DEDEKIND’S TRANSPOSITION PRINCIPLE
AND
ISOTOPIC ALGEBRAS WITH NONISOMORPHIC
CONGRUENCE LATTICES

William DeMeo

williamdemeo@gmail.com
University of South Carolina

AMS Spring Western Sectional Meeting
University of Colorado, Boulder, CO

April 13-14, 2013

These slides and other resources are available at

http://williamdemeo.wordpress.com



williamdemeo@gmail.com
http://williamdemeo.wordpress.com
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LetL = (L, A, V) be a lattice with a € L.

Let ¢, and v, be the perspectivity maps
o,(x)=xAa and Y.(x)=xVa

Forx,ye L,/ let[x,y]: ={z€L|x<z<y}.
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Let X be a set and let Eq X be the lattice of equivalence relations on X.

If L is a sublattice of Eq X with 7,6 € L, then we define
[n,0]l.={yeL|n<~y<6}

For 8 € EqX, let [n,0]? be the set of relations in [, ], that permute with 3,

[[7770]]5:{7€L|77<'7<9and’yoﬂ:,80fy},

aVp

LEMMA
Suppose « and 3 are permuting relations in L < EqX.

Then [B,aV Bl = [aAB,a]] < [aAB,a]L.




DEDEKIND’S RULE

The proof requires the following version of Dedekind’s Rule:

LEMMA

Suppose o, B,v € L < EqX and a < 8.

Then the following identities of subsets of X* hold:
ao(fNy)=p4N(ac7)

(BNy)oa=BN(yoa)
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A and B are isotopic over C, denoted A ~¢ B, if there is an isomorphism
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iie. (VaeA)(VeeC) o(a,c)=(pa,c)c)

We say that A and B are isotopic, denoted A ~ B, if A ~¢ B for some C.

If A ~c B and Con(A x C) happens to be modular, then we write A ~g B
and say that A and B are modular isotopic over C.

We call A and B modular isotopic in one step, denoted A ~"* B, if they are
modular isotopic over some C.
We call A and B are modular isotopic, denoted A ~™ B, if (A, B) is in the

mod

transitive closure of ~]
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MODULAR CASE

Lemma 11. If A ~™ B then Con A = ConB.
The proof is a nice/easy application of Dedekind’s Transposition Principle.

Could we use the same strategy with the non-modular version of the
transposition principle to show that A ~ B implies Con A = ConB?

As you have guessed, the answer is no!

The perspectivity map that is so useful when Con(A x C) is modular can fail
miserably in the non-modular case... even when A = B!

But this only shows that the same argument doesn’t work...
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COUNTEREXAMPLES

We describe a class of examples in which A ~ B and Con A 2 ConB.

The examples show that congruence lattices of isotopic algebras can differ
arbitrarily in size.

For any group G, let Sub(G) denote the lattice of subgroups of G.
A group G is called a Dedekind group if every subgroup of G is normal.

Let S be any group and let D denote the diagonal subgroup of S x S,

D ={(x,x) | x €S}

The interval [D, S x S] < Sub(S x S) is described by the following

LEMMA

The filter above the diagonal subgroup of S x S is isomorphic to the lattice of
normal subgroups of S.




THE EXAMPLE

Let S be a group, and let G = S| x S», where §; = §, = S.
LetD:{(M,)Q)GGl.X]:.Xz}, T =S ><<1>7 T2=<]>><Sz.



THE EXAMPLE

Let S be a group, and let G = S x S,, where S; = 8§, = 8.

LetD:{(xl,xz)eG|x1:x2}, T =S ><<1>, T2=<]>><Sz.

Then D = T) = T,, and these are pair-wise compliments:
<T17T2> = <T1,D> = <Da T2> =G

TiND=DNT.=TiNT>={(1,1))



THE EXAMPLE

Let S be a group, and let G = S| x S», where §; = §, = S.
LetD:{(X],)Cz)GGl)C]Z)Cz}7 T1251><<|>, T2=<]>><Sz.
Then D = T) = T,, and these are pair-wise compliments:
(I, ) =(T,D) = (D, T») =G
TiND=DNT.=TiNT>={(1,1))

Let A = (G/Ty, G*) = the algebra with universe the left cosets of Ty in G, and
basic operations the left multiplications by elements of G.

For each g € G the operation g* € G* is defined by
g (T) = (g (71 € G/Th).

Define the algebra C = (G/T», G) similarly.
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The algebra B will have universe B = G /D, but we define the action of G on B
with a twist.

For each g = (g1,¢2) € G, for each (x;,x2)D € G/D, define
% ((x1,%)D) = (g2x1, 81302)D.
Let B = (G/D,G"), where G* = {¢® | g € G}.

Consider the binary relation ¢ C (A x C) x (B x C) that associates to each
ordered pair
((x1,%2)T1, (1, 32)T2) €A X C

the pair
((x2,y1)D, (y1,y2)T2) € Bx C
It is easy to verify that this relation is a function, and in fact
¢: A x C— B xC isanisomorphism.

Since ¢ leaves second coordinates fixed, A ~¢ B.
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CONCLUSION

Compare Con A and Con B.

ConA = [Ty, G] < Sub(G), so ConA = Sub(S).

Con B is isomorphic to the lattice of normal subgroups of S.
ConB 22 NSub(S) < Sub(S) = ConA

So, if § is any non-Dedekind group, Con B 2 Con A.

If S is a nonabelian simple group, then ConB 2 2, while Con A = Sub(S) can
be arbitrarily large.



	Dedekind's Transposition Principle
	Another transposition principle
	Isotopy
	Example
	Conclusion

