DEDEKIND'S TRANSPOSITION PRINCIPLE

AND
 ISOTOPIC ALGEBRAS WITH NONISOMORPHIC CONGRUENCE LATTICES

William DeMeo
williamdemeo@gmail.com
University of South Carolina

AMS Spring Western Sectional Meeting University of Colorado, Boulder, CO

April 13-14, 2013

These slides and other resources are available at http://williamdemeo.wordpress.com

Dedekind's Transposition Principle

Notation

Let $\mathbf{L}=\langle L, \wedge, \vee\rangle$ be a lattice with $a \in L$.
Let φ_{a} and ψ_{a} be the perspectivity maps

$$
\varphi_{a}(x)=x \wedge a \quad \text { and } \quad \psi_{a}(x)=x \vee a
$$

For $x, y \in L$, let $\llbracket x, y \rrbracket_{L}=\{z \in L \mid x \leqslant z \leqslant y\}$.

Dedekind’s Transposition Principle

Notation

Let $\mathbf{L}=\langle L, \wedge, \vee\rangle$ be a lattice with $a \in L$.
Let φ_{a} and ψ_{a} be the perspectivity maps

$$
\varphi_{a}(x)=x \wedge a \quad \text { and } \quad \psi_{a}(x)=x \vee a
$$

For $x, y \in L$, let $\llbracket x, y \rrbracket_{L}=\{z \in L \mid x \leqslant z \leqslant y\}$.

Theorem (Dedekind's Transposition Principle)

\mathbf{L} is modular iff for all $a, b \in L$ the maps φ_{a} and ψ_{b} are inverse lattice isomorphisms of $\llbracket a \wedge b, a \rrbracket$ and $\llbracket b, a \vee b \rrbracket$.

Dedekind's Transposition Principle

Notation

Let $\mathbf{L}=\langle L, \wedge, \vee\rangle$ be a lattice with $a \in L$.
Let φ_{a} and ψ_{a} be the perspectivity maps

$$
\varphi_{a}(x)=x \wedge a \quad \text { and } \quad \psi_{a}(x)=x \vee a
$$

For $x, y \in L$, let $\llbracket x, y \rrbracket_{L}=\{z \in L \mid x \leqslant z \leqslant y\}$.

Theorem (Dedekind's Transposition Principle)

\mathbf{L} is modular iff for all $a, b \in L$ the maps φ_{a} and ψ_{b} are inverse lattice isomorphisms of $\llbracket a \wedge b, a \rrbracket$ and $\llbracket b, a \vee b \rrbracket$.

ANOTHER TRANSPOSITION PRINCIPLE

FOR LATTICES OF EQUIVALENCE RELATIONS
Let X be a set and let $\mathrm{Eq} X$ be the lattice of equivalence relations on X.
If L is a sublattice of $\operatorname{Eq} X$ with $\eta, \theta \in L$, then we define

$$
\llbracket \eta, \theta \rrbracket_{L}=\{\gamma \in L \mid \eta \leqslant \gamma \leqslant \theta\} .
$$

ANOTHER TRANSPOSITION PRINCIPLE

FOR LATTICES OF EQUIVALENCE RELATIONS
Let X be a set and let $\mathrm{Eq} X$ be the lattice of equivalence relations on X.
If L is a sublattice of $\mathrm{Eq} X$ with $\eta, \theta \in L$, then we define

$$
\llbracket \eta, \theta \rrbracket_{L}=\{\gamma \in L \mid \eta \leqslant \gamma \leqslant \theta\} .
$$

For $\beta \in \mathrm{Eq} X$, let $\llbracket \eta, \theta \rrbracket_{L}^{\beta}$ be the set of relations in $\llbracket \eta, \theta \rrbracket_{L}$ that permute with β,

$$
\llbracket \eta, \theta \rrbracket_{L}^{\beta}=\{\gamma \in L \mid \eta \leqslant \gamma \leqslant \theta \text { and } \gamma \circ \beta=\beta \circ \gamma\} .
$$

ANOTHER TRANSPOSITION PRINCIPLE

FOR LATTICES OF EQUIVALENCE RELATIONS
Let X be a set and let $\mathrm{Eq} X$ be the lattice of equivalence relations on X.
If L is a sublattice of $\operatorname{Eq} X$ with $\eta, \theta \in L$, then we define

$$
\llbracket \eta, \theta \rrbracket_{L}=\{\gamma \in L \mid \eta \leqslant \gamma \leqslant \theta\} .
$$

For $\beta \in \mathrm{Eq} X$, let $\llbracket \eta, \theta \rrbracket_{L}^{\beta}$ be the set of relations in $\llbracket \eta, \theta \rrbracket_{L}$ that permute with β,

$$
\llbracket \eta, \theta \rrbracket_{L}^{\beta}=\{\gamma \in L \mid \eta \leqslant \gamma \leqslant \theta \text { and } \gamma \circ \beta=\beta \circ \gamma\} .
$$

LEMMA

Suppose α and β are permuting relations in $L \leqslant \operatorname{Eq} X$. Then $\llbracket \beta, \alpha \vee \beta \rrbracket_{L} \cong \llbracket \alpha \wedge \beta, \alpha \rrbracket_{L}^{\beta} \leqslant \llbracket \alpha \wedge \beta, \alpha \rrbracket_{L}$.

Dedekind's Rule

The proof requires the following version of Dedekind's Rule:
Lemma
Suppose $\alpha, \beta, \gamma \in L \leqslant \operatorname{Eq} X$ and $\alpha \leqslant \beta$.
Then the following identities of subsets of X^{2} hold:

$$
\begin{aligned}
& \alpha \circ(\beta \cap \gamma)=\beta \cap(\alpha \circ \gamma) \\
& (\beta \cap \gamma) \circ \alpha=\beta \cap(\gamma \circ \alpha)
\end{aligned}
$$

ISOTOPY

Let $\mathbf{A}, \mathbf{B}, \mathbf{C}$ be algebras of the same type.
\mathbf{A} and \mathbf{B} are isotopic over \mathbf{C}, denoted $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$, if there is an isomorphism

$$
\varphi: \mathbf{A} \times \mathbf{C} \stackrel{\cong}{\Longrightarrow} \mathbf{B} \times \mathbf{C} \quad \text { that leaves the second coordinate fixed }
$$

$$
\text { i.e. }(\forall a \in A)(\forall c \in C) \quad \varphi(a, c)=\left(\varphi_{1}(a, c), c\right)
$$

ISOTOPY

Let $\mathbf{A}, \mathbf{B}, \mathbf{C}$ be algebras of the same type.
\mathbf{A} and \mathbf{B} are isotopic over \mathbf{C}, denoted $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$, if there is an isomorphism

$$
\varphi: \mathbf{A} \times \mathbf{C} \stackrel{\cong}{\cong} \mathbf{B} \times \mathbf{C} \quad \text { that leaves the second coordinate fixed }
$$

$$
\text { i.e. }(\forall a \in A)(\forall c \in C) \quad \varphi(a, c)=\left(\varphi_{1}(a, c), c\right)
$$

We say that \mathbf{A} and \mathbf{B} are isotopic, denoted $\mathbf{A} \sim \mathbf{B}$, if $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$ for some \mathbf{C}.
It is easy to verify that \sim is an equivalence relation.

Isotopy

Let $\mathbf{A}, \mathbf{B}, \mathbf{C}$ be algebras of the same type.
\mathbf{A} and \mathbf{B} are isotopic over \mathbf{C}, denoted $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$, if there is an isomorphism

$$
\varphi: \mathbf{A} \times \mathbf{C} \stackrel{\cong}{\cong} \mathbf{B} \times \mathbf{C} \quad \text { that leaves the second coordinate fixed }
$$

$$
\text { i.e. }(\forall a \in A)(\forall c \in C) \quad \varphi(a, c)=\left(\varphi_{1}(a, c), c\right)
$$

We say that \mathbf{A} and \mathbf{B} are isotopic, denoted $\mathbf{A} \sim \mathbf{B}$, if $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$ for some \mathbf{C}. If $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$ and $\operatorname{Con}(\mathbf{A} \times \mathbf{C})$ happens to be modular, then we write $\quad \mathbf{A} \sim_{\mathbf{C}}^{\text {mod }} \mathbf{B}$ and say that \mathbf{A} and \mathbf{B} are modular isotopic over \mathbf{C}.

Isotopy

Let $\mathbf{A}, \mathbf{B}, \mathbf{C}$ be algebras of the same type.
\mathbf{A} and \mathbf{B} are isotopic over \mathbf{C}, denoted $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$, if there is an isomorphism

$$
\varphi: \mathbf{A} \times \mathbf{C} \stackrel{\cong}{\cong} \mathbf{B} \times \mathbf{C} \quad \text { that leaves the second coordinate fixed }
$$

$$
\text { i.e. }(\forall a \in A)(\forall c \in C) \quad \varphi(a, c)=\left(\varphi_{1}(a, c), c\right)
$$

We say that \mathbf{A} and \mathbf{B} are isotopic, denoted $\mathbf{A} \sim \mathbf{B}$, if $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$ for some \mathbf{C}. If $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$ and $\operatorname{Con}(\mathbf{A} \times \mathbf{C})$ happens to be modular, then we write $\quad \mathbf{A} \sim_{\mathbf{C}}^{\text {mod }} \mathbf{B}$ and say that \mathbf{A} and \mathbf{B} are modular isotopic over \mathbf{C}.

We call \mathbf{A} and \mathbf{B} modular isotopic in one step, denoted $\mathbf{A} \sim_{1}^{\bmod } \mathbf{B}$, if they are modular isotopic over some C.

ISOTOPY

Let $\mathbf{A}, \mathbf{B}, \mathbf{C}$ be algebras of the same type.
\mathbf{A} and \mathbf{B} are isotopic over \mathbf{C}, denoted $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$, if there is an isomorphism

$$
\varphi: \mathbf{A} \times \mathbf{C} \stackrel{\cong}{\cong} \mathbf{B} \times \mathbf{C} \quad \text { that leaves the second coordinate fixed }
$$

$$
\text { i.e. }(\forall a \in A)(\forall c \in C) \quad \varphi(a, c)=\left(\varphi_{1}(a, c), c\right)
$$

We say that \mathbf{A} and \mathbf{B} are isotopic, denoted $\mathbf{A} \sim \mathbf{B}$, if $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$ for some \mathbf{C}. If $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$ and $\operatorname{Con}(\mathbf{A} \times \mathbf{C})$ happens to be modular, then we write $\quad \mathbf{A} \sim_{\mathbf{C}}^{\bmod } \mathbf{B}$ and say that \mathbf{A} and \mathbf{B} are modular isotopic over \mathbf{C}.

We call \mathbf{A} and \mathbf{B} modular isotopic in one step, denoted $\mathbf{A} \sim_{1}^{\bmod } \mathbf{B}$, if they are modular isotopic over some C.
We call \mathbf{A} and \mathbf{B} are modular isotopic, denoted $\mathbf{A} \sim^{\bmod } \mathbf{B}$, if (\mathbf{A}, \mathbf{B}) is in the transitive closure of $\sim_{1}^{\text {mod }}$.

ISOTOPY

Lemma 11. If $\mathbf{A} \sim^{\bmod } \mathbf{B}$ then $\operatorname{Con} \mathbf{A} \cong \operatorname{Con} \mathbf{B}$.
The proof is a nice/easy application of Dedekind's Transposition Principle.

Isotopy

Lemma 11. If $\mathbf{A} \sim^{\bmod } \mathbf{B}$ then $\operatorname{Con} \mathbf{A} \cong \operatorname{Con} \mathbf{B}$.
The proof is a nice/easy application of Dedekind's Transposition Principle.
Could we use the same strategy with the non-modular version of the transposition principle to show that $\mathbf{A} \sim \mathbf{B}$ implies Con $\mathbf{A} \cong \operatorname{Con} \mathbf{B}$?

Isotopy

Lemma 11. If $\mathbf{A} \sim^{\bmod } \mathbf{B}$ then $\operatorname{Con} \mathbf{A} \cong \operatorname{Con} \mathbf{B}$.
The proof is a nice/easy application of Dedekind's Transposition Principle.
Could we use the same strategy with the non-modular version of the transposition principle to show that $\mathbf{A} \sim \mathbf{B}$ implies Con $\mathbf{A} \cong \operatorname{Con} \mathbf{B}$?

As you have guessed, the answer is no!
The perspectivity map that is so useful when $\operatorname{Con}(\mathbf{A} \times \mathbf{C})$ is modular can fail miserably in the non-modular case...

Isotopy

Lemma 11. If $\mathbf{A} \sim^{\bmod } \mathbf{B}$ then $\operatorname{Con} \mathbf{A} \cong \operatorname{Con} \mathbf{B}$.
The proof is a nice/easy application of Dedekind's Transposition Principle.
Could we use the same strategy with the non-modular version of the transposition principle to show that $\mathbf{A} \sim \mathbf{B}$ implies Con $\mathbf{A} \cong \operatorname{Con} \mathbf{B}$?

As you have guessed, the answer is no!
The perspectivity map that is so useful when $\operatorname{Con}(\mathbf{A} \times \mathbf{C})$ is modular can fail miserably in the non-modular case... even when $\mathbf{A} \cong \mathbf{B}$!

ISOTOPY

Lemma 11. If $\mathbf{A} \sim^{\bmod } \mathbf{B}$ then $\operatorname{Con} \mathbf{A} \cong \operatorname{Con} \mathbf{B}$.
The proof is a nice/easy application of Dedekind's Transposition Principle.
Could we use the same strategy with the non-modular version of the transposition principle to show that $\mathbf{A} \sim \mathbf{B}$ implies Con $\mathbf{A} \cong \operatorname{Con} \mathbf{B}$?

As you have guessed, the answer is no!
The perspectivity map that is so useful when $\operatorname{Con}(\mathbf{A} \times \mathbf{C})$ is modular can fail miserably in the non-modular case... even when $\mathbf{A} \cong \mathbf{B}$!

But this only shows that the same argument doesn't work...

Counterexamples

We describe a class of examples in which $\mathbf{A} \sim \mathbf{B}$ and $\operatorname{Con} \mathbf{A} \not \neq \operatorname{Con} \mathbf{B}$.
The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size.

Counterexamples

We describe a class of examples in which $\mathbf{A} \sim \mathbf{B}$ and $\operatorname{Con} \mathbf{A} \not \neq \operatorname{Con} \mathbf{B}$.
The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size.
For any group G, let $\operatorname{Sub}(G)$ denote the lattice of subgroups of G.

Counterexamples

We describe a class of examples in which $\mathbf{A} \sim \mathbf{B}$ and $\operatorname{Con} \mathbf{A} \neq \operatorname{Con} \mathbf{B}$.
The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size.

For any group G, let $\operatorname{Sub}(G)$ denote the lattice of subgroups of G.
A group G is called a Dedekind group if every subgroup of G is normal.

Counterexamples

We describe a class of examples in which $\mathbf{A} \sim \mathbf{B}$ and $\operatorname{Con} \mathbf{A} \not \neq \operatorname{Con} \mathbf{B}$.
The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size.

For any group G, let $\operatorname{Sub}(G)$ denote the lattice of subgroups of G.
A group G is called a Dedekind group if every subgroup of G is normal.
Let S be any group and let D denote the diagonal subgroup of $S \times S$,

$$
D=\{(x, x) \mid x \in S\}
$$

The interval $\llbracket D, S \times S \rrbracket \leqslant \operatorname{Sub}(S \times S)$ is described by the following

Lemma

The filter above the diagonal subgroup of $S \times S$ is isomorphic to the lattice of normal subgroups of S.

The EXAMPLE

Let S be a group, and let $G=S_{1} \times S_{2}$, where $S_{1} \cong S_{2} \cong S$.

$$
\text { Let } D=\left\{\left(x_{1}, x_{2}\right) \in G \mid x_{1}=x_{2}\right\}, \quad T_{1}=S_{1} \times\langle 1\rangle, \quad T_{2}=\langle 1\rangle \times S_{2} .
$$

The example

Let S be a group, and let $G=S_{1} \times S_{2}$, where $S_{1} \cong S_{2} \cong S$.
Let $D=\left\{\left(x_{1}, x_{2}\right) \in G \mid x_{1}=x_{2}\right\}, \quad T_{1}=S_{1} \times\langle 1\rangle, \quad T_{2}=\langle 1\rangle \times S_{2}$.
Then $D \cong T_{1} \cong T_{2}$, and these are pair-wise compliments:

$$
\begin{gathered}
\left\langle T_{1}, T_{2}\right\rangle=\left\langle T_{1}, D\right\rangle=\left\langle D, T_{2}\right\rangle=G \\
T_{1} \cap D=D \cap T_{2}=T_{1} \cap T_{2}=\langle(1,1)\rangle
\end{gathered}
$$

The example

Let S be a group, and let $G=S_{1} \times S_{2}$, where $S_{1} \cong S_{2} \cong S$.
Let $D=\left\{\left(x_{1}, x_{2}\right) \in G \mid x_{1}=x_{2}\right\}, \quad T_{1}=S_{1} \times\langle 1\rangle, \quad T_{2}=\langle 1\rangle \times S_{2}$.
Then $D \cong T_{1} \cong T_{2}$, and these are pair-wise compliments:

$$
\begin{gathered}
\left\langle T_{1}, T_{2}\right\rangle=\left\langle T_{1}, D\right\rangle=\left\langle D, T_{2}\right\rangle=G \\
T_{1} \cap D=D \cap T_{2}=T_{1} \cap T_{2}=\langle(1,1)\rangle
\end{gathered}
$$

Let $\mathbf{A}=\left\langle G / T_{1}, G^{\mathbf{A}}\right\rangle=$ the algebra with universe the left cosets of T_{1} in G, and basic operations the left multiplications by elements of G.
For each $g \in G$ the operation $g^{\mathbf{A}} \in G^{\mathbf{A}}$ is defined by

$$
g^{\mathbf{A}}\left(x T_{1}\right)=(g x) T_{1} \quad\left(x T_{1} \in G / T_{1}\right) .
$$

Define the algebra $\mathbf{C}=\left\langle G / T_{2}, G^{\mathrm{C}}\right\rangle$ similarly.

The example

The algebra B will have universe $B=G / D$, but we define the action of G on B with a twist.

The example

The algebra B will have universe $B=G / D$, but we define the action of G on B with a twist.

For each $g=\left(g_{1}, g_{2}\right) \in G$, for each $\left(x_{1}, x_{2}\right) D \in G / D$, define

$$
g^{\mathbf{B}}\left(\left(x_{1}, x_{2}\right) D\right)=\left(g_{2} x_{1}, g_{1} x_{2}\right) D .
$$

Let $\mathbf{B}=\left\langle G / D, G^{\mathbf{B}}\right\rangle$, where $G^{\mathbf{B}}=\left\{g^{\mathbf{B}} \mid g \in G\right\}$.

The example

The algebra B will have universe $B=G / D$, but we define the action of G on B with a twist.

For each $g=\left(g_{1}, g_{2}\right) \in G$, for each $\left(x_{1}, x_{2}\right) D \in G / D$, define

$$
g^{\mathbf{B}}\left(\left(x_{1}, x_{2}\right) D\right)=\left(g_{2} x_{1}, g_{1} x_{2}\right) D .
$$

Let $\mathbf{B}=\left\langle G / D, G^{\mathbf{B}}\right\rangle$, where $G^{\mathbf{B}}=\left\{g^{\mathbf{B}} \mid g \in G\right\}$.
Consider the binary relation $\varphi \subseteq(A \times C) \times(B \times C)$ that associates to each ordered pair

$$
\left(\left(x_{1}, x_{2}\right) T_{1},\left(y_{1}, y_{2}\right) T_{2}\right) \in A \times C
$$

the pair

$$
\left(\left(x_{2}, y_{1}\right) D,\left(y_{1}, y_{2}\right) T_{2}\right) \in B \times C
$$

The example

The algebra B will have universe $B=G / D$, but we define the action of G on B with a twist.

For each $g=\left(g_{1}, g_{2}\right) \in G$, for each $\left(x_{1}, x_{2}\right) D \in G / D$, define

$$
g^{\mathbf{B}}\left(\left(x_{1}, x_{2}\right) D\right)=\left(g_{2} x_{1}, g_{1} x_{2}\right) D .
$$

Let $\mathbf{B}=\left\langle G / D, G^{\mathbf{B}}\right\rangle$, where $G^{\mathbf{B}}=\left\{g^{\mathbf{B}} \mid g \in G\right\}$.
Consider the binary relation $\varphi \subseteq(A \times C) \times(B \times C)$ that associates to each ordered pair

$$
\left(\left(x_{1}, x_{2}\right) T_{1},\left(y_{1}, y_{2}\right) T_{2}\right) \in A \times C
$$

the pair

$$
\left(\left(x_{2}, y_{1}\right) D,\left(y_{1}, y_{2}\right) T_{2}\right) \in B \times C
$$

It is easy to verify that this relation is a function, and in fact

$$
\varphi: \mathbf{A} \times \mathbf{C} \rightarrow \mathbf{B} \times \mathbf{C} \text { is an isomorphism. }
$$

The example

The algebra B will have universe $B=G / D$, but we define the action of G on B with a twist.

For each $g=\left(g_{1}, g_{2}\right) \in G$, for each $\left(x_{1}, x_{2}\right) D \in G / D$, define

$$
g^{\mathbf{B}}\left(\left(x_{1}, x_{2}\right) D\right)=\left(g_{2} x_{1}, g_{1} x_{2}\right) D .
$$

Let $\mathbf{B}=\left\langle G / D, G^{\mathbf{B}}\right\rangle$, where $G^{\mathbf{B}}=\left\{g^{\mathbf{B}} \mid g \in G\right\}$.
Consider the binary relation $\varphi \subseteq(A \times C) \times(B \times C)$ that associates to each ordered pair

$$
\left(\left(x_{1}, x_{2}\right) T_{1},\left(y_{1}, y_{2}\right) T_{2}\right) \in A \times C
$$

the pair

$$
\left(\left(x_{2}, y_{1}\right) D,\left(y_{1}, y_{2}\right) T_{2}\right) \in B \times C
$$

It is easy to verify that this relation is a function, and in fact

$$
\varphi: \mathbf{A} \times \mathbf{C} \rightarrow \mathbf{B} \times \mathbf{C} \text { is an isomorphism. }
$$

Since φ leaves second coordinates fixed, $\mathbf{A} \sim_{C} \mathbf{B}$.

Conclusion

Compare $\operatorname{Con} \mathbf{A}$ and $\operatorname{Con} \mathbf{B}$.

Conclusion

Compare Con \mathbf{A} and $\operatorname{Con} \mathbf{B}$.
$\operatorname{Con} \mathbf{A} \cong \llbracket T_{1}, G \rrbracket \leqslant \operatorname{Sub}(G)$, so $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$.

Conclusion

Compare Con \mathbf{A} and $\operatorname{Con} \mathbf{B}$.
$\operatorname{Con} \mathbf{A} \cong \llbracket T_{1}, G \rrbracket \leqslant \operatorname{Sub}(G)$, so $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$.
Con \mathbf{B} is isomorphic to the lattice of normal subgroups of S.

CONCLUSION

Compare Con \mathbf{A} and $\operatorname{Con} \mathbf{B}$.
$\operatorname{Con} \mathbf{A} \cong \llbracket T_{1}, G \rrbracket \leqslant \operatorname{Sub}(G)$, so $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$.
Con \mathbf{B} is isomorphic to the lattice of normal subgroups of S.

$$
\operatorname{Con} \mathbf{B} \cong \operatorname{NSub}(S) \leqslant \operatorname{Sub}(S) \cong \operatorname{Con} \mathbf{A}
$$

So, if S is any non-Dedekind group, $\operatorname{Con} \mathbf{B} \not \neq \operatorname{Con} \mathbf{A}$.

CONCLUSION

Compare Con A and Con B.
$\operatorname{Con} \mathbf{A} \cong \llbracket T_{1}, G \rrbracket \leqslant \operatorname{Sub}(G)$, so $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$.
Con \mathbf{B} is isomorphic to the lattice of normal subgroups of S.

$$
\operatorname{Con} \mathbf{B} \cong \operatorname{NSub}(S) \leqslant \operatorname{Sub}(S) \cong \operatorname{Con} \mathbf{A}
$$

So, if S is any non-Dedekind group, $\operatorname{Con} \mathbf{B} \not \neq \operatorname{Con} \mathbf{A}$.
If S is a nonabelian simple group, then $\operatorname{Con} \mathbf{B} \cong \mathbf{2}$, while $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$ can be arbitrarily large.

