DEDEKIND'S TRANSPOSITION PRINCIPLE AND ISOTOPIC ALGEBRAS WITH NONISOMORPHIC CONGRUENCE LATTICES

William DeMeo

williamdemeo@gmail.com

University of South Carolina

AMS Spring Western Sectional Meeting University of Colorado, Boulder, CO

April 13-14, 2013

These slides and other resources are available at

http://williamdemeo.wordpress.com

DEDEKIND'S TRANSPOSITION PRINCIPLE

FOR MODULAR LATTICES

Notation

Let $\mathbf{L} = \langle L, \wedge, \vee \rangle$ be a lattice with $a \in L$.

Let φ_a and ψ_a be the *perspectivity maps*

 $\varphi_a(x) = x \wedge a$ and $\psi_a(x) = x \vee a$

For $x, y \in L$, let $\llbracket x, y \rrbracket_L = \{z \in L \mid x \leqslant z \leqslant y\}$.

DEDEKIND'S TRANSPOSITION PRINCIPLE

FOR MODULAR LATTICES

Notation

Let $\mathbf{L} = \langle L, \wedge, \vee \rangle$ be a lattice with $a \in L$.

Let φ_a and ψ_a be the *perspectivity maps*

 $\varphi_a(x) = x \wedge a$ and $\psi_a(x) = x \vee a$

For $x, y \in L$, let $\llbracket x, y \rrbracket_L = \{z \in L \mid x \leqslant z \leqslant y\}$.

THEOREM (DEDEKIND'S TRANSPOSITION PRINCIPLE)

L is modular iff for all $a, b \in L$ the maps φ_a and ψ_b are inverse lattice isomorphisms of $[\![a \land b, a]\!]$ and $[\![b, a \lor b]\!]$.

DEDEKIND'S TRANSPOSITION PRINCIPLE

FOR MODULAR LATTICES

Notation

Let $\mathbf{L} = \langle L, \wedge, \vee \rangle$ be a lattice with $a \in L$.

Let φ_a and ψ_a be the *perspectivity maps*

 $\varphi_a(x) = x \wedge a$ and $\psi_a(x) = x \vee a$

For $x, y \in L$, let $\llbracket x, y \rrbracket_L = \{z \in L \mid x \leqslant z \leqslant y\}$.

THEOREM (DEDEKIND'S TRANSPOSITION PRINCIPLE)

L is modular iff for all $a, b \in L$ the maps φ_a and ψ_b are inverse lattice isomorphisms of $[\![a \land b, a]\!]$ and $[\![b, a \lor b]\!]$.

ANOTHER TRANSPOSITION PRINCIPLE

FOR LATTICES OF EQUIVALENCE RELATIONS

Let *X* be a set and let Eq X be the lattice of equivalence relations on *X*.

If *L* is a sublattice of $\operatorname{Eq} X$ with $\eta, \theta \in L$, then we define

 $\llbracket \eta, \theta \rrbracket_L = \{ \gamma \in L \mid \eta \leqslant \gamma \leqslant \theta \}.$

ANOTHER TRANSPOSITION PRINCIPLE

FOR LATTICES OF EQUIVALENCE RELATIONS

Let *X* be a set and let Eq X be the lattice of equivalence relations on *X*. If *L* is a sublattice of Eq X with $\eta, \theta \in L$, then we define

 $\llbracket \eta, \theta \rrbracket_L = \{ \gamma \in L \mid \eta \leqslant \gamma \leqslant \theta \}.$

For $\beta \in \text{Eq} X$, let $[\![\eta, \theta]\!]_L^\beta$ be the set of relations in $[\![\eta, \theta]\!]_L$ that permute with β ,

 $\llbracket \eta, \theta \rrbracket_L^\beta = \{ \gamma \in L \mid \eta \leqslant \gamma \leqslant \theta \text{ and } \gamma \circ \beta = \beta \circ \gamma \}.$

ANOTHER TRANSPOSITION PRINCIPLE

FOR LATTICES OF EQUIVALENCE RELATIONS

Let *X* be a set and let Eq X be the lattice of equivalence relations on *X*. If *L* is a sublattice of Eq X with $\eta, \theta \in L$, then we define

 $\llbracket \eta, \theta \rrbracket_L = \{ \gamma \in L \mid \eta \leqslant \gamma \leqslant \theta \}.$

For $\beta \in \text{Eq} X$, let $\llbracket \eta, \theta \rrbracket_L^{\beta}$ be the set of relations in $\llbracket \eta, \theta \rrbracket_L$ that permute with β , $\llbracket \eta, \theta \rrbracket_L^{\beta} = \{ \gamma \in L \mid \eta \leqslant \gamma \leqslant \theta \text{ and } \gamma \circ \beta = \beta \circ \gamma \}.$

Lemma

Suppose α and β are permuting relations in $L \leq \text{Eq} X$.

Then $[\![\beta, \alpha \lor \beta]\!]_L \cong [\![\alpha \land \beta, \alpha]\!]_L^\beta \leqslant [\![\alpha \land \beta, \alpha]\!]_L.$

The proof requires the following version of *Dedekind's Rule:*

Lemma

Suppose $\alpha, \beta, \gamma \in L \leq \text{Eq } X$ and $\alpha \leq \beta$.

Then the following identities of subsets of X^2 hold:

 $\alpha \circ (\beta \cap \gamma) = \beta \cap (\alpha \circ \gamma)$ $(\beta \cap \gamma) \circ \alpha = \beta \cap (\gamma \circ \alpha)$

A and B are *isotopic over* C, denoted $A \sim_C B$, if there is an isomorphism

 $\varphi : \mathbf{A} \times \mathbf{C} \xrightarrow{\cong} \mathbf{B} \times \mathbf{C}$ that leaves the second coordinate fixed

i.e. $(\forall a \in A) (\forall c \in C) \quad \varphi(a,c) = (\varphi_1(a,c),c)$

A and B are *isotopic over* C, denoted A \sim_C B, if there is an isomorphism

 $\varphi : \mathbf{A} \times \mathbf{C} \xrightarrow{\cong} \mathbf{B} \times \mathbf{C}$ that leaves the second coordinate fixed

i.e.
$$(\forall a \in A) (\forall c \in C) \quad \varphi(a, c) = (\varphi_1(a, c), c)$$

We say that A and B are *isotopic*, denoted $A \sim B$, if $A \sim_C B$ for some C. It is easy to verify that \sim is an equivalence relation.

A and B are *isotopic over* C, denoted A \sim_C B, if there is an isomorphism

 $\varphi : \mathbf{A} \times \mathbf{C} \xrightarrow{\cong} \mathbf{B} \times \mathbf{C}$ that leaves the second coordinate fixed

i.e.
$$(\forall a \in A) (\forall c \in C) \quad \varphi(a, c) = (\varphi_1(a, c), c)$$

We say that A and B are *isotopic*, denoted $A \sim B$, if $A \sim_C B$ for some C.

If $A \sim_C B$ and $Con(A \times C)$ happens to be modular, then we write $A \sim_C^{mod} B$ and say that A and B are *modular isotopic over* C.

A and B are *isotopic over* C, denoted A \sim_C B, if there is an isomorphism

 $\varphi : \mathbf{A} \times \mathbf{C} \xrightarrow{\cong} \mathbf{B} \times \mathbf{C}$ that leaves the second coordinate fixed

i.e. $(\forall a \in A) (\forall c \in C) \quad \varphi(a, c) = (\varphi_1(a, c), c)$

We say that A and B are *isotopic*, denoted $A \sim B$, if $A \sim_C B$ for some C.

If $A \sim_C B$ and $Con(A \times C)$ happens to be modular, then we write $A \sim_C^{mod} B$ and say that A and B are *modular isotopic over* C.

We call A and B *modular isotopic in one step*, denoted $A \sim_1^{mod} B$, if they are modular isotopic over some C.

A and B are *isotopic over* C, denoted A \sim_C B, if there is an isomorphism

 $\varphi : \mathbf{A} \times \mathbf{C} \xrightarrow{\cong} \mathbf{B} \times \mathbf{C}$ that leaves the second coordinate fixed

i.e. $(\forall a \in A) (\forall c \in C) \quad \varphi(a, c) = (\varphi_1(a, c), c)$

We say that A and B are *isotopic*, denoted $A \sim B$, if $A \sim_C B$ for some C.

If $A \sim_C B$ and $Con(A \times C)$ happens to be modular, then we write $A \sim_C^{mod} B$ and say that A and B are *modular isotopic over* C.

We call A and B *modular isotopic in one step*, denoted $A \sim_1^{mod} B$, if they are modular isotopic over some C.

We call A and B are *modular isotopic*, denoted A \sim^{mod} B, if (A, B) is in the transitive closure of \sim_1^{mod} .

Lemma 11. If $\mathbf{A} \sim^{\text{mod}} \mathbf{B}$ then $\text{Con } \mathbf{A} \cong \text{Con } \mathbf{B}$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Lemma 11. If $\mathbf{A} \sim^{\text{mod}} \mathbf{B}$ then $\text{Con } \mathbf{A} \cong \text{Con } \mathbf{B}$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Could we use the same strategy with the non-modular version of the transposition principle to show that $A\sim B$ implies ${\rm Con}\,A\cong{\rm Con}\,B?$

Lemma 11. If $A \sim^{mod} B$ then $Con A \cong Con B$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Could we use the same strategy with the non-modular version of the transposition principle to show that $A\sim B$ implies ${\rm Con}\,A\cong{\rm Con}\,B?$

As you have guessed, the answer is no!

The perspectivity map that is so useful when ${\rm Con}(A\times C)$ is modular can fail miserably in the non-modular case...

Lemma 11. If $A \sim^{mod} B$ then $Con A \cong Con B$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Could we use the same strategy with the non-modular version of the transposition principle to show that $A\sim B$ implies ${\rm Con}\,A\cong{\rm Con}\,B?$

As you have guessed, the answer is no!

The perspectivity map that is so useful when $Con(A \times C)$ is modular can fail *miserably* in the non-modular case... *even when* $A \cong B!$

Lemma 11. If $A \sim^{mod} B$ then $Con A \cong Con B$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Could we use the same strategy with the non-modular version of the transposition principle to show that $A\sim B$ implies ${\rm Con}\,A\cong{\rm Con}\,B?$

As you have guessed, the answer is no!

The perspectivity map that is so useful when $Con(A \times C)$ is modular can fail *miserably* in the non-modular case... *even when* $A \cong B!$

But this only shows that the same argument doesn't work...

We describe a class of examples in which $A \sim B$ and $\operatorname{Con} A \ncong \operatorname{Con} B.$

The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size.

We describe a class of examples in which $A \sim B$ and $\operatorname{Con} A \ncong \operatorname{Con} B.$

The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size.

For any group G, let Sub(G) denote the lattice of subgroups of G.

We describe a class of examples in which $A \sim B$ and $\operatorname{Con} A \ncong \operatorname{Con} B.$

The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size.

For any group G, let Sub(G) denote the lattice of subgroups of G.

A group G is called a *Dedekind group* if every subgroup of G is normal.

We describe a class of examples in which $A \sim B$ and $\operatorname{Con} A \ncong \operatorname{Con} B.$

The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size.

For any group G, let Sub(G) denote the lattice of subgroups of G.

A group *G* is called a *Dedekind group* if every subgroup of *G* is normal.

Let S be any group and let D denote the *diagonal subgroup* of $S \times S$,

$$D = \{(x, x) \mid x \in S\}$$

The interval $\llbracket D, S \times S \rrbracket \leq Sub(S \times S)$ is described by the following

Lemma

The filter above the diagonal subgroup of $S \times S$ is isomorphic to the lattice of normal subgroups of *S*.

Let *S* be a group, and let $G = S_1 \times S_2$, where $S_1 \cong S_2 \cong S$. Let $D = \{(x_1, x_2) \in G \mid x_1 = x_2\}, \quad T_1 = S_1 \times \langle 1 \rangle, \quad T_2 = \langle 1 \rangle \times S_2.$

Let *S* be a group, and let $G = S_1 \times S_2$, where $S_1 \cong S_2 \cong S$. Let $D = \{(x_1, x_2) \in G \mid x_1 = x_2\}, \quad T_1 = S_1 \times \langle 1 \rangle, \quad T_2 = \langle 1 \rangle \times S_2.$

Then $D \cong T_1 \cong T_2$, and these are pair-wise compliments:

 $\langle T_1, T_2 \rangle = \langle T_1, D \rangle = \langle D, T_2 \rangle = G$

$$T_1 \cap D = D \cap T_2 = T_1 \cap T_2 = \langle (1,1) \rangle$$

Let S be a group, and let $G = S_1 \times S_2$, where $S_1 \cong S_2 \cong S$. Let $D = \{(x_1, x_2) \in G \mid x_1 = x_2\}, \quad T_1 = S_1 \times \langle 1 \rangle, \quad T_2 = \langle 1 \rangle \times S_2.$

Then $D \cong T_1 \cong T_2$, and these are pair-wise compliments:

$$\langle T_1, T_2 \rangle = \langle T_1, D \rangle = \langle D, T_2 \rangle = G$$

$$T_1 \cap D = D \cap T_2 = T_1 \cap T_2 = \langle (1,1) \rangle$$

Let $\mathbf{A} = \langle G/T_1, G^{\mathbf{A}} \rangle$ = the algebra with universe the left cosets of T_1 in G, and basic operations the left multiplications by elements of G.

For each $g \in G$ the operation $g^{\mathbf{A}} \in G^{\mathbf{A}}$ is defined by

$$g^{\mathbf{A}}(xT_1) = (gx)T_1 \qquad (xT_1 \in G/T_1).$$

Define the algebra $\mathbf{C} = \langle G/T_2, G^{\mathbf{C}} \rangle$ similarly.

The algebra **B** will have universe B = G/D, but we define the action of G on B with a twist.

The algebra **B** will have universe B = G/D, but we define the action of *G* on *B* with a twist.

For each $g = (g_1, g_2) \in G$, for each $(x_1, x_2)D \in G/D$, define

$$g^{\mathbf{B}}((x_1, x_2)D) = (g_2x_1, g_1x_2)D.$$

Let $\mathbf{B} = \langle G/D, G^{\mathbf{B}} \rangle$, where $G^{\mathbf{B}} = \{g^{\mathbf{B}} \mid g \in G\}$.

The algebra **B** will have universe B = G/D, but we define the action of G on B with a twist.

For each $g = (g_1, g_2) \in G$, for each $(x_1, x_2)D \in G/D$, define

$$g^{\mathbf{B}}((x_1, x_2)D) = (g_2x_1, g_1x_2)D.$$

Let $\mathbf{B} = \langle G/D, G^{\mathbf{B}} \rangle$, where $G^{\mathbf{B}} = \{g^{\mathbf{B}} \mid g \in G\}$.

Consider the binary relation $\varphi \subseteq (A \times C) \times (B \times C)$ that associates to each ordered pair

$$((x_1, x_2)T_1, (y_1, y_2)T_2) \in A \times C$$

the pair

 $((x_2, y_1)D, (y_1, y_2)T_2) \in B \times C$

The algebra **B** will have universe B = G/D, but we define the action of G on B with a twist.

For each $g = (g_1, g_2) \in G$, for each $(x_1, x_2)D \in G/D$, define

$$g^{\mathbf{B}}((x_1, x_2)D) = (g_2x_1, g_1x_2)D.$$

Let $\mathbf{B} = \langle G/D, G^{\mathbf{B}} \rangle$, where $G^{\mathbf{B}} = \{g^{\mathbf{B}} \mid g \in G\}$.

Consider the binary relation $\varphi \subseteq (A \times C) \times (B \times C)$ that associates to each ordered pair

$$((x_1, x_2)T_1, (y_1, y_2)T_2) \in A \times C$$

the pair

$$((x_2, y_1)D, (y_1, y_2)T_2) \in B \times C$$

It is easy to verify that this relation is a function, and in fact

 $\varphi : \mathbf{A} \times \mathbf{C} \to \mathbf{B} \times \mathbf{C}$ is an isomorphism.

The algebra **B** will have universe B = G/D, but we define the action of G on B with a twist.

For each $g = (g_1, g_2) \in G$, for each $(x_1, x_2)D \in G/D$, define

$$g^{\mathbf{B}}((x_1, x_2)D) = (g_2x_1, g_1x_2)D.$$

Let $\mathbf{B} = \langle G/D, G^{\mathbf{B}} \rangle$, where $G^{\mathbf{B}} = \{g^{\mathbf{B}} \mid g \in G\}$.

Consider the binary relation $\varphi \subseteq (A \times C) \times (B \times C)$ that associates to each ordered pair

$$((x_1, x_2)T_1, (y_1, y_2)T_2) \in A \times C$$

the pair

$$((x_2, y_1)D, (y_1, y_2)T_2) \in B \times C$$

It is easy to verify that this relation is a function, and in fact

 $\varphi : \mathbf{A} \times \mathbf{C} \to \mathbf{B} \times \mathbf{C}$ is an isomorphism.

Since φ leaves second coordinates fixed, $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$.

Compare Con A and Con B.

Compare Con A and Con B.

 $\operatorname{Con} \mathbf{A} \cong \llbracket T_1, G \rrbracket \leqslant \operatorname{Sub}(G), \operatorname{so} \operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S).$

Compare Con A and Con B.

 $\operatorname{Con} \mathbf{A} \cong \llbracket T_1, G \rrbracket \leqslant \operatorname{Sub}(G), \operatorname{so} \operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S).$

 $\operatorname{Con} \mathbf{B}$ is isomorphic to the lattice of normal subgroups of S.

Compare Con A and Con B.

 $\operatorname{Con} \mathbf{A} \cong \llbracket T_1, G \rrbracket \leqslant \operatorname{Sub}(G), \operatorname{so} \operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S).$

Con **B** is isomorphic to the lattice of normal subgroups of *S*.

 $\operatorname{Con} \mathbf{B} \cong \operatorname{NSub}(S) \leq \operatorname{Sub}(S) \cong \operatorname{Con} \mathbf{A}$

So, if S is any non-Dedekind group, $\operatorname{Con} \mathbf{B} \ncong \operatorname{Con} \mathbf{A}$.

Compare Con A and Con B.

 $\operatorname{Con} \mathbf{A} \cong \llbracket T_1, G \rrbracket \leqslant \operatorname{Sub}(G), \operatorname{so} \operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S).$

Con **B** is isomorphic to the lattice of normal subgroups of *S*.

 $\operatorname{Con} \mathbf{B} \cong \operatorname{NSub}(S) \leq \operatorname{Sub}(S) \cong \operatorname{Con} \mathbf{A}$

So, if S is any non-Dedekind group, $\operatorname{Con} \mathbf{B} \ncong \operatorname{Con} \mathbf{A}$.

If *S* is a nonabelian simple group, then $\operatorname{Con} \mathbf{B} \cong \mathbf{2}$, while $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$ can be arbitrarily large.