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DEDEKIND’S TRANSPOSITION PRINCIPLE
FOR MODULAR LATTICES

Notation

Let L = 〈L,∧,∨〉 be a lattice with a ∈ L.

Let ϕa and ψa be the perspectivity maps

ϕa(x) = x ∧ a and ψa(x) = x ∨ a

For x, y ∈ L, let Jx, yKL = {z ∈ L | x 6 z 6 y}.

ba

a ∧ b

a ∨ b

x

ψb(x)

y

ϕa(y)

THEOREM (DEDEKIND’S TRANSPOSITION PRINCIPLE)
L is modular iff for all a, b ∈ L the maps ϕa and ψb are
inverse lattice isomorphisms of Ja ∧ b, aK and Jb, a ∨ bK.
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ANOTHER TRANSPOSITION PRINCIPLE
FOR LATTICES OF EQUIVALENCE RELATIONS

Let X be a set and let Eq X be the lattice of equivalence relations on X.

If L is a sublattice of Eq X with η, θ ∈ L, then we define

Jη, θKL = {γ ∈ L | η 6 γ 6 θ}.

For β ∈ Eq X, let Jη, θKβL be the set of relations in Jη, θKL that permute with β,

Jη, θKβL = {γ ∈ L | η 6 γ 6 θ and γ ◦ β = β ◦ γ}.

LEMMA

Suppose α and β are permuting relations in L 6 Eq X.

Then Jβ, α ∨ βKL ∼= Jα ∧ β, αKβL 6 Jα ∧ β, αKL.

βα

α ∧ β

α ∨ β

x

x ◦ β

y

y ∧ α
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DEDEKIND’S RULE

The proof requires the following version of Dedekind’s Rule:

LEMMA

Suppose α, β, γ ∈ L 6 Eq X and α 6 β.

Then the following identities of subsets of X2 hold:

α ◦ (β ∩ γ) = β ∩ (α ◦ γ)

(β ∩ γ) ◦ α = β ∩ (γ ◦ α)



ISOTOPY
BASIC DEFINITIONS

Let A, B, C be algebras of the same type.

A and B are isotopic over C, denoted A ∼C B, if there is an isomorphism

ϕ : A× C
∼=−→ B× C that leaves the second coordinate fixed

i.e. (∀a ∈ A) (∀c ∈ C) ϕ(a, c) = (ϕ1(a, c), c)

We say that A and B are isotopic, denoted A ∼ B, if A ∼C B for some C.

If A ∼C B and Con(A× C) happens to be modular, then we write A ∼mod
C B

and say that A and B are modular isotopic over C.

We call A and B modular isotopic in one step, denoted A ∼mod
1 B, if they are

modular isotopic over some C.

We call A and B are modular isotopic, denoted A ∼mod B, if (A,B) is in the
transitive closure of ∼mod

1 .
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ISOTOPY
MODULAR CASE

Lemma 11. If A ∼mod B then Con A ∼= Con B.

The proof is a nice/easy application of Dedekind’s Transposition Principle.

Could we use the same strategy with the non-modular version of the
transposition principle to show that A ∼ B implies Con A ∼= Con B?

As you have guessed, the answer is no!

The perspectivity map that is so useful when Con(A× C) is modular can fail
miserably in the non-modular case...

even when A ∼= B!

But this only shows that the same argument doesn’t work...
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COUNTEREXAMPLES

We describe a class of examples in which A ∼ B and Con A � Con B.

The examples show that congruence lattices of isotopic algebras can differ
arbitrarily in size.

For any group G, let Sub(G) denote the lattice of subgroups of G.

A group G is called a Dedekind group if every subgroup of G is normal.

Let S be any group and let D denote the diagonal subgroup of S× S,

D = {(x, x) | x ∈ S}

The interval JD, S× SK 6 Sub(S× S) is described by the following

LEMMA

The filter above the diagonal subgroup of S× S is isomorphic to the lattice of
normal subgroups of S.
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THE EXAMPLE

Let S be a group, and let G = S1 × S2, where S1 ∼= S2 ∼= S.

Let D = {(x1, x2) ∈ G | x1 = x2}, T1 = S1 × 〈1〉, T2 = 〈1〉 × S2.

Then D ∼= T1 ∼= T2, and these are pair-wise compliments:

〈T1, T2〉 = 〈T1,D〉 = 〈D, T2〉 = G

T1 ∩ D = D ∩ T2 = T1 ∩ T2 = 〈(1, 1)〉

Let A = 〈G/T1,GA〉 = the algebra with universe the left cosets of T1 in G, and
basic operations the left multiplications by elements of G.

For each g ∈ G the operation gA ∈ GA is defined by

gA(xT1) = (gx)T1 (xT1 ∈ G/T1).

Define the algebra C = 〈G/T2,GC〉 similarly.
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THE EXAMPLE

The algebra B will have universe B = G/D, but we define the action of G on B
with a twist.

For each g = (g1, g2) ∈ G, for each (x1, x2)D ∈ G/D, define

gB((x1, x2)D) = (g2x1, g1x2)D.

Let B = 〈G/D,GB〉, where GB = {gB | g ∈ G}.

Consider the binary relation ϕ ⊆ (A× C)× (B× C) that associates to each
ordered pair

((x1, x2)T1, (y1, y2)T2) ∈ A× C

the pair
((x2, y1)D, (y1, y2)T2) ∈ B× C

It is easy to verify that this relation is a function, and in fact

ϕ : A× C→ B× C is an isomorphism.

Since ϕ leaves second coordinates fixed, A ∼C B.
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CONCLUSION

Compare Con A and Con B.

Con A ∼= JT1,GK 6 Sub(G), so Con A ∼= Sub(S).

Con B is isomorphic to the lattice of normal subgroups of S.

Con B ∼= NSub(S) 6 Sub(S) ∼= Con A

So, if S is any non-Dedekind group, Con B � Con A.

If S is a nonabelian simple group, then Con B ∼= 2, while Con A ∼= Sub(S) can
be arbitrarily large.
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