a⊑b

x⊑b/a
(/R)

a ◦ b⊑z

a · b⊑z
(·L)

x⊑a y⊑b

x ◦ y⊑a · b
(·R)

ε⊑z
1⊑z

(1L)
ε⊑1

(1R)

a©∧ b⊑z

a ∧ b⊑z
(∧Lℓ)

x⊑a x⊑b

x⊑a ∧ b
(∧R)

a⊑z b⊑z

a ∨ b⊑z
(∨L)

x⊑a

x⊑a ∨ b
(∨Rℓ)

x⊑b

x⊑a ∨ b
(∨Rr)
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Idea: Express equations over {∧,∨, ·, 1} at the frame level.
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Idea: Express equations over {∧,∨, ·, 1} at the frame level.

For an equation ε over {∧,∨, ·, 1} we distribute products and meets
over joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : {∧, ·, 1}-terms.
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Given a linearized equation ε of the form t0 ≤ t1 ∨ · · · ∨ tn, where ti
are {∧, ·, 1}-terms and t0 is linear, we construct the rule R(ε)

t1⊑z · · · tn⊑z
t0⊑z

(R(ε))

where the ti’s are evaluated in (W, ◦, ε) and z in W ′.



Structural rules
FEP

FEP for DIRL

The plan

Galois algebra

Residuated frames

Distributive frames

The embedding

DGN

Equations

Structural rules

Free algebra

Finiteness

Proof (cont)

Nikolaos Galatos, AMS Sectional, Boulder, April 2013 DIRL have the FEP – 11 / 14

Given a linearized equation ε of the form t0 ≤ t1 ∨ · · · ∨ tn, where ti
are {∧, ·, 1}-terms and t0 is linear, we construct the rule R(ε)

t1⊑z · · · tn⊑z
t0⊑z

(R(ε))

where the ti’s are evaluated in (W, ◦, ε) and z in W ′.

Theorem. [G.-Jipsen] If (W,B) is a Gentzen frame and ε an
equation over {∧,∨, ·, 1}, then (W,B) satisfies R(ε) iff W

+ satisfies
ε.

(The linearity of the denominator of R(ε) plays an important role in
the proof.)
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Let (F, ◦, ε,©∧ ) be the free algebra over |B|-many generators, where
ε is a unit for ◦.
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Let (F, ◦, ε,©∧ ) be the free algebra over |B|-many generators, where
ε is a unit for ◦. For x, y ∈ F , we write x ≤F y iff y is obtained from
x by deleting some (possibly none) of the generators or ε; also we
stipulate x ≤F ε.
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ε is a unit for ◦. For x, y ∈ F , we write x ≤F y iff y is obtained from
x by deleting some (possibly none) of the generators or ε; also we
stipulate x ≤F ε. We denote by F the resulting ordered algebra.
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Let (F, ◦, ε,©∧ ) be the free algebra over |B|-many generators, where
ε is a unit for ◦. For x, y ∈ F , we write x ≤F y iff y is obtained from
x by deleting some (possibly none) of the generators or ε; also we
stipulate x ≤F ε. We denote by F the resulting ordered algebra.

By Higman’s Lemma, F is dually well-ordered (it has no infinite
antichains and no infinite ascending chains).
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ε is a unit for ◦. For x, y ∈ F , we write x ≤F y iff y is obtained from
x by deleting some (possibly none) of the generators or ε; also we
stipulate x ≤F ε. We denote by F the resulting ordered algebra.

By Higman’s Lemma, F is dually well-ordered (it has no infinite
antichains and no infinite ascending chains).

F is residuated in a stong sense:

Lemma For all x ∈ F , u ∈ SF and b ∈ B, u(x) ≤F b iff x ≤F b
u
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Let (F, ◦, ε,©∧ ) be the free algebra over |B|-many generators, where
ε is a unit for ◦. For x, y ∈ F , we write x ≤F y iff y is obtained from
x by deleting some (possibly none) of the generators or ε; also we
stipulate x ≤F ε. We denote by F the resulting ordered algebra.

By Higman’s Lemma, F is dually well-ordered (it has no infinite
antichains and no infinite ascending chains).

F is residuated in a stong sense:

Lemma For all x ∈ F , u ∈ SF and b ∈ B, u(x) ≤F b iff x ≤F b
u
.

where z
u

is defined by induction on the structure of u by:

z
id

= z, z
u◦y

= z�y

u
, z

y◦u
= y
z

u
, z

u©∧ y
=

z©� y

u
and z

y©∧ u
=

y©
 z

u
,

where id is the identity section and where 
,� are the residuals of ◦
and ©
 ,©� are the residuls of ©∧ in F.
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Theorem If A is an IDRL and B a finite partial subalgebra of A,
then W

+

A,B is finite.
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Theorem If A is an IDRL and B a finite partial subalgebra of A,
then W

+

A,B is finite.

Proof (Sketch) Note that the (surjective) homomorphism
h : F →W that extends a fixed bijection xi 7→ bi from its generators
to B is order-preserving.
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Theorem If A is an IDRL and B a finite partial subalgebra of A,
then W

+

A,B is finite.

Proof (Sketch) Note that the (surjective) homomorphism
h : F →W that extends a fixed bijection xi 7→ bi from its generators
to B is order-preserving.

Consider W
F

A,B = (F,W ′, h ◦ ⊑, ·F,
h,�h, {1}), where x (h ◦ ⊑) z
iff h(x)⊑z, x 
h z = h(x) 
 z and z �h y = z � h(y).
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F
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F

A,B is a distributive residuated frame.

To prove that W
+

A,B is finite, it suffices to prove that it possesses a
finite basis of sets {z}⊳⊑ = {x ∈W : x⊑z}, for z ∈W ′.
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then W
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Proof (Sketch) Note that the (surjective) homomorphism
h : F →W that extends a fixed bijection xi 7→ bi from its generators
to B is order-preserving.

Consider W
F

A,B = (F,W ′, h ◦ ⊑, ·F,
h,�h, {1}), where x (h ◦ ⊑) z
iff h(x)⊑z, x 
h z = h(x) 
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Claim 1: W
F

A,B is a distributive residuated frame.

To prove that W
+

A,B is finite, it suffices to prove that it possesses a
finite basis of sets {z}⊳⊑ = {x ∈W : x⊑z}, for z ∈W ′.

Claim 2: h[{z}⊳] = {z}⊳⊑

Indeed, for all x ∈W , there is x′ ∈ F with h(x′) = x, as h is
surjective; so, x = h(x′) ∈ {(u, b)}⊳N iff x′ ∈ {(u, b)}⊳, hence
x ∈ h[{(u, b)}⊳]. Conversely, if x ∈ h[{(u, b)}⊳], then x = h(x′) for
some x′ ∈ {(u, b)}⊳, hence x = h(x′) ∈ {(u, b)}⊳⊑ .
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Theorem If A is an IDRL and B a finite partial subalgebra of A,
then W

+

A,B is finite.

Proof (Sketch) Note that the (surjective) homomorphism
h : F →W that extends a fixed bijection xi 7→ bi from its generators
to B is order-preserving.

Consider W
F

A,B = (F,W ′, h ◦ ⊑, ·F,
h,�h, {1}), where x (h ◦ ⊑) z
iff h(x)⊑z, x 
h z = h(x) 
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F

A,B is a distributive residuated frame.

To prove that W
+

A,B is finite, it suffices to prove that it possesses a
finite basis of sets {z}⊳⊑ = {x ∈W : x⊑z}, for z ∈W ′.

Claim 2: h[{z}⊳] = {z}⊳⊑

Indeed, for all x ∈W , there is x′ ∈ F with h(x′) = x, as h is
surjective; so, x = h(x′) ∈ {(u, b)}⊳N iff x′ ∈ {(u, b)}⊳, hence
x ∈ h[{(u, b)}⊳]. Conversely, if x ∈ h[{(u, b)}⊳], then x = h(x′) for
some x′ ∈ {(u, b)}⊳, hence x = h(x′) ∈ {(u, b)}⊳⊑ .

So, it suffices to show that there are finitely many sets of the from
{z}⊳ = {x ∈ F : x (h ◦ ⊑) z}, for z ∈W ′.
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Claim 3: {(u, b)}⊳ =↓ {m
v

: m ∈Mb, h(v) = u}, where Mb is a
finite subset of F .
Indeed, for x ∈ F , and (u, b) ∈W ′, we have x ∈ {(u, b)}⊳ iff
u(h(x)) ≤ b iff h(v(x)) ≤ b, for some v ∈ SF such that h(v) = u,
since h is a surjective homomorphism.
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Claim 3: {(u, b)}⊳ =↓ {m
v

: m ∈Mb, h(v) = u}, where Mb is a
finite subset of F .
Indeed, for x ∈ F , and (u, b) ∈W ′, we have x ∈ {(u, b)}⊳ iff
u(h(x)) ≤ b iff h(v(x)) ≤ b, for some v ∈ SF such that h(v) = u,
since h is a surjective homomorphism.Equivalently,
v(x) ∈ h−1(↓ Ab), for some v ∈ h−1(u).
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Claim 3: {(u, b)}⊳ =↓ {m
v

: m ∈Mb, h(v) = u}, where Mb is a
finite subset of F .
Indeed, for x ∈ F , and (u, b) ∈W ′, we have x ∈ {(u, b)}⊳ iff
u(h(x)) ≤ b iff h(v(x)) ≤ b, for some v ∈ SF such that h(v) = u,
since h is a surjective homomorphism.Equivalently,
v(x) ∈ h−1(↓ Ab), for some v ∈ h−1(u).Since h is order-reserving,
h−1(↓ Ab) is a downset in F and, because F is dually well-ordered,
this downset is equal to ↓Mb, for some finite Mb ⊆ F .
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Claim 3: {(u, b)}⊳ =↓ {m
v

: m ∈Mb, h(v) = u}, where Mb is a
finite subset of F .
Indeed, for x ∈ F , and (u, b) ∈W ′, we have x ∈ {(u, b)}⊳ iff
u(h(x)) ≤ b iff h(v(x)) ≤ b, for some v ∈ SF such that h(v) = u,
since h is a surjective homomorphism.Equivalently,
v(x) ∈ h−1(↓ Ab), for some v ∈ h−1(u).Since h is order-reserving,
h−1(↓ Ab) is a downset in F and, because F is dually well-ordered,
this downset is equal to ↓Mb, for some finite Mb ⊆ F . So, the
above statement is equivalent to v(x) ≤ m, or to x ≤ m

v
, for some

v ∈ h−1(u) and some m ∈Mb.
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: m ∈Mb, h(v) = u}, where Mb is a
finite subset of F .
Indeed, for x ∈ F , and (u, b) ∈W ′, we have x ∈ {(u, b)}⊳ iff
u(h(x)) ≤ b iff h(v(x)) ≤ b, for some v ∈ SF such that h(v) = u,
since h is a surjective homomorphism.Equivalently,
v(x) ∈ h−1(↓ Ab), for some v ∈ h−1(u).Since h is order-reserving,
h−1(↓ Ab) is a downset in F and, because F is dually well-ordered,
this downset is equal to ↓Mb, for some finite Mb ⊆ F . So, the
above statement is equivalent to v(x) ≤ m, or to x ≤ m

v
, for some

v ∈ h−1(u) and some m ∈Mb.

Claim 4: {m
v

: m ∈Mb, b ∈ B, h(v) = u, u ∈ SW } is finite.
Indeed, it is a subset of the finite set ↑

⋃
b∈B Mb, as m ≤ m

v
(or

v(m) ≤ m), by integrality. Thus, there are only finitely many choices
for {(u, b)}⊳.
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Claim 3: {(u, b)}⊳ =↓ {m
v

: m ∈Mb, h(v) = u}, where Mb is a
finite subset of F .
Indeed, for x ∈ F , and (u, b) ∈W ′, we have x ∈ {(u, b)}⊳ iff
u(h(x)) ≤ b iff h(v(x)) ≤ b, for some v ∈ SF such that h(v) = u,
since h is a surjective homomorphism.Equivalently,
v(x) ∈ h−1(↓ Ab), for some v ∈ h−1(u).Since h is order-reserving,
h−1(↓ Ab) is a downset in F and, because F is dually well-ordered,
this downset is equal to ↓Mb, for some finite Mb ⊆ F . So, the
above statement is equivalent to v(x) ≤ m, or to x ≤ m

v
, for some

v ∈ h−1(u) and some m ∈Mb.

Claim 4: {m
v

: m ∈Mb, b ∈ B, h(v) = u, u ∈ SW } is finite.
Indeed, it is a subset of the finite set ↑

⋃
b∈B Mb, as m ≤ m

v
(or

v(m) ≤ m), by integrality. Thus, there are only finitely many choices
for {(u, b)}⊳.

Corollary Every variety of integral distributive residuated lattices
axiomatized by equations over the signature {∧,∨, ·, 1} has the FEP.
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