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0. Introduction 

An equational theory (or more simply just theory) is the set of all 
equations holding universally in some algebra. A set B of equations is a 
bose for the theory T provided B and T have the same models. A tl, :ory 
T is base decidable if and only if the set of finite bases of T is recursive. 
T is sai,~ to be base undecldable whenever it is not ba.~e decidable and T 
is essentially base unde~ tdable just in the case that every tl,eory based on 
any extension of T by fiJ,itely many equations (even allowing new oper- 
ation symbols) is base undecidabie. This paper is primarily concerned 
with exploring base decidability of equational theories. As consequences 
of the theorems proved here it turns out that almost every familiar finite- 
ly based equational theory is essentially base undecidable. As a very par- 
ticular case we establish that the equational theory of Boolean algebras 
is essentially base undecidable, answering a question in [36]. The study 
of equational logic was essentially initiated by Birkhoff in [ I ] where a 
completeness theorem for equational logic is proved. Ref. [361 is a survey 
of equational logic prior to 1968 and is useful in placing our results in 
perspective. 

It is a simple observation that every finitely based undecidable equa- 
tional theory is base undecidable. The constructions of [ 181 and [3 ! ] 
of finitely presented semigroups whose word problems are each recur- 

* This pape8 is for Bessie. 
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sively unsolvable provide the first examples of finitely based equational 
theories which are undecidable and hence base undecidable. Tarski {34] 
found a finitely based undecidvble equational theory of relation algebras. 
Mal'cev [~ 7] showed that there were finitely based undecioable equa- 
tional theories in just two unary operation symbols and also that various 
finitely based theories of loops and quasigroups were undecidvble. A 
finitely based undecidable theory of semigroups is presented in 125 ]. 
I do not Imow if any finitely based theory of groups is undecidable. Our 
theorems below yield many decidable theories that are essentially base 
undecidable. Perkins [28, 29] was the fiHt Io find a decidable equational 
theory which is base undecidable. He showed that the theory of  the one 
element groupoid Js essentially base undecidable. Perkins' terminology is 
different. 

The principal results of  ~his paper concerning base-decidability are: 

0.1. If T is a finitely baser' theory such that there is a term 0 and a vari- 
able x with 0 ~. x F. T and ,~ 3me operation symbol of rank at least two 
or at least two distinct unary operation symbols occur in 0, then T is 
essentially base un:lecidable. 

0.2. Fix a similarity type (equational language) provided with at least 
three unary operatk n symbols or some ope;ation symbol of  rank at least 
two. Every finitely based equational theory with a non-trivial model can 
be extended to a base undecidable theory in the same similarity type 
which also has a non-trivial model. 

0.3. There is.a base undecidable theory which is not essentially base un- 
decidable, moreover this theory can be chosen in the language of groupoids: 
one binary operation symbol. 

0.4. in the similarity type of two unary operation symbols there is 
exactly one finitely based equationally complete base decidable theory. 

0.5. The equational theory of semilattices is base undecidable modulo 
the commutative law but base decidable modulo the associative law. (A 
theory T is base decidable modulo an equation if and only if the set of 
bases of T which include the equation is recursive.) 

All of the results concerning base undecidability are proved by a uni- 
form method of translating one theory into another. Although this trans- 
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latloh is syntactical in charJcter the pro,ors depend essentially on a model- 
thc:oretic device which, rot ghly speal, mg, descends from the construction 
of  free algebras such as are typically ased in the proof of the complete- 
ness theorem. This model-theoretic construction has proved useful and 
in fact originates in parts of (equationcl) logic having ostensibly little to 
do with decision problems. See the remarks at the end of Section 2. in 
this connection Theorems 2.9, 2.33, and 2.34, though technical in their 
statements, are major results of this paper and among those most likely 
to find other applications. Theorem 2.5 generalizes a result of  Isbell [ 10] 
concerning Mycielski's universal terms. V.L. Murskii found 0.1 indepen- 
dently of me and at about the same time. His result is announc'~d in [26] 
and a proof is sketched which is somewhat different from the one given 
here. in fact, ! have been unable to use Murskii's methocVs to obtain the 
case with just two unary operation symbols. 

Some of the results pre:;ented here were announded in [ i 9 - 2 2 ] .  
Section i deals with notation and includes some well-known theorems 

from the literature that are used in later sections. The principal purpose 
of  section ! is to develop a notational system for equational logic. The 
section includes no new results. Section 2 contains the development of 
the major techniques used to establish the results stated above. In parti- 
cular, the syntactical translations of one theory into another which were 
already mentioned, are studied in detail and for this purpose Jan Mycielski's 
notion of universal term is generalized. In section 3 the results of  the prev- 
ious section are used to establish theorems concerning base undecidable 
equational theories. Base decidable theories are the sub j~ t  of  Section 4 
which also includes an example of a base undecidable theory which is not 
essentially base undecidable. Relevant open questions are gathered at the 
end of  each of these sections. In Section 5 I take the opportunity to ack- 
nowledge the assistance many people have given to me connected with 
this paper. 

I. Some fundamental notions from equational logic 

This paper is written in the context of  a set theory admitting proper 
classes as well as sets. Ordinals  are conceived in such a way that each or- 
dinal is the set of all smaller ordinals. Cardinals are initial ordinals, hi par- 
ticular, each natural namber is a finite cardinal and 0 denotes at or.,:e the 
e m p O '  se t  and the least cardinal while ¢~ denotes at once the set of natu- 
ral numbers and the least infinite cardinal, l fA  is a set IAI denotes the 
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cardinality o f A .  I fA and B are any classes AB is the class of  all functions 
from A into B. "Sys tem"  and "sequence" are each synonymous  with 
function. If  f is a function and a is in the domain o f f  then J~, J~a), and 
fa each denote the value of  f a t  a. Whenever A is a subset of  the domain 
o f f ,  f*A = {fa : a E A }. When A is the domain of  the function f ,  then f 
is sometimes written as (.to : a ~ A) or (fa),~e,4 • If  the domain of  file func- 
tion f is the natural number n, then J can also be written as ( f0 ,  ..., 1~- ! ). 
Notice that the notion of  ordered pair used to define the concept of  func- 
tion differs from the notion of  two-termed sequence. Direct products of  
systems of'sets arc defined so as to be sets of  functions. Consequently,  
the direct product of  ( A, B ) is a set of two-termed sequences rather than 
a set o f  ordered pairs, for any sets A and B. I rA is a system of  sets PA 
denotes the direct product of A ; i f  ! is the domain of  A, PA is sometimes 
written Pi~l Ai . Q is an n- .IT operation on the set A p,'ovided Q E q"A)A. 
Q is afinitary operation ~n A if Q is an n-ary operation on A for some 
n ~ w. Unary operations o.~ A, i.e., elements of  (ad)A, are generally iden- 
tified with the naturally correlated functions in '4A, while a 0-ary is iden- 
tified with the single element in its range. If  Q is an mary operation on a 
non-empty set then n is said to be the rank of  Q. p is the rank function: 
the domain of 0 is the class of  operations on non-empty sets and if Q is 
in the domain of  p t ' ,en oQ is the rank of  Q. 

Algebraic notions 
An algebra ~ is a two termed sequence (,4, b) where A is a nonempty 

set and F is a system of finitary operations on A ; A is the universe of ?(, 
the domain of F is the index set of 9~, and F is the system of fundamen- 
tal operations of  ')l. I f  '~1 is an algebra, Op 9l denotes the system of funda- 
mental operations of0d; i f Q  is in the index set of  91 the Q'21 and Op ,'?It? 
both denote the corresponding operation of  '~?(. Algebras will usually be 
denoted by German capitals; their universes by the corresponding italic 
capitals. 

The similarity type of the algebra ~! is the system (0(Op ','Ii): i E !) 
where I is the index set of  9~. i.e. the similarity type of  ?1 is the sequence 
of  ranks of  the fundamental operations in ~1. Two algebras are similar 
just in case they have the same similarity type. If  ~?t is a ~,. stem of  similar 
algebras and the domain of  ?1 is a set then P 9.1 denotes the usual direct 
product; if the range ofg! is ( ~ }  and the domain of  ?1 is / then P? lcan  
be written as ~s .  When ~ is an algebra and X c__ A,  then S~?IX denotes the 
subu~iverse of'~! generated by X and, provided S21X ~ O, ~(~)lX denotes 
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the subalgebra o f  '21 generated b.v X. PI ~l is the subalgebra of ,,,,4 91 gener- 
ated by the set of  projection functions. The universe of Pl')l is the set o f  
polynomials, in to variables over ~1. 

For a more detailed development of these notions the reader is referred 
to 19, Chapter 01. The notation adopted above differs only slightly from 
the notation in that book. A somewhat dtfferent notation is used in [7] 
which also includes an extensive bibliogr',.phy of the general theory of 
algebras. 

Eqttational logic 
Associated w th each similarity type is a first order language suitable 

for tile expressi,,n of elementary properties of  algebras with that simi- 
larity type. Of interest here is the associated equational language. This 
language is cont :ived as that fragment of the first order language which 
admits as tbrmt Ins only universal sentences in prenex normal form whose 
quantifier free l art is an equation between terms. Consequently, all con- 
nectives and qu,~ntifiers may be surpressed in equational languages. The 
development of equational logic sketched below follows closely the 
development T~rski presented in a course at Berkeley in 1968-69. 

Eq~'ational languages are provided with three kinds or symbols: variable 
symbols, operation symbols, and a symbol for equality. Two equational 
languages differ only in operation symbols. The set of variable symbols 
is countably infinite but the set of operation symbols depends upon the 
similarity type and may be of any cardinality. 

is the equality symbol. For each i E to, o i is the ith variable and 
Va = {oi: iE  to} is the set of variables, l f o  is a similarity type then the 
domain of o is the set of operation symbols. All these symbols are taken 
to be distinct one termed sequences and ~ and o i, for each i E to, are to 
be sets of finite rank (see Definition l. 14 below). The set of expressions 
of  similarity type o is just the set of  all finite sequences generated by 
{~ } u Va u domain of o under concatenation. Juxtaposition of sequences 
(such as variables and operation symbols) represents concatenation. 

Definition 1.0. Let o be a similarity type. "leo, the set of  terms of  type 
o, is the smallest set, X, such that 

(i) Va c_ X. 
(ii) For each Q in the domain of o and for each 9 ¢ °QX 

QO o ... O oo_l ~ X. 
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In particular, if oQ = 0, then Q e Te e. 0-ary operation symbols are 
called constants. Terms result from the concatenation of  finite sequences 
of  variable symbols and operation symbols. Terms are uniquely readable 
in the sense no term can arise in this way from two different sequences 
of  variable symbols and operation symbols. Subterms of a tenn are de- 
fined as usual. 

Definition ! .! .  Let o be a similarity type and 0 ¢ Te o. 
( i )  V 0  = {i:  u~ is a subterm of  0 }, 

( i i )  CO - {Q: Q is a subterm of  0 and oQ - 0 ), 
(iii) L0 is the number of  occurrences of  variable symbols and operation 

symbols in 0. 
For any term 0, V0 is the ~,ariable support of 0, CO is the constant sup- 

port of  0, and L0 is the ler.gth of  0. ' 

Definition 1.2. Let o be ;~ similarity type. Eqo = {~0~ ~: ~0,~ ~ T%}. 
Eqo is the set ofequaticns o f  type o. if  e is the equation ~o ~ ~,, then 

e I is ~0 and er is ~. 

Definition 1.3; Le~ o be a similarity type and r c Eq~,. tr  = ~ei: e e r }u 
{e,: e e  r } .  

t r  is the set of all terms appearing as left or riglit sides of equations in I'. 

Definition 1.4. Let 0 ~ " T e  o where o is a similarity type. ~I 0] is defined 
for all r ¢:. Te o by recursion: 

O) u~[O] = Oi for v i ~Va 
(ii') Q ir o ... ~'oQ- I [0] = Q Ir o [0] ... 7roQ_ ! [0] for all Q in the domain 
• ofoand~'EOQT%. 

Strict use of  this notat ion will be violated often since only a finite part 
of  the sequence 0 is needed to determine r[0 ]. ~'[0 ] is called a substitution 
instance of 1". 

Definition 1.5. Let ~0, ~ and r be terms. 

R(¢ ~ ~,, ~-) = {/5~,y: 663, = r for some expressions 6 and 3') 

u {6~3': 6~7 = T for some expressions 6 and 3' }. 

R(~0 ~ ¢,, 1") is the set of  terms that result from replacement in ¢ by means 
of~o .~ ~. 
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Substitution and replacement can be used to describe rule. of inference 
lb:  equational logic. These rules will be formulated witll the symbol i% 
and 2; 1% E should read *'e is derivable from 2~". I% is a relation holding 
between sets of equations and single equations. 

Definition 1.6. I% is the least relation R holding between subsets of  Eq o and 
members of  Eq o such that: 

(i) ~ ,Rv  o ~ v o and ~,Re lbr all ~ q. Eqo and for all e ~  2;; 
{i ~) if ZR¢~ ~. ~ and O E ~'Teo, then 2;R~[OI ~ I//[0]; 

(iii) if 2;R~0 ~ ~, 2;RO ~ ¢ and 6 ~ R(~p ~- ~, 0), then ~ R ¢ ~  8. 
0 I% e is usually written as I-,, e. Ta ,  = to: I% e } is the set of  equa- 

tional tautologies of  similarity type o. 2; I% A, where A g Eq o , means 
2; i % / / f o r  all 6 ~ A. 2; I'/'o 6 means that 2; I% 6 does not hold. 

Definition 1.7. Let o be a similarity type. 
{i) T is an equational theoo ,  (of  similarity type o) if and only if 

T c_ Eq ° and for all e ~ Eqo if T I% e then e ~ 7". 
(ii) O l r ] o  = (e: r e ). 

(iii) I" is a base for T if and only if O[l"]o = T for some similarity type~ 
o such that 1" c_ Eqo. 

Another  ";haracterization of  the notion of  derivability proves useful, 
especially in proofs that require some kind o f  induction of  derivations. 
This characterization provides a lin,:a" notion of  derivation and limits the 
use of substitution. 

Theorem 1.8. Let  o be a similarity t ype  and 2; u bP ~- ~ } c_ Eqo. 2; I% ~p~ 
i f  and  only  i f  f o r  s o m e  n ~ ¢0 ~ {0} there is 0 ~ nT% such that  

(i) ~p = 0 0 and ~/ = O n _ 1 ", 
(ii) for  aU k < n - l there is an equation ~t *. e E  Y, and  ¢1E UTe o so thai 

0,+ i ~ R(I,[¢/] ~ lr[q], 0 t ) .  

The proof  of  this theorem follows by a straightforward induction argu- 
ment. Thexe are no unusual details in the proof  so it is omitted. Notice, 
however, that if (0 0 , ..., 0,1_ ! ) has the properties described above then 
2; I% 0 0 ~- Ok for each k < n. Such a sequence will be called a derivation. 

lCany concepts which apply to formal logical systems have natural 
formulations in equational logic. The following definition specifies some 
of  these notions. 
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Definition i .9.  Let T be an equational theory o f  similarity type o. 
(i) T is consistent if and only if T ~ Eq o. 

(ii) T is equational& complete if and only if T is consistent and for 
all equational theories, 4 ,  such that T c_ A ~ Eq o , either T = A or A = Eq o . 

Off) T is~nitely based if and only if T has a fiaite base. 
(iv) A set U <:_ Eqo is irredundant if and only if~, ~ OIF' ~ ~,~ I ~ for 

all ~, ~ I'. 
(v)V T "- {if'l: I ~ is an irredun,4ant base for T}. 

Certain relationships which hold between equational theories of  differ- 
ent similarity types are central to the results and techniques of  this paper. 
Two of  the more prominent o f  these relationships are definitional equiv- 
alence and interpretability. Their treatment is based on the following 
definition. 

Definition 1.10. Let o a d ~" be similarity types where ! is the domain of  
o. Let 6 ~ ITe, and e ~ J re o where J is the domain of v. 

(i) 5 is a system ~fdeJ,nitions for o in r if and only if oQ = V6 O for 
each Q ¢ i. 

(ii) 5 is a system o f  definitions for o in r in the wider sense if and only 
i fV60  c_ o Q u  {G) for all Q E  I. 

(iii) If 6 is a system of  definitions for o in ~" in the wider sense, then in,, 
the interpretation cperator on 6, is defined o f T e  o by recursion: 

(a) in 6 u i = v i for ill i ~ ~o 
(b) in s Q -~ 00 ... 0o0_ ! = 5'2 [in6 00 "'" inb 0oQ- ! | for e E °~Teo and 

0~!. 
(iv) Let 

Co~ = {~0 ~ 60 [u l '  v l '  "'']" Q ~  I and oQ = 0} 

u {in 6 ep -~ PV 0 ... voi, _l: P ~ J)" 

If~p ~. ~ E Eqa , then in6(~o ~ ~,) denotes in6~p ~. in 6 ~. 
Roughly, interpretation operators are the major tools used in this paper 

and the next section is devoted to their development. The not ion of  a sys- 
tem of definitions in the ,rider sense eases the definition of  definitional 
equivalence. In particular, the condition of  (ii) that V5 i c. ~i u {0} is used 
rather than V5 i c_ oi in order that constants may be defined by terms with 
variables. 

Defini0.on I.I I. Let Z be an equational theory of  similarity type o and 
T be an equational theory of similarity type r. ~: --'b.~ T i f f  6 is a system 
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of definitions in the wider sense for o in r and e is a system of  definitions 
in the wider sense for r in o arid Olin~ 2; o Co~, I ,  = T and O l i n * T o  
Co~ I o = ~2.2; and T are dejinitio,all.v equivalent just in case there are e 
and 15 such that 2; - 6 . , T .  

Definitional equivalence has been studied often. In the literature it is 
also called equational equivalence, polynomial equivalence, and even 
rational equivalence, it is elaborated in 16, 16,361. 

Equational logic inherits the concepts ofsatis1"action and logical con- 
sequence from first order logic. Whenever '~1 is an algebra of  similarity 
type o and r ~  T%,  ¢~?ldenotes the polynomial on ~1 which is represented 
by ¢. Note that the domain o f t  ~! is " A .  However, r'~idepends on only 
finitely many coordinates in "A  so it is convenient to let r '?1° denote the 
function whose domain is VrA and for which i f a  ~ '°A then ~)l(a) = 
r ?1. (a t Vr). Let ~1! be an algebra and ~o ~ ip an equation in the similarity 
type of  91. ~i ~ ~0 -~ ~k iff~o¢l= ~ .  in this case ~1 is said to be a model of  
¢ ~ ¢,. This notation is also extended to sets of  equations. For a set of  
~:quations, ~ u {e}, 2; I% e means that every model or2;  of  similarity type 
o is a model of  e; Mo O 2; denotes the class of  models of  2; of  similarity 
type o. I f K  is a class of  algebras of  similarity type o then Th K = {e: e~  Eq o 
and ?! I= e for all • ~ K }. ThK is the equational theory o f K .  Th [9.1 } is 
written Thgl. Notions originally defined for equational theories are applied 
to algebras and classes o f  algebras, e.g. algebras are said to be equationally 
complete or finitely based just in case their equational theories are. 

The following theorem is a vet3, strong completeness theorem estab!ished 
by Birkhoff  !1 I. 

Theorem I.  12. Let Y~ .c Eq ° for  some similarity type o. There is an algebra 
'11 o f  type o such that Th ~1 = O[ 2; 1o and i f  O[ 2; 1o is consistent then ~1 is 
generated by a cotmtably infinite set and i f  OI 2;] 0 is inconsistent then 9,1 
has one element. 

I 

Actually Birkhoff  proved more. P fidl t reatment of  this result can be 
found in either [71 or 191. We note the following corollary in passing. 

Corollary 1.13. Let K be a class o f  algebras o f  similarity type o and T. c_ Eqo. 
(i) ThMooTh K = Th K 

( i i )  M o o T h  M o  O E = M o  O 2; 

( i i i )  T h M o  o Y. = OIIClo 
(iv) Th K is an equational theory. 
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Most of the notation just described used subscripts to specify the 
similarity type. In practice, most of these subscripts will bc .~uppressed. 
especially if there is only one similarity type at hand. 

Recursive functions 
The final portion of this section concerns tile application of the notion 

of algorithm to equational logic. In fact, there is nothing particularly 
equational involved and the reme.rks apply equally well to a much wider 
class of  systems. What is desired is to replace the intuitive idea of an algo- 
rithmic decision procedure by a precise mathematical definition. This is 
more usually done through the offices of  some family of G6del number- 
ings, in our case one for each of  an infinity of  similarity types, which 
reduce the problem to finding an adequate notion of algorithm on tot For 
to it is generally agreed thr.c the recursive functions correspond to the in- 
tuitive algorithms. What ; suggested here is to forsake to and to make the 
definition of recursive fuLo.tion with respect to the set of hereditarily 
finite sets instead. This yie, :Is the immediate advantage that one may speak 
of sets, sets of finite sets, sets of  finite sequences, and so on as rectlrsive or 
not recursive withr, ut recourse to any G6del numbering. To this end each 
variable and the equality symbol was taken from the family of  all heredi- 
tarily finite sets. in ~ddition, there is a plentitude of operation symbols 
that are, in fact, her, ditarily t 'a;te sets. Moreover, it is only necessary to 
define what a unary recursive function is because the set of  hereditarily 
finite sets is closed with respect ! = finite direct products. Instead of  pro- 
c.~eding entirely within the set of hereditarily finite sets with this defini- 
t:on, ~.n. explicit Gbdel numbering of  the hereditarily finite sets is given. 

I 

Definition 1.14. Let H be the smallest set X such that 
(i) 0 ~ X; 

trii) IfA, B ~ X, then {A } E X and A u B E X. 
The sets in H are called the hereditarily finite sets or sets of finite rank. 

L~idently H includes to. it is not difficult to show that E is a transitive 
=elation of  H, that i l K  u L c_. H then K × L c__ H, that all finite subsets of 
,r/are themselves members of H, or that all finite sequences of members 
of H are again members of H. 

The next definition provides the Gbdel numbering of  H. 

Definition I .I 5. Let F E  '~H such that 
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{OF'O= 0 
(ii)/-'(2" +i)  = {Fn} o/-~ for n . j e  ~ a n d / <  2 'r. 

Verification of the next theorem is straightforward. 

Theorem I .I 6. F is one-lo-one and onto H. 

Definition I .I 7. ] 'E HH is recursive if and only if F -  l J F  is a recursive 
function on o0. the set of  natural numbers. 

For an exposition of  recursive functions on the natural numbers see 
Rogers [ 33 ]. All that is needed here is the theory of  recursive functions 
of one variable on the natural numbers, in this connection, Julia Robin- 
son has given a particularly nice formulation in [32].  Since Fdef ined 
above is so simple, it is not difficult to see that Definition 1.17 supplies 
a formalization of the notion of  algorithm.exactly as adequate as that of 
recursive function on the natural numbers. A subset of  H is recursive just 
in case its characteristic function is recursive. In this paper no functions 
or sets are shown to be recursive in all details. Such demonstrations would 
be extremely complex, though not essentially difficult. Instead, a more 
informal approach is taken: an algorithm is described for computing the 
desired function. From such a description, the process of actually con- 
structing the recursive function will present no difficulties other than those 
attendant on the complexity of the algorithm. 

Definition ! .! 8. Let o be a similarity type. o is recursive if and only if 
o c H and o has a recursive domain and o is a recursive set. 

Now we make one more stipulation: Va is a recursivt: set. Suppose o 
is recursive. Apparently Teo, Eqo, and {1": II"l < 00 and E c C_ Eqa } are all 
recursive subsets of H. If ~ c Eq ° and X is recursively enumerable then 
O[ 2; ]o is also recursively enumerable. 

For another formalization of the notion of  recursive functions over 
the family of sets of finite rank see Platek [30].  

2. How to build jointly universal sets of  terms and use them to reduce 
one similarity type to another. 

Given two different similarity types o and 1" it is nat~,rai to ask whether 
everything expressible in o is also exp. ressihle in ~" in sl:ch a way that the 
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notion of  logical consequence is preserved. More precisely whether there 
is a function F ~  Eqo Eq T that is one-to-one and such that if I: u (e } g Eq o 
then ~, I% e iff F*~, I% Fe. One of  the goals of  this section is to show that 
many such functions exist between almost any two similarity types. (The 
only restrictions necessary are those regarding cardinalities and tile fact 
that operations of  rank less than two cannot be used exclusively to con- 
struct a polynomial depending on more variables.) In fact all su~.'h func- 
tions constructed here turn out .'o be natural extensions of  the interpne- 
tation operators defined in the previous section and some have even 
stronger and more convenient syntactical properties. Tile first part of  this 
section provides an analysis of  when interpretation operators can be used 
in this way. According to Definition 1.i0,  llle interpretation operator in~ 
is completely determined b5 5. The analysig below provides two sufficient 
conditions on the range of  6 --- that it is jointly universal or that  it satisfy 
the subterm condition - under which inl, reduces o to 1" as described above 
The property of  being j o  ntly universal has a modal theoretic character 
while the stronger subtern condit ion is purely syntactical. After a brief 
.discussion on how to relativize these notions - particularly in connection 
with the commut'ttive and associative lawg - some o f  their fundamental  
properties are devalbped. Section 2 concludes with constructions of  infi- 
nite sets o f  terms having one of  these two properties and such that each 
element of  the set ~ -tains some nice logic d properties o f  a fixed predeter- 
,ni'~ed term. For ¢x ~mple. suppose 0 is a term composed from the variable 
x and a binar~ operation symbol. Then there is an infinite set. A, of  terms 
in the binary ,,peration symbol and th~ variable x so that A satisfies the 
above-mentioned syntactic condition and {0 ~- x} I-- (p ~ x: p ~  A}. 

it turns out that the existence of  such sets o f  terms and the possibility 
of constructing them from a single nearly arbitrary term have applications 
beyond the scope of  t:,is p ~per. For this reason, this section is more sub- 
stantial than is necessary t,) prove the theorems mentioned in-the intro- 
duction. Further applicati,m of  these results are given in { 23,24] .  

Definition 2.0. Let o and : be similarity types and let 6 be a system of  
definitions for o in ¢. in 6 ig a reduction of  o to ¢ if and on~j if for all 
Y~ u {e} c_ Eqo, 2; t--o e just in case in~2; t%. in~e. 

Remark ".. t. It is true that for any interpretation operator,  in 6 , and any 
2~ o {e} ~ Eqo if2; Poe  then in~']~ I% in6e, as can be easily established 
either proof theoretically or by means of  models. Consequently.  to show 
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that.in~ is a rrduction it is only necessary to show that if in*]~ I% in~ e 
then 2~ I'% e. lb." evely 2~ u {¢ i C i-qo" If in 6 is a reduction it is easy to 
see that ~5 is one-to-one. Recall that whenever 6 is a system of  definitions 
for a in I" and i is in the domain of  a then at = V6i, i.e. 6 preserves rank. 

The condit ion " i f  in~'Y i%. in6e then 2, % c for any E l '  {e} c_ Eqo', 
insists that in~' ~ have enough models to inv,,lidate in~ ~ whenever 2; I-/o e. 
One way to accomplish this is to provide a nke  way to convert every 
algebra, ?!, with co generators into an algebra '~t :'o that '~! I= e iff 

~= in~, ¢ for each e. ~ Eqo. This is the point of  th ~. next definition. Say 
that an assignment of  finitary functions over some ~et to a set A of  terms 
agrees according to rank provided that whenever 0 ~ A has exactly n dis- 
tinct variables then the function assigned to 0 is n-ary. 

Definition 2.2. Let g be a cardinal. A isicJinlly g tmiversal if and only if 
A is a set of  terms and for any assigmnent J of  finitary functions over g 
to A which agrees according to rank there is an algebra 91 such that 
0 ~" = fO for every 0 ~ A. 

"l'he prototypical  example of  a joint ly universal set of  terms is 
{Qv 0 ... voo_ I : Q is in the domain of  a} for any similarity type a. This 
firs well with the intuit ion that the terms assigned to the "operat ion 
symbols" by a reduction should behave like operation symbols at least 
with respect to algebras with co generators. For this reason "A iS a set o f  
generalized operation symbols" would be a bet ter  phrase than "'A is joint ly 
!ol + co universal". The second phrase is adopted here for several reasons: 
(A) It reveals the dependence on the cardinal ~:; (B) it is not yet known 
whether range 6 is joint ly lal + co universal whenever in~ is a reduction of  
a to r;  (C) The second phrase extends already established terminology. In 
fact Jan Mycielski calls a term, 0, K universal if {0} is joint ly ~: universal. 
He raised qt, estions about the existence of  terms universal in some cardi- 
nals but not in others and especially the question whether {0 :0  E T% 
and 0 is ~: universal for each K ~ S } is recursive for various recursive simi- 
larity types o and various classes S of  cardinals. The problem remai~s 
open, even when o gives just two operation symbols both of  which are 
unary and S is just { c,'). This particular instance of  the problem, together 
with some related material, is dealt with in ! 101. Some results below gen- 
eralize theorems of  isbell. 

Theorem 2 .3  ( ?'he reduction theorem.)  Let a and r be similariO" o,pes 
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and let 6 be a system o f  definitions for o In r such that 6 is one-to-one 
and the range o f  8 is ]ointly Iol + co universal, ins~l~ a reduction o f  o to T. 

Proof. By Remark 2.1 it is only necessary to establi:.h in~ ~2 i-, in 6 c implies 
I% e for every )2 u {e} ~ Eq o . Fix Y- u {e } c__ Eq ° such that 2~ ~o e. By 

Theorem 1.12 2~ has a model ~ of cardinality Iol + to and ~1 I~ e. Assign 
to elements of the range of 6 operations of ~1 in the natural way: for Q 
in the domain of  o assign to gQ the operation Q~I. Since 6 is one-to-one 
every element of the range of 6 is assigned exactly one operation of 
Since 5 is a system of definitions, thi3 assignment agrees according to 
rank. Since the range of 6 is jointly Iol + ¢o universal there is an algebra 

so that for Q in domain o, Q~ " 6~. A simple induction on terms 
establishes so~= (ins ~)~ for each term so of type o. The theorem follows 
immediately. 

We have no algorithm i~r checking whether a given set is jointly uni- 
versal, not even an immedi, te way to build jointly universal sets. This is 
a reason why Mycielski's question concerning the recursiveness of 
{0: 0 ¢ Te o and 0 is ~.-universal } is interesting. The remainder of this 
section is devoted to providing partial remedies for tl~" situation. 

Various jointly u~liversal sets of  terms have appeared in the literature. 
Some historical remt'rks are included at the end of  this sectioa. However, 
here it ~h~uld be noted that Ralph McKenzie was, to my knowledge, 
fast to formulate a n, ce symactic condition on sets of  terms sufficient 
to insure that they be jointl~ universal. In fact, he established a version 
of  the reduction theorem and a weaker version of Theorem 2.5. 

Definition 2.4. [McKenzie] A satisfies the subterm condition if  and only 
if A is a set of terms, none of which are variables, such that if  6, 0 ¢ A 
and 3' is a non-variable subterm of 6 such that 0 has a substitution instance 
identical with a substitution instance of  7 then 0 = 6 = 3'. 

What t~e subterm condition guarantees is that in evaluating a term 0 
from a .~'t ,x satisfying the subterm condition, all the proper subterms of 
0 can be evaluated just as they are in the absolutely free algebra without 
affecting the value of 0 or any other member of  A. This fact is reflected 
in the proof of the fol|owing theorem. 

Theorem 2.5. Let o be a similarity type  l f  A is a .wet o f  terms o f  type o 
which satisfies the subterm condition, ~o, ~, Tr E Te o such that so ~ ~ and 
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14o, EO < L5 for every 5 ~ A and F is an assignment o f  .finitary funcHons 
over Iol + ~ to A that agrees according to rank then there is an algebra, 
9{, such that A : Iol + co m~d 

(i) 8 ~* = F8 for  each 8 E A; 
( i i )  ~{ I~ ~0 ~ ~; 

(iii) I f  FS(a) = 0 for  each 6 E ~ an~l a ~ WA such that 0 E range o f °  
then 9! ~ ~o ~. ~ only i f  V~o ~- V~r. 

f 
(2 (Oo , ..., 0oQ_Z ) = 

QOo... Oo O_ 

Proof. There are two cases. First suppose (iii) holds vacuously. It is enough 
to discover an algebra ${ with universe Te ,  that satisfies (i) and (ii) where 
F is construed as an assignment over T% to A that agrees according to 
rank. To this end let Q be in the domain of  o and 0 ¢ a0Te o and define 
QgI(O) as follows: 

if QO o ... Oop._ l = 8[7?] 

for some 8 ~ A and some T/~ WTeo ; 

otherwise. 

In order to see that Q~lis well defined suppose.that QO o ... 0og_ t = 
8[r/] = 8 ' [~ ' ]  for 8,8 '  ¢ A and ~ ¢ V6Te° and r/' E W'Teo. Since A satis- 
fies the subterm condition it follows that 8 = 8' and furthermore r /= 1"/'. 
Hence Q~is  well defined. 

Claim I. I f 8  ~ A and r/ is  a proper subterm of  8 then r/~l(0) = r/[0] for 
each 0 E " T % .  
z~/Proof Proceed by induction on 7/. Suppose 17 i: v i for some ] E w. Clearly 

(0) = O/= v/[O]. If  r / is  Q')'0 ... ")'o0-1 for some f 6 °QTe o then 

by induction hypothesis. It follows now by the subterm condition on A 
that 

~ ( 0 )  =- O~(~o [0 ], ..., %~-z  [0 ]) = Q-to [0] ... "YaO-Z [O ]. 

Therefore 

= ( Q %  "- % o - n  )10] = T ie ]  

and the claim is finished. 
Claim 2. 8 ~l* = 1:'6 for each 8 ¢ A. 
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Proof. Suppose 

6 = Q~o "" ~ o 0 -  

Then 

and 0 ¢ ' ° T e e  . 

6~(0) - Q ~ o ( O )  . . . .  , ~Q_~ ( 0 9  = Q ~ ( % l O ] ,  ..., , ~ o o . . , [ O l )  

by Claim I. So 6~(0) = F6(O r v6),  by the definition of Q~?I. Hence 6 ~i" = 1"8 
establishing the claim and property (i) of the theorem. 

Claim 3. 9~ I# ~p m ~. 
Proof. Let 0 = ( v i : ] ~ w).  Proceed by induction on t0 to show that 

701(0) = ~0. Ift0 is v k for some k ¢ w then ¢~1(0) = v~:is clear, lf~o is 
QO0 ... ¢/oQ-I for some ¢/~ °~? re° then ¢01(0) = Q~(¢lo(O), ..., rloQ_l (0)). 
Now Lc/k < L¢ < 6 for ea,.h 6 ~ A and so by inductive hypothesis 
r/k(0) = c/k, for each k < Q. 
~1 It follows that t0~0) = t~ .~0 ,  ..., r/oq-I )" Consequently, ~071(0) = to by 
the definition of 0,.~ and th. induction Is complete. The same induction 
argument shows O"~(0) = 0. Since to 4, 0 it follows that ~l I~ ~0 ~ 0 and 
the claim and prol~ei'ty (ii) of the theorem are established. 

Now suppose property (iii) of the theorem does/lot hold vacuously, 
i.e. F6(,~) = 0 for each 6 ~ A and a ~ wlol  + os such that 0 is in the range 
o! ,,. It is enough to :iscover an algebra, i t ,  with universe Teo u {0} that 
satisfies (i), (ii), an0 ,'ifi) where F is construed as an assignment over 
Teo u {0} to A that agrees according to rank and such that (iii) is not 
vacuous. Again let Q be in the domain o f o  and 0 ¢ °Q(Teo u {0}) and 
define (~ (0) as follows: 

Q?I(O)=O if  0 i = 0  for s o m e / ¢ o Q  

otherwise define Q?ljust as in the first case. 
It is routine to establish Claims I, 2, and 3 for this new definition ef  

C~.- noting in Claim 2 that F6(O) = 0 when 0 ~ V6(Teo u {0}) such that 
0 is in the range of 0. 

Claim 4. '2! ~ ~ ~ ~r only if V~ ~_ V~. 
Proof  Suppose 9! ~ ~ ~- 7r. Let 0 e ~ (Te o u (0}) such that 

~i. .  {ui i f / ~  V~, 

0 otherwise. 



G.E ldelVuity / The decision problem for equation~Jl bases of  algebras 209 

Then SO~(0) = so, just as in Claim 3. C{,~sequently ~r~[(0) # 0 and therefore 
Vso ~ Vw, completing the proof  of  Claim 4. 

Theorem 2.5 is established in all particulars. 

Corollary 2.6. Let o be a similarity type. I f  A _c Te ° a¢d A satisfies t,,e 
subterm condition then/~ is /omtly ~ universal for each g ;~ Iol + co. 

Corollary 2.7. Let o and 1" be similarity types and 6 be a one-to-one sys- 
tem o f  definitions for o in ~" such tt~.at the range o f  ~ satisfies the subterm 
condition, in 6 is a reduction o f  o to T. 

Proof. Observe that the range of  6 h~s cardinality Iol and so there is ~-' c__~. 
so that Te r. ~ range o f  6 and I~'l + t,~ - Iol + w. Apply Corollary 2.6 to 
Theorem 2.3. 

Notational  Remark. Whenever Q is an expression and n ms a natural num- 
ber Qn denotes Q concatenateti with itself n times. Q0 is the empty ex- 
pression and Qn + l = Qn Q for n E co. 

Example 2.8. Let f and g be distinct unary operation symbols. 
{f2gn+tfgv o : n ~ co} satisfies the subterm condition. 

Proof. Let 0 and SO be any terms and suppose ~ is a non-variable subterm 
o f f2gn+t fgv  0 and O[SO] =f2gm+lf~;[O]. 0 falls into one of  the cases be- 
low. 

(i) ~ = gv o. This is impossible since g 4: f.  
(ii) ~b = fgv o. This is impossible since fg  ~ ]'2. 

(iii) ~ = gkfgu o where 0 < k < n + I. This is impossible since g 4= f.  
(iv) ~ = fgn*l fgu o. This is impossible since fg ~ f 2 .  
(v) ~ =f2gn+ifgv  O. This is pos.';ible only i fn  = nL 

Consequently {f2gn+lfgVo: n ¢ co} satisfies the subterm condition. 
Whenever o is said to have g operation symbols o f rank  n just in case 

= I{Q: Q is in the domain o f o  and oQ = n}l. 
The next theorem establishes tht: existence o f  sets of  terms which are, 

in some sense, maximal with respect to the subterm condition. 

Theorem 2.9. (The existence theorem)  Let o be a similarity type. 
(i) I f  o = 0 then the only subset o f  Te o eatisfying the subterm condi- 

tion is the empty set. 
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(ii) l f  o has only operations o f  rank 0 theu ~ C C. Te,  satisfies the sub- 
term condition if  and only i f  no variables occur in any member o f  A. 

(iii) I f  o has one unary operation symbol m~d no other operation sym- 
bol then A c_C_ Te e satisfies the subterm condition i f  and 6nly i f  A ¢~ Va = 0 
and the operation symbol occurs no more than once in A. 

(iv) I f  o = o' u o" and o' has only operation symbols o.frank 0 . n d  ,7" 
7uts exactly one operation symbol and that one unary then ~ c Te e satis- 
fies the subterm condition i f  and only i f  no constant symbol occurs in 
more than one member o f  A and i f  0 E A and a variable occurs in 0 then 
the unary operation symbol occurs exactly once in 0 and in no other 
member o f  A. 

(v) l f  o has an operation symbol o f  rank at least two or at least two 
unary operation symbols then there/s A _c Te e such that 

I A n { 0 : ~ V e = n  and OETeo}I= 

=l{O: VL~=n and 0 ~ T e a } l  

for each n E ¢~ and A satisfies the subterm condition. 

Proof. t i ) - ( iv)  ar~ immediate from the definition o f  the subtenn condi- 
tion. By means o1" a construction similar to Example 2.8, (v) follows un- 
le~ o has an operation symbol o f  rank at least two. For  the sake o f  sim- 
plicity assume that o has a binary operation symbol and denote it by Q. 
The construction given below adapts easily to the case of  operation sym- 
bols of  greater rank. 

To begin the construction let ~Pt = QV0~t+2t~0 +3 and  ~ / =  Qlv 0 ... v/, 
for every ], k E w. Finally, let 0/, k = ~o 0 [~i[~0k+~ [v 0 ],  ..., ~0k÷ ! [v/] ] ] and 
le tA 0 = {Oi, k: j , k ~  ~} .  

Claim I. {~k : k E w } satisfies the subterm condition. 
Proof. Suppose ~r is a non-variable subterm of  ~o~, ~ and.r  are terms and 

lr[~l = ~0~,['f]. Now lr is either ~0 k itself or else 0 "+l 4 +2 for some n < k+2.  
In the first case it follows easily that  ~ = 7 and so k = k' and f =,~k = ~ok,. 
The second case is impossible since then & r / n ÷ l  = 7 and 17 = ~P~ *2,rt'+3. 
So {~¢k: k E ¢~) satisfies the subterm condition. 

Claim 2. A o satisfies the subterm condition. 
Proof. Suppose lr is a non-variable subterm of  0/,t, ~, 7 ~ ~'Te, and 
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wi~/I "= O/,k,l~/]. lr Ls limited to 
Case !. ~r is a non-variable subterm of  ~pt+ 1 Iv n ] for some n g / .  This is 

impossible since 0/,. t. is a substitution instance o f ¢  0 and {~ok: k ~ co} 
satisfies the subterm condition by Claim 1. 

Case 2. ~r = ~ ' ¢ k ÷ t  [V01 ... ek , !  [vnl for some n, 0 < n ~ / .  Let 
= (~0t,, t ['Vii : i ~  col  Then 0/..,.[3,1 = Q6/ ' [~]  (2~,/ '[[]~/'[~! • it follows 

that ~0 t .  1 It/,,] = (2g,/,[~] ~r[~]  and this is impossible by the definition of  

el+l"  
Case 3. ~r = QC, jhot+t Iv0 !, ..., ¢ t+t  [vfll @/ho,+| [voi,  ..., ek+t [vfl]. This 

is impossible since {~o o } satisfies the subterm condition by Claim 1. 
Case#.  f = O/. t .  Then @ihot+t [no l ,  ..., ~k+t [~/l l = @/[~k'+t [3'0 !,  .-., 

¢, '+t I'Y/' 11. So ~0,+t [n~l = ~ot'+t P//' ! and by Claim ! k = k'. Evidently / =/° 
and so 0/ , ,  = 0i,,t , .  
Consequently Ao satisfies the subterm condition and Claim 2 is established. 

Le*. a' R be Rv o v o ... v o for each R in the domain of  o. ForL k ~ co and 
R in the domain o f o  let 0/.k. s be Oi.k[v O, v i , ..., vi_ t , a" s ]. Finally let 
O/.t.S, i, be 0/.t. R [v 0 , v I , ..., v/_ 2 , lrp] for each ], k ~ co and each R,P in 
the domain o f o .  Let ~ = {O/.t.R.p: L k ~  co and R, Pin the domain o f o  
such that R ~ Q ¢ P}.  it is easy to see that  A satisfies the subterm condi- 
tion since it has already been shown that A o satisfies t h .  • subterm condi- 
tion and A was obtained from Ao by some simple substitutions. A also has 
the required cardinality properties since 

J~ 2 i f / ~  2, 
if a n >  O, / = !  

VOI.k.R. P = | l  if o n > O ,  / - 0  and 
/ o if on = 0 ,  / < 2  

0 if oi=O, 1 - 0 .  

o R >  0 

Hence the proof  of  the theorem is complete. 
The proof  of  Theorem 2.9 was carried out  in such detail in order to 

demonstrate how the subterm condition may be established. Subsequent- 
ly, the demonstrat ions that  various sets of  terms satisfy the subterm con- 
dition will be less detailed. Theorem 2.9 leads to the following definition. 

Definition 2.10. (i) A similarity type a is trivial if and only i f o  has at 
most one unary operation symbol and no operation symbol o f  rank m o ~  
than one. 
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(ii) A term 0 is trivial if and only if 0 E Te e for some trivial similarity 
type o. 

Corollary 2.1 I .  Let o and r be similarity types, l f  lol ~ Ivl + co, r / s  non- 
trivial, o has a constant symbol only i f  r has a constant syn~bol, and o 
has an operation symbol o f  rank more than one only i f  f dc,es, then there 
L~ a system o f  definitions 6 for o in r such that in s is a reduction o f  o to T. 

Remark 2.12. It should be noticed that a more elaborate notion of  reduc- 
tion is possible that eliminates the necessity to be concerned about con- 
stant symbols in this corollary. Recalling Definition I. | 0 "6 is a system 
of  definitions for o in ~" could be changed to mean V6Q = oQ for all Q 
in the domain of 6 s~ch that. oQ > 0 and V6q _.c {0} for a~l Q in the do- 
main o f o  such thp +. oQ = 0. in s could then be called a reduction o f o  to 
~" provided ~ I'-o e iff in~' ~ u Co 6 I% in6 e. This broader notion of  reduc- 
tion does not find aoplication in this paper but does give rise to some un- 
interesting complications in some of the proofs presented here. 

It is natural to wonder if the concepts of  reduction, joint universality, 
and the subterm condition can be relativized to equational classes differ- 
ent from the class of  all algebras of  some similarity type. This is the sub- 
ject of  the foqowing digression. 

Definition 2.1.~. Let o and ~" be similarity types, S be a system of defini- 
tions for o in 1", A c.C_ Tet, V c_C_ Eqt and g be a cardinal. 

(i) in, is a reduction o f o  t6 T modulo I" if and only if X I- e just in 
case in~ Y. u F l-  in s e, for all Y- u {e} c_ Eqo. 

(ii) A is jointly g universal modulo U if and only if for every assign- 
ment fc~f functions over g to A that agrees according to rank there is an 
algebra '~! with universe g such that ')! I = I" and 0 "~" = fO for every 0 ¢ A. 

(iii) A satisfies the.subterm condition modulo F if and only if 
(a) U b L 0[7] ~ p for any 0 ¢ A ~ ¢ "Te ,  where p is any variable or 

any substitution instance of a proper non-variable subterm of  any mem- 
ber of tI ' ;  

(b) if 0, ~o E A ~, ~1E '°Te~, and "y is any nonvariable subterm of  0 
such that P l- ~[~] ~ ~ q ] ,  then 0 = ~ = ~ ,anti I" I-- ~i ~" ,'/i for every i E VO. 

Analogs to the reduction theorem and Theorem 2.5 can be established 
for these notions. Apparently, the existence of  diverse sets of  terms satis- 
fying the subterm condition modulo I" would make it possible to find 
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models of  V possessing "reducts" with similarly diverse properties. For 
example, if there were a term 0 in which the variables v 0 and v t occur and 
such that {0} is jointly co universal modulo I" then V would have a coun- 
table model ~l such that if ?1 is expanded to ~1' by adjoining all finitary 
polynomials over ~! as new operation symbols and N is any set of  equa- 
tions in any countable similarity type then ~l' has a reduct which is a 
model of  N, up to some permutation of operations of ')1'. This property 
is too strong to expect it to hold for many sets of  equations - especially 
those which arise most commonly. It cannot happen, for example, for 
any set !" of equations such that @[!'] has only countably many equa- 
tionaily complete extensions. This wH! be demonstrated in [24]. Among 
the equational theories which have only countably many equationally 
complete extensions occur all equational theories of semigroups, group~ 
rings, lattices, and Boolean algebras. What is demonstrated below is that 
there is no term, ~, (even in one variable) and no cardinal g > ! such that 
{0 } is jointly g universal modulo the associative law. in a more positive 
vein an analog for the existence theorem is established modulo the com- 
mutative law. 

As a matter of convenience terms and polynomials will be written in 
the most familiar manner: the convention of  writing operations on the 
left is dropped, momentarily, and a binary operation symbol • is intro- 
duced and terms (similarly polynomials) are defined in such a way that 
~o. ~ Js the term resulting from applying the operation symbol to ~o ancl 
~. For the next two theorems, the similarity type has • as its only opera- 
tion symbol. 

"Theorem 2.14. For any  term 0 a n d a n y  cardinal ic > 1, {0} is no t io in t l y  
g universal modulo the associative law. 

Proof. it is only necessary to consider terms in one variable. Suppose x 
is the variable occurring in 0. Hence there is n > 0 so that 

(x . y ) .  z ~  x . ( y  . z)l-- O ~ x" 

There are two cases according to whether g > 2 or not. 

Case !. g = 2. Let f ~  22 such tha t. f0 = ! and f l  = 0. Let (2, o) be ~ny 
two element semigroup .rod suppose 0 n = ! and I" = 0. Now 1 o I = 0 
for otherwise I n = I. Similarly 0 o 0 = I. Therefore I o 0 = I o (1 o 1) = 
(I o 1)o ! = 0 o  i and so (I  o 0 )o  (1.o 0 ) = ( 0  o 0)o  (1 o ! ) =  I o 0. But 
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this means that 1 o 0 can' t  be either 0 or I - a contradiction. It follows 
that the assignment o f f  to 0 can't  work in any two element semigroup. 

Case 2. ~: > 2. This case, though slightly more complicated, can be 
handled in a similar manner. Its proof is omitted.  

"t 

Theorem 2.15. There is a set A o f  terms which satisfies the  subterm con- 
dition modulo  the commuta t i ve  law such that IA c~ {0 :V0  = n + I and 0 
is a term } I - co, for  every n ~ co. 

Proof. The proof  follows closely that  a case (v) o f  the existence theorem. 
Let 

~k = (% 

and let 

Again let 

%)" (% • (%.... (%- %)) ...) 

k+ 3 Vo'S 

~; = % .  (v  I • ... (u/_ l " v/) . . .) 

0/.~ - - % [ ~ / k % + i  [v0l,-.., ~ok+~ Iv, I l l  

for every k E co 

for every j ¢ co. 

for every/,  k ~ co. 

Finally let 

A =  {O/.k : /.k ~ o,,) . 

It is enough to show that A satisfies the subterm condition modulo the 
commutative law. We leave this to the reader. 

Before returning to the m ~jor task of  this ~c t ion ,  some compactness 
type notions will be discussed. A set A o f  terms of  similarity type 1" is a 
reduction set if  arid only if there is a similarity type o and a system 6 of  
definitions for o in 1" such that  A is the range of  6 and in 6 is a reduction 
of  o to ~-. David Kelly pointed out to me that  it is an easy consequence 
of  the compactness theorerr that a set o f  terms is a reduction set just in 
case every finite subset o f  it is also a reduction set. It is even clearer that  
a set of  terms satisfies the subterm condit ion if  and only if every subset 
witI~ no more than two members satisfies the subterm condition, i t  is 
thereJbre surprising that cor~lpactness properties for jo int ly  universal sets 
of  term,: are largely unknov q and perhaps rare. 
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Theorem 2.16. Let 0 < k < ~. I r A  is any set o f  terms ."tch that every 
finite subset o f  A iS" jointly k universal then A is/ointG k universal. 

Proof. Suppose A is not jointly k universal. Then there is an assignment 
/ ' o f  finitary functions over k to A which agrees according to rank and 
yet such that for any "algebra 91 with universe k there is 0 E A ~o that 
fo ~ O~l'' Let = ~k; O, ..., k -  I,fo)o~ A. Define I" to be 

{W~ 10 ~ fo~l:  0 ~ A} u (Vx [ 

together with the first order theory of ~.  
So by the compactness theorem there is a 

i V t x ~  i l }  

Then I" must be inconsistent. 
finite subset , / t  0, of  A SO that 

(VXI0~-[0~I:0EA 0} u{WxtiVkx= ll} 

together wid~ the first-order theory of (k ;  0, ..., k -  l,f0)0~A o inconsis- 
tent. Therefore A 0 is not jointly k universal and the theorem is established. 

Corollary 2.17. A is/ointly universal in every finite cardinal i f  and only i f  
every finite subset o f  A is jointly universal in every finite cardinal. 

The remainder of this section is devoted to the construction of  infinite. 
jointly universal sets of  terms each of  which ~ ta in  some convenient proper- 
ties of  a fixed though arbitrary non-trivial term. The next result is a corol- 
law of the definitions involved. 

Corollary 2.18. Suppose ?-o and A t are disjoint sets o f  terms and that 
0 E "~A I and 0 is one-to-one. Let g be a cardinal 

(i) I r A  0 U A t is ]ointly g universal then {~[0]: 6 E A0} is /oir, tly g 
universal. 

(ii) l, f A 0 u A 1 satisfies the subterm condition then (610]: S E A0} 
satisfies the su~term condition. 

A similar result holds for interpretation operators as well. 

Theorem 2.19. Let o and r be similarity types and S be a system o f  defi- 
nitions for  o in T such that 6 is one-to-one and the range o f  6 is /ointly 
Iol + ca universal. I fY,  c_ Te e and F, is/ointly Iol + ca universal then in~'~ 
ls]ointly Iol 4. ca unwersai. 
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Proof. Let F be an assignment of  finitary f-mctions over Iol + co to in~ E 
that agrees according to rank. in s is one-to-one so d~fine G, an assign- 
ment of  finitary functions over Iol + ca to E so that G o - Fins o for 0 ~ ~. 
Since g is a system of  definitions G agrees according to rank. Since I; is 
jointly Iol + co universal there is an algebra with universe Iol + co so 
that 0 ~{* = G o = Fine 0 for each 0 ~ E. Since g is a system c f  definitions 
and the range of  g is jointly Iol + ca universal there is an algebra '~ with 
oniverse lul + ca such tnat g~" = (2 ~q for every Q in the domain of  o. A 
simple induction on terms yields (ins ~o) ~ =  ~0 ~1 for every ~0¢ Te e. in par- 
ticular (in s 0 ~ *  = 0 ~" = G o = Fine o for each ~ ¢ 2: ann therefore in~ 
is jointly Iol + co universal. 

In order to establish the corresponding result for the subterm condi- 
tion the following definition and lemmas prove useful. 

Def'mition 2.20. I ~'t o and r be similarity types and g be a system of  defi- 
nitions for o in r. t' is g-simple if and only i f0  ¢ Te r and 0 ~ in° ~0[~] for 
any ~o ¢ Tee ~ V a  at.:l ~; ~ '~Te~. S~ Te,  denotes the set o f  g-simple terms 
of  type 1". 

l .emma 2.2~. Let o and 1" be similarity types and g be a one-to-one system 
o f  definitiorL~ for  o in r such that the range o f  g satis~es the subtenn con- 
dition. For a~.y n ¢ ca, O, ~ ~ nTe° andre, ~; ~ '°S~ Te,  i f  in6 01[~0] = in° lri[~] 
for  each i c  n then there are ~o', 0 '  ¢ '°Tee such that 01[~] = lri[~;' ! for  
each i ~ n. 

Proof. The proof  is by induction on m = max ({ L0 i: i E n } t3 {Llr i: i ¢ n } ). 
m -  !. In ~ i s  case {01: i ~ n} u {~ri: i ~ n } consists exclusively of  variables 
and constants. Since g is a one-to-one system of  definitions and ~0 and 
are sequences of  g-simple terms then by letting ~ = ~° = (u 0 : i ¢ ca} the 
theorem holds. 

Inductive step. Let q > 1 and assume the theorem is true whenever m < q. 
For any j ~ n, L 0 / >  I there is Q/ in  the domain of  o and "y ~ °QJTeu such 
that 0/7- Q/~{o ... ~/oQi-t;  Now in 6 0/It0] = in 6 lr/[0], in 6 is one-to-one, and 
~o an(] gp are sequences e l  8-simple terms. Consequently, there is ~ E ¢'0/T% 
such that Iri = O/rlo ... rio 0 I and in° 7i[~o ] = iner/i[~ ] for each i E  
So for each j E n and i E ~](~j let 0/, i = ")'i where 0 / i s  O/'Yo ".. oOi. 700/-t and 
t-',i = 17/where x/ is  Q/~o ... ~oOi-t. By the inductive hypothesis there are 
~o',~' E ~Teo such that 0/[~o'] =' lr i [~']  i f  LO! - 1 and Oi.i[~o' ] = ~1,~[~'] i f  
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! . 0 / >  I and i E oQ/. But if  LO t >,1 then Oibp'l = Q/O/.o[~d)... O/,oqi-I [~o'] 
... t / . , o / _ t  [q / ]  : ,r/[O I and the induction is complete. 

Lemma 2.22. Let o and r be similarity types and 6 be a system o f  deJ~ni- 
tions.tbr o in T such that S is one-to-one and the range o f  6 satisfiee the 
subterm condition. Let ~o be an3' non-variable term o f  type o and 0 o¢ ,ny 
nonvarlable subterm oi" in s ~0. 

(i) There are Q in the domain o f  o, 3" a non-variable subterm o f  SQ and 
~ "T e  t such that 0 = 3"[ ~ ]. 
(ii) For every 7 in the range o f  6 such that 0 is a substitution instance 

o f t  there is ~p', a subterm oleo, such that 0 = ins ~p'. 

Proof. Let ~0 =/hr0 ... "~'oP-t. The proof  procee6s by induction on the num- 
ber of  proper non-variable subterms of  ~0. 

(i) ~o has no proper non-variable subterms. Then % ,  ..., goP-t ~ Va and 
ins ~0 = 6p 1%, ..., =op_ ! 1. Since 0 is not a variable there is a non-variable 
subterm, 3', o f  6p and 9 = 3'[%, ..., ~oe-I 1. If  there is3" in the range o f  
6 and 0 is a substitution instance o f  3" then 3" = 3' = ~e by the subterm 
condit ion and so 0 = in s ~o. 

(ii) (Inductive step). Assume that every non-variable term with fewer 
proper non-variable subterms than ~0 satisfies the theorem. 0 is a subterm 
of  it. s ~o = 6p [in s % ,  ..., in s a'o,,, l ]. So either there is a non-variable sub- 
term 3' o f  6p such that  0 = 3"(in b % ,  ..., in s ~°P-t ] or else 0 is a subterm 
of  in s ~r k for some k ~ oP. in the first case if  3" is in the range of  6 and 0 
is a substi tution instance of  3" then 3" = 3' = 6/, by the subterm condition.  
So 0 --" in s ¢. In the secoad case the induction hypothesis applies so there 
is R in the domain of  o and 3', a non-variable subterm of  6 R such that 0 
is a substitution instance ofT.  $o li) holds. Since it k is a subterm of  9 ~t 
follows that (ii) holds as well. This establishes the lemma. 

Theorem 2.23. Let o and r be a,vi/arity types and 6 be a system o f  dej~- 
nltlons for o tn r such thai 8 "~ ",,:°.,o-one and the range o f  6 satisj~es 
th~n subterm condit.',m If  ":: c Te a aad ~ satis]ies the subterm condi- 
tion then in~' ~ .~atis~,. th,- .,bt,,rm condition. 

Proof. Whenever 0 (~ "re, there are ~ c Te o and ~ ¢ ~$s Tel such that 
0 = i n s ~ ,  j. This may he established by induction on 0. Let 0 , rG ~, ~/ 
be a non-variable subteJm of in 60, and ~, ~ G WTer such that ~/[~0] = 
ins w[~/]. By Lemma 2.22 there is e',a non-variable subterm of 0 such 



218 G.F. McNulty / The decision problem for equational bates of  algebras 

that ~ - in s 0'. Hence in 6 0'[~o] - ins lri ~1. There are ~0', ~'  ~ '°$6 Te ,  and 
~ ,  ~" ~ '~rl'eo such that ~oi = inn ~0 ~ [~ ] and ~i = ins ~" [ ~ '  ! for each 

~.¢w l i ¢  co. Consequently ins (0'[~o"])[~o'l = ins (IriS" l ) [O ' i -  By Lemma 3 " 
there are ~, ~; ~ "Tee such that (0°[~0"I)[~ = (a '[O'])[~].  By the sub- 
term condition on ~, 0' = 0 = ~. So ~1 = ins 0' = in6 0 = in s w. Therefore 
i~t~'~ satisfies the subterm condition. 

The next definition introduces the notion of absorption, a kind of 
idempotence in equational logic, which turns out to be a highly useful 
property of terms. 

Definition 2.24. A absorbs ~ for  r' if and only if  A and Z are sets of  terms, 
I" is a ~ o f  equations and V I -+ {016, 6,  6, ...] ~ 6 : 6  ¢ ~ and 0 ¢ 2~ }. 

If 6 and 0 are terms and I" is a set of  equations then "6 absorbs 0 for 
P"  usually replaces " (6}  absorbs {0} for I '" .  The next definition is ad- 
mittedly artificial ~.mt it seems to be the most convenient way to formu- 
late Theorems 2.~. i and 2.30 as well as their consequences throughout 
the rest of  the papL r. 

Definit ion 2.25.  ! 
(i) I f0  -~ fm+lgHfnv i, where f and g are any two distinct unary opera- 

tion symbol:-, H is a (possibly empty) string of unary operation symbols 
~uch that the rightmost symbol is not f ,  and m, n, i ~ to, then let 
m(O) = {fro+. gHvi, f m  gHi)i }. 

(ii) If 0 --/~ ~ 0  "" 'Pr-I, where Q is an operation symbol of rank r > !, 
H is a string of unary operation symbols and ~o 0' ..., ¢r-1 are terms, then 
re(O) = {0, ~o o, ..., ~or _ l }. 

Theorem 2.26. Let  0 be a non-trivial term in which all operation symbols  
occurring are unao, and VO ~ O. There is a set ~, o f  terms in the same 
operation symbols as 0 such that 

(i) ~ is infinite, 
(ii) N satisfies the subterm condition, 

(iii) I r A  u m(O) absorbs 0 for  V then A u ~, absorbs F, for  I" and 

I This definition differs from that o f o #  in McNulty (21 ] in some dctaih, though not in con- 
ception. ! don't know if the earlier definition is adequste for its intended puq~ose. 
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Proof. The proof  amounts to a series of  constructions beginning with 0 
and ending with 2L At each stage the terms developed are closer to satis- 
fying the subtenn condition. Care is taken at each stage to preserve the 
absorption properties of  O. Since 0 is non-trivial it has the form 
fro+ I gHfn vi for some distinct unary operations f and g, some (possibly 
empty)  string of  unary operations H not ending in f,  and some m,n,i ~ co. 
SO without  loss o f  generality assumc 

Then 

Let 

0 = fro÷ I gHfn VO . 

m(O) = { fm+i  g H v  O, f m  gHvo  } . 

at = f,n+t+ ! gHfn - t  VO 

for each k ¢ n + I. 
Let 

~. = ( f , ,*  ~ ) /+~ (/ '- ,  g H ~ / *  ~ v o 

for / ~ w. Let p - ! be the number o f  times f occurs in H. Finally, let 
O0 = SO:p and q/l = SOp[~Op 1. The idea is to show that {~0 ,  ~1 } satisfies 
(ii) and fiii). So suppose A u re(O) absorbs 0 for I'. Observe the follow- 
ing: 

(a) a 0 = O. 

(b) a' k absorbs at+ ! for I" whenever k ~ n. 
P roo f  a k + 11 a t  ] - -  fm*k*2 el l  f "  -{t+ I )fro+k+ l gHfn-k  VO = if+ l elfin gHfn-k  Vo 
So 

V F- at+ ! [irk] n~ fm+t÷lgHfn-kvO, 

since fm gHv 0 absorbs 0 for I'. 

(c) a k absorbs a k for V whenever k ~ n + 1. . 
m+k÷l n k m÷k÷l n k Proof. fk[gtl=f gHf - f gHf - v 0 "f~o[fm+IgHfn-tuol. 

So 
P t-- ~klak ] ~ fm+k÷IgHf"-kV o 

sincefm+IgHvo absorbs 0 for P. 

(d) A u re(O) u {a 0, ..., an } absorbs a n for P. 
Proof. Suppose kEn. By (b) I" I-- ak~ at+l[ak]. Hence 

1" I-- ak ~ a n l a n _ t  [... ak÷Lla t  ] ...1 • 
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Similarly 
I" ~- ~t ~ ~r._|[~rn_2 [... ~t÷l[~rt] . . . ] .  

So 1" I-- ~ ~ ~ [~rt ]. By (c) I" I-- ~rn ~ ~rn [~rn ]. Let 6 ~ A ~ re(O). Ob- 
serve that 1" I- ~o ~ wn [~ro ] and therefore 1" I- ~o[61 ~ ~ l~r0|~ll. Con- 
sequently U I-- 6 ~ ~r n [6 ]. 

(e) ~ = ~rn. 

( f )U I- ~j = ~0 for a l l j ~  w. 
Proof. By inc~uction on j. I f / =  0 this is immediate. Suppose j > 0 and 

r I- ~ / - i  ~ ~o. Now 

~s = (f'+~ )/+l ( f~ eH)~+~ ~o 

.. (f~+,)~fn+|.f,,, g H ( f "  g/- f ) /u o 

= ( f  .+1 )/~n f'ngH(fmgll)/-1 VO • 
So 

! ~ l- ~/~" ( fn+l) j ( . fmgH)/vo 

since r' I- ~n [.fmgHvo ] ~ fmgHvo  by (d). Consequently U I'- ~1 ~ ~Pl-t  
and by th~ inductive assumption r~/~ ~o. 

(g) r '  I-- ~'o ~ ~bt and, in fact, I' I- {~o ~ ~o, ~bl ~ ~o }- 
Proof. By (f) r I- ~b o ~ ~o and V I- ~I ~ ~o[~o], but I" ~ ~o[Wol ~ ~o 

by (c) and (e :  Consequently I '  I-- ~I ~ ~o. 

(h) A U {~0, qSl} absorbs {~o, q/l } for I'. 
Proof. Suppose 6 E A. By (d) and (e) I" I-'- ~016]~ 6 and so by (8) 

I" ~- {~o[6] ~;6,  ~1 [6] ~ 6 }. Furthermore (g) yields V i- {qJo[q/t ] ~ ~o, 
~1[~11 ~ ~o0, qJl [q/o ] ~ 0 ,  ~o [~o l  ~ ~o} so {qs 0, qs I } absorbs {qJ0,~l} 
for 1". 

(i) { ~o, Ot } satisfies the subterm condition. 
Proof  Notice that 

~o = f o p  + 1 )(n+ 1)+ m gH(fm gH)2P Vo 
while 

~1 = f(P+l )(n+l )+m gH(fm gH)PJ~P+l)(n+l )+m gH(fm gH)Pvo" 

Recall that f occurs only p -  1 times in H and that H does not end in f.  
It is only a matter of  inspection to see that { h0,  q/l } satisfies the sub- 
term condition. 
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To complete the proof  of  the theorem let o be a similarity type whose 
only operation ~ymbols are the unary operation symbols J" and g. Let 1" 
be any type in which 0 is a term. Let q be the system of  definitions for 
o it, I" such that inqfu 0 = 40 and in,~gv 0 -- 41.  q is one-to-one and the 
range o f q  satisfies the subterm condition. Let F, o = {f2gn+lfgo0: 
n ~ ¢o} - the set shown in Example 2.8 to satisfy the subterm condinon. 
Finally, let ~ = i n ~  0. By Theorem 2.23 ~ satisfies the subterm condi- 
tion. Since in n is one-to-one and X0 is infinite ~ must also be. infinite. 
Now suppose A u m(O) absorbs 0 for F. By (h) above A u {40, 41 } 
absorbs { ~o,  4 t  } for P so ~ u ~ must absorb ~ for 1 ~, by the definition 
of  X and I" I- {7 ~ ~P0: 'Y G ~ }. This completes the proof  of  the theorem. 

Now suppose 0 " Q~o 0 ... ~Or_l where Q is an operation symbol of  
rank r > I. The next immediate goal is to establish the analog o f  Theorem 
2.26 for terms of  this type. In order to accomplish this the following defi- 
nition and Icmmas prove useful. When 0 is a term 0[01 = u 0 and 0[k+t] = 
0lkl [0, 0, 0 . . . .  ] for k E  co. 

Definition 2.27. Let 0 = Q~00 ... ~or_ ] be a term so that Q !s an operation 
symbol o f  rank r and ~P0, ..., ~Pr-t are terms. 4 is the associate o[0  o[  
type 77 if and only if v? E r co and 4 = QO 1~° I[~p0, ~P0, ... ] .-. 01 qr- t I [~Pe- 1, 
~O,_l, . . . I .  

Lemma 2.28. l f  O is a non-variable term and 4 is an associate o f  0 and 
is a non-variable subterm o f  4 and ~ ~ ~ then ~ is a substitution instance 
o f  some non-variable subterm o f  0. 

Proof. Suppose 0 = Q~o 0 ... ~og_ t for an operation symbol Q and terms 
~o0, ..., ~0r_! and that 4 = Q0tn°lt 0o,  o0, ...1 ... 0 I n , - ,  .. ! 
where 17 ¢ re,). Then ~, is a subterm ofOln/! [~o/, 4p/, ...1, where j ¢ r. Either 
~, is a non-variable subterm of  ~o/or there is a non-variable subterm, ~, of  
oini I and T = ~rko/, ~0/, . . .] ,  in the first case 'y is a non-variable subterm of  
0 since ~oj is. In the second case it is easy to establish by induction on 17/ 
that lr is a substitution instance of  some non-variable subterm o f0 .1n  this 
way the lemma is proved. 

By Lemma 2.28, it is possible to ignore all proper subterms o f  asso- 
ciates of  a term, 0, unless they are already subterms of  0 itself, when 
checking for the subterm condition on a set of  associates of  0. On the 
other  hand, there are inf'mitely many associates o f  any non-variable, non- 
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constant term and most of  them will be quite complex. As is shown be- 
low, many sets o f  associates will turn out to satisfy the subterm condition, 
provided the original term begins v, ith an operation symbol of  rank at 
least two. Evidently, the associates o f  a term ha'ae the al~sorption proper- 
ties required in Theorem 2.26. i f  r/is a sequence of  natural numbers and / 
is in the domain o f ~  then 17 : / d e n o t e s  the sequence with the same do- 
main so that 

n t  if i 4: k, 
= for k in the domain of  r/. 

¢/t ~/~+1 if / = k, 

Lemma 2.29. Let 0 = Q¢o -.. ~°r-I where Q is an operation symbol  o f  
rank r > 1 and ',~o, ..., ~°r-I are terms and x is the onty variable occurring 
tn O. There is q E r ~ such that { ~/: ~/ i~ ~,he o~socia e o f  O o f  type ~1 "] 

, / a n d  ] E r } sa. isfles the subterm, condition. 

Proof. In order to establish the subterm condition it is necessary to 
examine substitution instances of  subterms (of  associates) o f  0. Let 
r / e  r¢o and ~ be the associate o f  0 of  type T/. Let 3' be any non-variable 
subterm of ~ and let lr, a be terms such that 

= v[a]. 

Since Q i, the first symbol of  ~ and 7 is not a variable, Q must be the 
first symbol ofT.  Let 7 = Q~0 ... ~r-I  for the terms 90, ..., ~r-.l. From 
it follows for each i e r that VOini I [¢l[a']] = V~i[a] and COInil [~¢i[7]] = 
C./~i[a]. Consequently for each i e r 

IVOtnill • IVy011 • IVlrl---IV}il • IV~l ( I )  
and 

ICOlnil[~oi]l + IVOl'~il[~oi]l • IClrl = IC~il + IV~il • ICed. (2) 

In order to establish the lemma a sequence, 17 e r¢o, must be found so that  
fails unless ~ -- 3'. There are two cases depending on whether  CO is 

empty or  not. 

Case !. CO - 0. By Lemma 2.28 3' can be limited to ~ and the non- 
variable subterms of  0 in any consideration of  whether  ~ holds for some 
terms lr and a.  Furthermore,  if ~ holds for some terms lr and a then it 
holds for terms in which no constants occur. So for any ~, which is a non- 
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variable subterm of 0 and for which ~ holds it follows from (1) that 

IV01~°ll = IV+ol . IV~ll (3) 

IV0 j',ll IV+~l IVy001 
As 7 ranges through the non-variable subterms of  0, the right side o f (3 )  
takes on only finitely many values. So let •It = 0 and pick +70 so large 
that 

[IV ol I 
IVOl'+°il > IVOI " L I ' ~ I I  " I ~ o t J  (4) 

~t is arbitrary otherwise. Let / E r and V be a non-variable subterm of  0. 
Let ~ be the associate of  0 of  type rl : / .  + holds for no terms ~ and a. 
(Otherwise (4) would fail.) Supposej, k E • and let ~i b~." the associate 
of  0 of  type rt : / and ~ be the associate of  type ~t : k. Let ~r and • be 
terms such that l~i[Ir] = ~ [a].  Then 01hi +11 [~(~l l  = ~i~/lko~[=ll and 
01't "+II [~k [= ]] = 01'~k I [SOt [~r] ]. By consideration of  the lengths of  these 
terms it follows that . /= k. Consequently {~ / :  ~ / i s  the associate of  0 
of  type ~t : / and / ~ • } satisfies the subterm conditien. 

C~e I1. C0 #= 0. Note IC01'~il[soi.] I is an increasing function+ of  Ttt. For 
u,,~n i E • pick ~/i so large that IC01'lil[~t]l > IC01. Now suppose 7 is a 
non-variable subterm of  0 and ¢r holds for some terms lr and ~. Then (2) 
must hold and consequently ICOi'~il[Soi]l + IVOlnil[soi]l • IClrl = 
IC¢l = IC~il + IV~il • ICal. Therefore IV~il ~ 0 for each i E •. [:o by alge- 
braic manipulations 

IV+°l [ 
IC/~ll - iV+l I • ICe01 = IC01~allsol ]1 

IV/;ll ] 
iVY01 • ICOln°l[s0o ]1 

I" IV,~tl 
+ L,VO",,,t,,,, l, - ,V+o ,  ",vo,,,o,l,+o • ' ¢ " '  • 

As 7 ranges through the appropriate subterms of  0 the left-hand side of  
this equation takes on only finitely many values. Witl~out loss of  gener- 
ality, assume IV~ll ~ 0. Pick ~/1 so large that 

IV~l I .  iCOi,~o*l ! [~o ]1 ÷ (IC~ l I ICO I'~t llw~ ]1 > iV~o ~ Iv~l IC~ol) • 
I v~ o i 



224 G.F. I;~Nu!ty I The decision problem for equational basez of alfeb~s 

and 

lV~ l [ [volno+l l [qPo ]l 
l, > iV oi " 

for each appropriate % non-variable subterm of  O. By arguing as in case i 
from this point on the proof is complete. 

Theorem 2.30. Let O = C~o o ... ~or_ t, where Q is an operation symbol  o f  
rank r >  I and ~o o, ..., ~o,_ 1 are terms and VO ¢ O. There is a set ~, o f  
terms in the same operation symbols as 0 such that 

(i) N/s infinite, 
(ii) T s a ~ p e s  the subterm condition, 

(iii) I r A  u re(O) absorbs 0 for  U then A U ~ for  V and U{ ~ ~ O[v o, 

Vo, Vo, ...l: ~ ~). 

Proof. Let 0' = 9[v 0, v 0, u 0, ...]. Each term that absorbs 0 for V absorbs 
0' for I'. By Len.'na 2.29 there is a set ~ '  of  associates of  0' such that Y-' 
has at least two elements and ~'  satisfies the subterm condition. ,All asso- 
ciate~ of 0 ° are absorbed by all sets A, for any 1" such that ,.A u mlO) 
absorbs 0 for 1". By Theorem 2.23 and Example 2.8 there is an infinite 
set, ~, ol terms obtained from ~ '  by an interpretation operator in such 
a way tha. Y- has all the desired properties. 

It woulJ be desirable to extend Theorem 2.30 to any non-trivial term 
0 in which a variable occurs. Unfortunately, this turns out to be impos- 
sible as shown in the next example. This example also serves to demon- 
strate a set of terms which is jointly co universal but fails to satisfy the 
subterm condition. 

Example 2.31. Let f b e  a unary operation symbol and B be a binary 
operation symbol and 0 = f B  v o fvo .  For every term, ~o, such that 0 ~ v 0 I- 

~ v o , the set {~0} fails to satisfy the subterm condition. {0 } is jointly 
universal in every cardinal. 

Proof. To see that ( fBOofVo} is jointly g universal let g: g -* g and note 
that (g, g, P/0 1' g), where P]o is the Oth projection function, insures joint 
g universelity. 

Let ~ = (co, L B) where 

7n={n-I i f n > 0  

0 otherwise 
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B n m  = n + l for all n, m E co. 

Let ~ = (Z, f ,  B) where Z is the set of integers and 

. f n = - n  for all n E Z ,  

Bn,n =lo i f m = - n  
otherwise. 

Evidently ~){ and ~ are models of  0 ~ u 0 and therefore they are both 
models of~o~ v 0. Since 0 is not in the range o f B b u t  ~o~is onto co, it 
follows that ~o cannot begin with B and so must begin with f(unless  
~p -- v 0 in which case (~0} cannot satisfy the subterm condition by dc.~ni- 
tion). Notice that {0} is the range o f ( B v o v o ~ a n d  BnO - BOn = 0 for 
n ~ Z. Hence fv  0 must be a subterm of~¢. Since 0 ~ u o ~ fvo  ~ u o, it 
follows that {~0} cannot satisfy the subterm condition. 

Example 2.3 ! indicates only some condition weaker than the subterm 
condition is useful and even necessary for the proofs of  the main theo- 
rems of  this paper. In order to get the most ~nformation from the next 
theorem consider the following definition. 

Definition 2.32. For any term 0, 0 ÷ is defined by recarsion: 
(i) u~ is u i, for i E co. 

(ii) 0r~o) ÷ is ~o ÷ , for any term ~o and unary operation symbol, f.  
(iii) (Q~0 ..- 'Pr-I )÷ is Q~o~ ... ~or+_l, for any operation symbol, Q, oi  

rank r ¢ I and any terms ~o 0 , ..., ~o r_ ;.  
So 0 ÷ is the term obtained from 0 by deleting all unary operation 

symbols. Whenever ~ is a set of  terms ~+ = { 0  + : 0 ~ ~ }. 

Theorem 2.33. Let 0 be any non-trivial term in which a variable occurs. 
7here is" a set ~ o f  terms in the operation symbols  o f  0 such that 

(i) ~ is infinite, 
(ii) N is ]ointly K universal for  every infinite cardinal ~, 

(iii) For any set I" o f  equations and any set A o f  terms i r a  u m(O) 
absorbs 0 ~'or I" then A u ~, absorbs Y, for  r' and V F- ( ~ *~ ~o: ~,~o E ~ }, 

(iv) i f  an operation symbol  o f  rank different f rom one occurs in 0 
then ~,÷ satisfies the subterm condition. 

Proof. By virtue of  Theorem 2.26 and Corollary 2.6 this theorem is 
established unless an operation symbol of  rank at least two oqcurs in 0 .  

So suppose O = HQt00 ... c r - l ,  where H is a string (possibly empty) of  
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unary operation symbols, Q is an ~peration symbol of rank r > l, and 
so0, ..., sot-! are terms. Without any loss of generality assume v 0 is the 
only variable occurring in 0. By Lemma 2.29 there ,;s ~ 6 ~co such that 
{ ~/: j 6 r and ~ is the associate of 0 + of type ~ : / } sati.sfies the sub- 
term condition. F o r / 6  r, let 

~/" = H(?O|'~°'lso o ! ... 0"~/+zl [W/] ... O"~.-, ,iso,_z ! .  

C/aim. { ~ :  j ~ r} is jointly a universal for every intinite cardinal x. 
Proof. Observe that O~+is ~ / -  the associate of 0* of type 12 : / ,  for 

each j ¢ r. Since { ~/: / E r and ~/ is  the associate of 0 + of type ~2 : J ) 
is jointly ~ universal by Corollary 2.6 the task is simple. Any assignment 
of  functions over ~: to { ~/*: j ~E r} which agrees according to rank is 
already an a.~si[p',ment to (~/: ] E r and Oi is the associate of 0 + of type 
r/:  j } that agre s according to rank. Any algebra realizing the assignment 
for the latter sel can be expanded to an algebra realizing the assignment 
for the former se: by setting all unary operations to the identity. 

Let 

By the cla m, Theorem 2.19 and Example 2.$ Z is jointly ~ universal for 
every infin,te cardinal, m. Cleady E~ is infinite and furthermore, ~.+ is just 
the set shovn to satisfy the subterm condition in Theorem 2.30. Now sup- 
pose ,x u re(O) absorbs 0 for U. Recall re(O) = {0, ~ ,  ..., SOr-I ). Hence 

Consequently P t-- {~r ~ 0; ~r ~ ~- } ~ (~r['1] ~ 0: ~r,'/~ ~ } and so ~ u 
absorbs Z; for V. The proof is complete. 

Theorem 2.34. Let 0 be any term in which at least two distinct variables 
occur. There is a set ~, o f  terms in the operation symbols oi"0 such thai 

(i) I]C r~ {SO : ~o Ls a term and VSO - n + I }l - ~ for  every n E w ,  
(ii) ~ is jointly ~ universal for  every infini;~, cardinal •, 

(iii) For any set U o f  equations and any set A o f  terms i r a  u re(O) 
absorbs 0 for  V then A U ~. absorbs T, for  U and I" ( ~ ~. so: ~o, ~ ~ ~. }, 

(iv) .~.+ satisfies the subterm condition. 
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Theorem 2.34 is an extended ve.-sion ,~f "l~eorent 2.33 which will not 
be used in this paper. It is stated here only ibr completeness. Theorem 
2.34 can be obtained from 2.33 by means of a relatively simple construc- 
tion, the existence theorem and the reduction theorem. The details are 
omitted in the interest of  brevity. 

Remarks on the history o f  redt~ction 
t-his section has been devoted to notions, :onnected with reduction. 

The reduction method has been used frequently in the past. Also many 
arguments are known from the literature which do not require the meth- 
od in its lull extension but in which various notions like the subterm 
condition play a decisive role. It seems that the underlying idea has oc- 
curred to many people. The crux of the concept is relfected in 
"F*2: I--- Fe only if ~ I-- e" as explained following Remark 2. !. This 
notion admits the possibility of application in many systems or formal- 
isms that embody ideas like consequence or production. It is therefore 
not surprising that the reduction method finds its sources in sentential 
logic on the one hand and on the other, in the various combinatorial 
systems, like Post normal systems and Thue systems, that were intro- 
duced in the study of algorithms. 

in sentential logic arguments using the crucial idea behind-reduction 
can be traced to the decade 1920-30. I have in mind Theorems 11, 12, 
13, and 28 in [ 15 ]. For example, Theorem 28 asserts that there are 2 '~ 
complete systems of sentential logic. In sentential logic there are formulas 
but no terms. Consequently, there can be no subterm condition. But 
Tarski proved these theorems with help of a "subformula condition" 
which shares the following property with the subterm condition: 

If A satisfies the subformula condition and ~0 is consequence of &, 
then ~o is a substitution instance of a formula in &. 

At a later date the subterm condition was tacitly introduced into 
equational logic to obtain a result entirely analogous to Theorem 28 of 
[ 15 ]. [ 13 ] establishes the existence of 2"  equationally complete theories 
in one binary operation and in the process constructs an infinite set of 
terms which happens to satisfy the subterm condition. More recently the 
subterm condition is implicit in [5], [11 ], [12] and [2], where various 
extensions of Kalicki's result are proved. 

In combinatorial systems related to the theory of  algorithms the idea 
appears in [31 ] (see p.268 where Post refers to an earlier paperY. In [31 ] 
it is established that the correspondence problem for Post normal systems 
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on three letters is not recursively solvable. Post then nbserves that this 
result is also true for Post normal systems on two letters and shows how 
this reduction works by offering appropriate definitions of  three letters 
in terms of two letters and proceeding much as in the present paper. Later 
in [ 31 ], where he shows that the word problem for a specified Thue sys- 
tem on many letters is not recursively solvable, Post ~marks  that the same 
reduction techniques apply. This application was actually carried out in 
[8] where it is essentially shown that even over semigroups countably 
many constants may be reduced to two constants. This contrasts with 
Theorem 2.14 and is probabl~, the historical source of Example 2.9. Hall 
proves a case of  the reduction theorem limited to equations without 
variables. In [ ! 7] Hall's result is translaled into a similarity type with two 
unary operations. Also about 1966 Tarski used the reduction method to 
obtain an essent'.olly undecidable equational theory in one binary opera- 
tion. [Cf. Thee em 3.6 below.] [29] includes in the proof of  one of its 
last theorems a ,ersion of Theorem 2.9 and with it what amounts to 
another special c,:se of the reduction theo.rem. V.L. Murskii [26] sketches 
a proof of  a part of  Theorem 3.12 below with the help of a condition 
slightly scronger than the subterm condition. D. Pigozzi has been able to 
show that if  6 is a one-to-one system of definitions for o in z such that o 
and ~" are .ecursive and the range of 6 satisfies the subterm condition and 
is recursivl then O[~]a has the same "luring degree as O[in~]~.,  for every 
y~ c C_ Eqa. Finally, i tshould be noted that Corollary 2.6 is a very natural 
extension of a theorem of Isbeli [10] which concerns only single terms 
in unary operation symbols. 

Open problems raised by Section 2 
(1) [After Jan Mycielski] Let o be a :'ecursive similarity type. Is {U: 

IVI < co and V c_.. Te ° and U is jointly co universal ) a recorsive set? 
It is not difficult to show that {V: IVJ < co and U c_ Teo and U satisfies 
the subterm condition} is recursive. 

(2) Let g be an infinite cardinal and & be a set of  terms such that 
every finite subset of  A is jointly g universal. Is & necessarily jointly g 
universal? 

(3) Can the following converse to the reduction theorem be established? 
"Let o and 1" be similarity types and let 6 be a system of definitions for o 
in r. If in s is a reduction o f o  to T then the range of 6 is jointly Iol + to 
universal". 
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(4) Let g and ), be cardinals, let o be a similarity type and let g -, oX 
denote that every jointly g universal set of terms of type o is jointly ), uni- 
versal. Describe -'o as a relation between cardinals for different similarity 
types, e.g. o = {(Q.2)}. 

(5) Let ~ be a set of terms. Define 13~ = {n: n ~ ca and Y. is jointly n 
universal }. For what sets S c_ co is there a set ~ of terms so that t3~ -- S? 

3. Base undecidable equational theories 

A finitely bttsed equational theory T is base undecidable if the collec- 
tion of finite bases of T is not recursive. This notion has a sound intuitive 
base if the similarity type of T is recursive. This section is devoted to the 
presentation of a quite general condition sufficient to insure that most 
common finite!y based equational theories are base undecidable. Evidently 
any finitely based equational theory that is undecidable must also be base 
undecidable. In his doctoral thesis, P. Perkins showed that the equational 
theory of a one-element groupoid is base undecidable. This result may be 
found in [29]. in [361 the question is raised as to which finite algebras 
turn out to be base undecidable, in particular, Tat,ski suggests there that the 
equational theory of Boolean algebra may be base undecidable. As conse- 
quences of theorems in this section many equational theories of finite alge- 
bras turn out to be base undecidable, including the equational theory of 
Boolean algebras. Some base decidable equational theories of finite alge- 
bras will be presented in section 4. A theorem announced in [26] is only 
slightly weaker than Theorem 3.12(ii) below. The results presented in this 
paper and those announced by V.L. Murskii were obtained independently 
and essentially simultaneously. 

Defmition 3.0. 
(i) T is a base decidable equational theory if and only if T is an equa- 

tional theor,, in a recursive similarity type and {1": I1"1 < ca and I" is a 
base for T} is recursive. 

(fi) T is a base undecidable equational theory if and only if T is a 
finitely based equational theory and T is not base decidable. 

(iii) T is an essentially base undecidable equational theory if and only 
if T is base undecidable and every finitely based theory extending T (per- 
haps in a similarity type differing froln that of T) is base tmdecidable. 
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Definition 3. I. 
(i) T isa decidable equational theory if and only if T is an equational 

theory and T is recursive. 
(ii) T is an undecidable equational theory if and only if T is an equa- 

tional theory and T is not recursive. 
(ifi) T is an essentially undecidable equational theory if and only if T 

is an undecidable equational theory and every consistent extension of T 
(~rhaps in a similarity type differing from that of 7") is also undecidable. 

Theorem 3.2. I f  T is a j~nitely based undecidable equational theory then 
T is base undecidable. 

Proof. Let F be ar, y finite base for T and notice that for any equation, 
e, in the similari ~y type of 7", F u (e) is a base for T if and only if e ¢ 7". 
Consequently, decision procedure for (l~: IUI < ~ and 1 ~ is a base for 
T) would yield ,, procedure for T. 

The well-know, word problems for Thue systems provide early exam- 
ples of fivJtely based undecidable equational theories. In this connection, 
Post [31 "i presents a Thue system whose word problem has a negati'~e 
solution. A Thue system on n letters ca ~ be construed as equational by 
interpretil, g the letters as constant symbols, juxtaposition as a binary 
operation .,,ymbol, the Thue equivalence symbol as the equality symbol, 
and by inc:uding the associative law in the set of p~ductions of the Thue 
system under this interpretation. The equations without variables deriv- 
able from a Thue system construed in this way will coincide with the 
productions of the Thue syste~o. 

Tarski announced that a certaiv finitely based equational theory con- 
nected with relation algebras is essentially undecidable in [34]. A finitely 
based undecidable equational theory in two unary operation symbols, as 
well as various finitely based undecidable theories of loops and quasi- 
groups, was presented in [ 17 ]. The work of Mal'cev proves most useful 
for this paper. 

Theorem 3.3. (Mal'cev [ 17 ] ) There is a ".finitely based equational theory 
T in two unary operation symbols such that 

(i) I f  SO ~ ~ ¢ T then VSO = V ~/ and so is a variable just in case 0 is a 
~ariable, 

(ii) T is undecidable. 
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Marcev's theorem is not difficult to prove on the basis of  the version 
of the Post-Markov result about the unsoivability of the word problem 
for some finitely presented semigroup on two generators described by 
M. Hall [81. Since every semigroup is isomorphic to a semigroup of func- 
tions over some set Mal'cev's theorem follows. Throughout this section f 
and g are used to denote the two unary operations involved here an,' M 
is a fixed, though otherwise arbitrary finite irredundant base of  T. 

The next theorem is a restatement of a theorem due independently to 
tJcKenzie and to Tarski and announced in [36]. 

Theorem 3.4. (cf. Tarski [36] ). There is a finite consistent set A o f  equa- 
tions in a recursive ~imilarity type and there is a recursive function F whose 
range is i~cluded in the class o f  all equations such that for any finite set Y~ 
o f  equations in a recursive similarity type A ' J ~, [-- F~ and IT, I- Y~ u 4. 

In fact, ~ turns out to be a certain set of  equations closely related to 
the equational theory of rings. The next theorem seems to be well known 
but I have been unable to find it mentioned in the literature. Here it may 
be easily established. 

Theorem 3.5. Let o be any non-trivial similarity type. There is a finitely 
based undecidable equational theory o f  similarity type o. 

Proof. Combine Theorem 3.3 with the existence theorem and the reduc- 
tion theorem. 

This result can be sharpened if o has an operation of rank more than 
o n e .  

¢ 

Theorem 3.6. 2 Let o be a similarity type with an operation symbol ol  
,ank more than one. There is a one-based equational theory o f  type a 
which is essentially undecidable. Moreover, i f  o has a binary operation 
symbol then there is a one-based equational theory o f  type o which in- 
chtdes the commutative law and is essentially undecidable. 

The major effort of  this section is devoted to decidable equational 
theories that are, however, base undecidable. Because of  the reduction 

As remwked at the end of Section 2, the t~rst part of this theorem is due to ,4. Tarski. T'erski 
found this part in 1966. 
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theorem it is profitable to first examine theories of  a very convenient 
similarity type o 0 whose only operation symbols are f, g, h, and k and 
each of  these is unary, o o is to be a recursive similarity type. M, the 
fixed base for lCal'cev's theory satisfying Theorem 3.3, is a set o f  equa- 
tions of  type o 0. First consider whether {U: IUI < to and U c Eqoo and 
U is a base for Eqoo ) is recursive - i.e. whether Eqoo could be base 
decidable. In order to see that Eqoo is base undecidable consider the 
following definition of  a potential base for Eqoo. 

Definition 3.7. 

B(~o~ ¢ ) = M u  {h~olkvo l ~ h~olkv~ ] , h ¢ [ k v  o ] = v  0 ] } 

for every, equation so ~- ~ in the operation symbols f and g. 
In order to sh,~w that {B(~o ~ ~) :  ~o, ~ are terms in f a n d  g and 

B(t0 ~ ~) is a b~ ,e for Eq~ o } is not recursive the following lemma is 
useful. 

I .emma 3.S. Let  o be a similarity type. For any algebra 9( o f  similarity 
typ~ ~ o there is an algebra ~ o f  type o such that 

( i )  IBI -- IAI + Iol + to; 
(ii) lf~o,,~ E Te o andVto= V e  and ~1= ,p~ ¢ then ~1 = ~o~ ¢;  

(iii) l f  ~o, ¢ E T% and V~o = V~/ and ~lk~ ~o ~. ~k then there are 
a ~ 'Bl(v~B) and b,c ~ 'a 'B such that a, b, and c are one-to-one, the 
range o r b  is disjoint f rom the range o f  c, and for  each i E IDI, ~¢~l*ai = b i 
and ~$*ai = c~. 

Proof. Let - ~ A and define ~ '  so that A' = A u {-} and for each Q in 
the domain of  o and a ~ °QA let Q'~I'c~ = Q?{a ar,d for a E ~QA' " °QA 
let QWa =do. Let g = IAI + Iol + 60 and finally l e t ~  be the subalgebra ~ '  
generated by (and even with universe) B = {a: a ¢ XA' and at most one 
element of  the range of  a is different from - }. So IBI = ~ and $ satisfies 
conclusion (ii) o f  the theorem. Now suppose ~o,~ ¢ Te a,  V~o = VO, and 
~l 19SO ~ ~. There are d ¢ V¢A and e, e' ¢ A such that ¢~l*d = e and o~l*d = 
e' and e #: e'. Let a ~ x(V~B) such that ai/= (o,, 0,, ..., d/, 0% ...) where d/ 
occurs at the ith place, for all i ¢ ~: and ] E V~p. Similarly b, e ¢ ~B are 
defined so that b i = (0% 0% ..., e, ~ ,  ...) and c i = (0% 0% ..., e °, o0, ...) where 
e and e' occur at the ith place, for ¢ach i ¢ I¢. Then ¢~8"a 1 = b i and 
¢~*a t = c i for all i ¢ ~ and (iii) holds. 
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Theorem 3.9. 
(i) For all so, ~/ ~ Teoo i f  M ~-. so ~ #/then B(so ~ ~ ) ~- so ~. ~. 

(ii) For all terms so, ~o', ~ and ~' in the operation symbols f and g 
such that Vso = VO and Vso' = VO" i f  M b ~ so ~ ~ then B(so ~. 0/) ~- so' ~ 0/ 
/ust in case M ~- so' ~, ~/. 

(iii) Eqo0 is essentially base undecidable. 

Proof. (i) is immediate since M c_. B(so ~- ~,). (iii) follows easily from (ii) 
by means of Theore.,',t 3.3. So suppose so and ~ are terms in f and g such 
that Vso = V~O and M I'/- so = ~b. Then there is an algebra ~l of cardinality 
60 such that O[M] = Th~l. By the Lemma there is an algebra ~B of cardi- 
nality to such that ~B l= M and there are a, b, c ~ '°B such that a, b, and c 
are one-to-one, the range o f b  is disjoint from the range o f c  and ~B ai 
bi and ~ a i  = ci for every i ¢  to. Consequently~B I~ ~0~ ~. '~ is to be 
expanded to a model of B(so ~. ~,). To this end let k be a one-to-one map 
from B onto the range of a and let h be defined in any way such that 
hbi - a 0  and hc i - k - t a  i, for every i ~  to. Then ($ ,  ~, [ )  is a model of  
B(so ~ ~) and the theorem is established. 

Of course the base undecidability of  EqQ o seems a very special result. 
Nevertheless, it is the foundation that will be used to establish the base 
undecidability of  a much wider class of theories. It is first necessary te 
extend the definition of B(so ~ ~b). 

Definition 3.10. Let o be a similarity type, 8 be a system of definitions 
for o o in o, U c_ Eq ° and so, ~ be terms in f a n d  g. B(SO ~ ~, 8, U) is the 
set in~M u ( ( inshso[kvo])[ .y  I ] ~ (in6hso[kv ! l )[~, l:  ~ P)  u 
{(insh~{kvo ]) [T] = T: ~'¢ rP}. 

TheuJem 3.11. Let o be a similarity type, 8 a system o f  definitions for  
o o in o such that in 6 is a reduction. Let  [" ~ Eqo such that for  any so, ~ 
in the range o f  8, tV together with the range o f  8 absorbs so for V and 
F ~- so ~. O. Let ~t and e be equatiorL~ in f a n d  g such that V-& - V'lt and 
Vet = Ve t and e r is a variab:e /ust in case e t is also, then 

(i) M l" • i f  and only i f  O[B(e, 6, F)] o - O[F]o; 
( i i ) / f M  b ~ ¢ then M ~- T ]ust in case B(e, 8, U) l- ins "t- 

Proof. Since in s is a red~ ~,i ,~ M l- e if and only if in~M l- in6 e and 
B(e) l- ~/if and only if in~B(e) I-- in6 ~,. Now U l- B(e,  6, I') u (ins e} by 
the absorption hypothesis of  the theorem and the properties o f  M des- 
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cribed by Theorem 3.3. Furthermore, in~'B(e) b- B(e, 6, V) since each 
member of B(e, 6, !") is a substitution instance of  in~B(e). Obviously 
B(e, 6, V) u {in s e} I-- I', so B(e, 6, V) I-- ins e if and only if  
O[B(e, 6, P)]o = O[l']o. Moreover, i~B(e, 6, U) I- ins • then in~B(e) I- 
in s e and so B(e) I-- e, since in s is a reduction. Consequently,  i f  
B(e, 6, U) I- ins e then M I-- e by Theorem 3.9. Conversely, i f M  I-- e then 
in~'M I-- ins e and so B(e, 8, I') I-- ins e. Therefore M I-- e if  and only if  
O[I'] o = O[B(e, 6, I')] o and (i) is eslablished. Now suppose M b~ e, then 
ifB(e, 6, U) !- ins~ then in~B(e) I-- ins3' and hence B(e) I- 3'. By Theo- 
rem 3.9, ifB(e, 6, U) I- in s 3" then M I-- 3'. On the other hand i f M  I-- 3" 
then in~M i-- in s 3" and hence B(e, 6, U) I-- ins 3". In this way (ii) is demon- 
strated and the theorem is proved. 

The next theorem can be regarded as the main resu t of  this paper. It 
provides general conditions sufficient to establish thP, many familiar 
finitely based ~.quational theories are base undecidable. 

Theorem 3.12. t rhe base undecidability theorem). Let o be a similariO' 
type. 

(i) ly'r '  c__ Eqo, I1"1 < co, and there is a non-trivial term 0 such that 
0 E Teo, V0 ~ 0, and tU u m(O) absorbs 0 for I" then O[I']o is base 
undecida ~le. 

(ii) i f  "F is a finitely based equational theory and there is a non-trivial 
term 0 such that 0 ~ v o ~ T then T is essentially base undecidable. 

Proof. (ii) is an immediate corollary of  (i). By Theorem 2.33 there is a 
system 6 of definitions for o 0 in o suc! that 6 is one-to-one, the range 
of 6 is jointly co universal, tU together with the range of  6 absorbs the 
range of  6 for U and I" !- ~0 ~. ~b for any ~o, ~b in the range of  6. By Theo- 
rem 2.3, the reduction theorem, in 6 is a reduction. By Theorem 3.1 ! 
B(e, 6, I') is a base for O[U]o if  and only i fM I- e, for every equation e 
in f and g such that Ve t -- Ve r and e t is a variable just  in case e r is also. It 
follows from Theorem 3.3 that {B(e, 6, V): B(e, 6, P) is a base for O[l ' ]e 
and Ve/= Ve r and e ! E V a  if and only if  e r E V a  } is not recursive. Con- 
sequently, O[I']o is base undecidable and the theorem is established. 

The next few theorems illustrate the extensive range of  applications o f  
Theorem 3.12. A theory 0 is said to be a theory of  groups (tings, lattices, 
Boolean algebras, ...) if 0 is definitionally equivalent to the equational 
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theory o f  a group (ring, lattice, Boolean algeb,a, ...) in one of  the standard 
formulations. 

Theorem 3.13. Let T be a finitely based consistent equational theory T is 
essentially base undecidable i f  any o f  the following hold: 

(i) T is a theory o f  groups; 
(ii) T IS a theory o f  semilattlces; 

(iii) T is a theory o f  lattices; 
(iv) T is a theory o f  rings; 
(v) T is a theory o f  rings with unit; 

(vi) T is a theory o f  Boolean algebras; 
(vii) T is a theory o f  relation algebras. 

Roof .  The proofs of  the different cases above vary only in details from 
one another. The basic idea is to discover, in each, a non-trivial term 0 
in some standard formulation o f  the theory so that 0 = v 0 is true and in 
any definitionaily equivalent theory,  0 corresponds to a non-trivial term. 
In particular, if (i) and (ii) are established in this way then the other cases 
will follow easily. 

I. Take the formulation of  group theory in which groups are algebras 
with two operations: composit ion and the formation o f  inverses. Let • 
and - l  be the corresponding operation symbols. Let 8 be a definit ion of  
v 0 • v I and let 3' be a definit ion of  v~ l , bo th  in the wider sense, for the 
similarity type of  T. Then 2 c__ V6 since T is consistent (otherwise v 0 • v 0 ~- 
v 0 • v I would hold in the standard formulation of  T). Let 0 be the term 
corresponding by 6 and 3" to v 0 • (v 0 • v~ 1 ). So 0 ~ v 0 E T and 0 is non- 
trivial. By Theorem 3.12, T is essentially base undecidable. 

I!. Take the formulation of  semilattices as algebras with the operation 
meet ^. Let 5 be a definit ion in the wider sense/',Jr v 0 ^ v I for the simi- 
larity type of  T. At least the variables v o and v I occur in 6 since T is con- 
sistent (otherwise v 0 ^ v 0 ~ v 0 ^ v I would hold in the standard formula- 
t ion o fT) .  Let 0 be t~[v 0, v0].  Then 0 ~ v 0 ¢ T a n d  0 is non-trivial so by 
Theorem 3.12 T is essentially base undecidable. 

The remaining cases now follow easily. 
Perhaps it should be remarked that  what was actually shown in the  proof  

above was that  if  T is finitely based and T is definitionally equivalent to 
a theory T' such that  T' is an extension o f  either a theory o f  groups or 



236 G.F. McNulty / The decision problem for equational bases of algebras 

a theory of semilattices then T is essentially base undecidable. This should 
be contrasted with the following result. 

Theorem 3.14. Every finitely based theory is definitionally equivalent with 
an essentially base undecidable theory. 

Proof. Let T be finitely based and suppose f and g are two unary operation 
symbols not occmring in T. Then T is definitionally equivalent with 
O [ T u  {fv 0 ~ v0,gv 0 ~ v0}] but by Theorem 3.12 this last theory is 
essentially base undecidable. 

Theorem 3.15. Let o be a non-trivial similarity type. Eqo is essentially 
base undecidable. 

Proof. Let 0 be a non-trivial term in type o. Eq~, is fin~ t.ely based and 
0 ~ v 0 ¢ Eq sc Theorem 3.12 applies. 

In the case t,~at o has an operation symbol of  rank at least two Theo- 
rem 3.15 is essei tially contained in [29]. 

Theorem 3.16. l f  T is a finitely based essentially undecidable equational 
theory t,~en T is essentially base undecidable. 

ProoL Sir. :e no finitely based theory in a recursive trivial similarity type 
can be undecidable, the theorem follows from Theorem 3.2 and Theorem 
3.15. 

Definition 3.17. Let o be a silailarity type. T is the constant theory of  
type a if and only if  T is an equational theory of type o and for all ~t ~ T 
and all i, / in the domain ofo, Op~l i has the same range as Op'Jl! and the 
range of Opg/t has exactly one element. 

T is the constant theory of type o if  and only if T = {~o ~ 0: ~0, ~ ¢ Te e ~ 
Va} u Cvs: 1¢ ~o}. For any similarity type o the constant theory of  type o 
is equationally complete. For non-trivial finite aimilari~ types the con- 
stant theories are base undecidable. 

Theorem 3.18. Let o be a finite non-trivial similarity type. The constant 
theory o f  type o is base undecidable. 

Proof. Let 0 be any non-trivial term of similarity type o. 0 is absorbed by 
every subset of  Te e ~ Va for T. Since o is finite T must be finitely based. 
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Let r be any finite base for T such that t1" c~ ~ a = 0 By Theorem 3.12 
T is base undecidable. 

Theorem 3.19. Let o be a similarity type with some operation symbol 
o f  rank at least two or at least three unary operation symbols. Every con- 
ststent finitely based equational theory of  type o has a consistent bo~e 
undecidable extension of  type o. 

Proof. Let F c__ Eq ° and I VI < co. For the moment assume that there is 
a non-variable term 0 such that 1` I- 0 ~ v 0. If 0 is non-trivial then O[V]a 
is base undecidable. Suppose 0 is trivial. There is a unary operation sym- 
bol, say f,  and a natural number n > 0 so that 0 -" f "  v 0. If  m E f.¢ and 
f ~  Tea. such that 1  ̀I-" f m v o  ~ 7¢ then 1  ̀t-- f m ' ( n - l ) f f  ~e fro 'no 0 SO 
P I" fm (n-t) a, ~ v0" So either O[1"] 0 is base undecidable or else no opera- 
ticn symbol different from f occurs in it whenever 1` I-- ~r ~ fm Vo" Assume 
that O[1"] 0 is not itself base undecidable. Let o ° be a similarity type which 
is the restriction of  o to a finite set of  operation symbols different from f 
which include all the Opel~ation symbols different from f occurring in 1" 
and such that o' is non-trivial. Let T' be the constant theory of type o'. 
T ° is base undecidable by Theorem 3.18. Let T=  O [ T ' u  {fvo ,e u0} ] o- 
Evidently, T ~ O[1"] o, T is finitely based, and every model of  T' can be 
expanded to a model of T. Hence T is consistent. Let A c_ Eqo . / ,  is a 
base for T' i fand only i fA  u { fv  0 ~ Vo} is abase for 7". (Suppose 
A U {re0 = v0} is a base for 7". Let ~ I= T' and expand ~ l t~$  I= 7'. 
Then • I = A and hence ~11 = A. This means T' I-- A. Let 9J I = ~ an l ex- 
pand ~ t o ~  I= 7'. Then ~ I = T'  and hence '~1 i= T'. This means A - T'.) 
Since T' is base undecidable it follows that T is base undecidable. Now 
suppose there is no non-variable term 0 sucli that 1" I- 0 ~ u 0. In this case 
let o' be the restriction of  o to any finite non-trivial set of  operation sym- 
bols including all those occurring in V. Let T' be the constant theory for 
type o °. Let T = O[T' ] o. Again T is base undecidable and the proof is 
complete. 

! 

Corollary 3.20. Let o be a similarity type with some operation symbol o f  
rank at least ~ o  or at least three unary operation symbols. Every finitely 
based equationaliy complete theory of  type o is base un~ecidable. 

In Section 4 an example of a finitely based equationally complete base 
decidable equational theory in two unary operation symbols will be pro- 
vided. 
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Theorem 3.21. Let o be a similarity type. I f  I" c c_ Eqe and there is a non- 
trivial term 0 such that VO ~ 0 and m(O) u tI" absorbs 0 for  ~ then there 
is an infinite family  ~ e "  flnitely based undecidable subtheories of  O[I']e. 
If, in addition I" is f inih ~ and F t'- 0 ~ v O, then ~3 can be.chosen so that 
every member  o f  has "he. same finite models as ['. 

Proof. By Theorem 2.3:| there is a set ~ of  terms such that 
(i) ~- is infinite. 

(ii) ~ is jointly universal in every infinite cardinal. 
(iii) tr' u ~, absorbs ~ for [' and PI-- {q: ~ ~0: ~,~p~ ~}. 
(iv) There are terms ~e,  ~l  such that ~ = { ~21 [~[n÷~! [~0[~ t  II1: 

n ~  w}. 
Let ~ ~ ' ~  such that ~ is one-to~one. For every k ~ ¢o let ~k be the 

system of defini',tons for the similarity type of  M in o inch that f v  o is 
defined by 64:,2 and gv 0 is defined by ~4k÷'.," Now $,,ppose that V ;s 
finite and that U I-- .0 = v 0. (The other case can •ashy be seen by :,impli- 
fying the argum*.nt below). Let A=  {~013'~] = ~e[~/r]" 3'~ V} u {~t ~u0}" 
Define T t for k ~. w as the theory based on A U in~kM u {~4k+4 ~ ~4k÷$ }. 

• Claim 1. T t is undecidable for each k ¢ ¢~. 
Proof. Let ~ be an algebra such that Th '~i = O[in~tM]o and IAI= ¢~. Let 

be an a~gebrac~n A 8 ~s° that_ ~has6~ a one-elementt~ _ ~l  rat'n~e' 6_] ~* is the identity 
function ~.. 4k+2 ~a 4 k + 2 ,  U4k÷3 - U 4 k + 3 ,  v 4 k + 4  - 6~k÷ 5 , and other- 
wise so that 6~÷ 4 ~ 6~÷ s . Then ~; I= T k and for every •qua' ion • in f 
and g, ~ iffi in~te if and only if ~ I= in,~k• if and onJy i fM t-- e. Since 
in~t M c_ Tk this means that T k is undecidable by Theorem 3.3. 

Claim 2. P I- T k , for all k ~ ¢~. 
Proof  This is a consequence of (iii). 

Claim 3. If tl is a finite model of T k then ~1 I= V, for all k ~ co. 
Proof. ~ Iffi 6 t ~  u 0 so ~ is one-to-one and onto. By (iv) ..nd the finite 

ness of ~1 both ~ *  and ~ °  must be one-to-one and onto. But this means 
that ~ *  is one-to-one and onto and hence invertible. Since ~ I= {60[*/t] ~ 
~0[~g]: ~ P},  this means that ~ If U. 

The claims complete the proof of  the last sentence of  the theorem. The 
alteration needed to prove the first sentence is the deletion of & from the 
definition of T k. Then claims 1 and 2 still hold and ~ the theorem follow.~ 

It should be rec-,rked that, in any finite similarity type, the set of finite 
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baseg of any finitely based equational theory is recursively enumerable. 
For every recursively enumerable Turing degree e there is a finitely pre- 
sented semigroup on two generators which has a word problem of degree 
e. Such semigroups are provided in 14]. it is therefore possible to obtain 
a finite set, M e, of equations in f and  g such that O[Me] has Turing degree 
~. it follows that for all equational theories T in recursive similarity ,' pes 
which fulfill the hypotheses of the base undecidability theorem, the set 
of finite bases of T has the largest possible recursively enumerable degree: 
0'.  

Problems raised by Section 3 
(!)  Let o be a finite non-trivial similarity type. Is the constant theory 

of similarity type o essentially base undecidable? 
(2) if T is a one-based base undecidable theory, is {e: O[e] = T} ever 

recursive? 
(3) is the set {91: A ~ c~ and ~ is a finitely based groupoid } recursive.~ 
(4) is there a finitely based undecidable theory of groups? Murskii [25] 

provides a finitely based undecidable theory of semigroups and Marcev 
[ 17 ] provides various finitely based undecidable theories of quasigroups 
and loops. The Boone-Novikov construction (cf. [3], [27]) yields a 
finitely based undecidable theory of groups with several additional con- 
stants. 

(5) The behavior of base undecidability with respect to definitional 
equivalence is largely unexplored. Is there a reasonable condition, inde- 
pendent of Theorem 3. ! 2, on theories T such that if T is base undeci- 
dable then so is every theory definitionally equivalent with T? 

Problem 3 is perhaps the most challenging, it was raised in [36], though 
it has received consideration earlier (of. P. Perkins' doctoral thesis, Ber- 
keley, 1966). 

4. Base decidable theories 

The purpose of this Section is to investigate base decidable theories. 
Considering the base undecidability theorem, it is to be expected that 
base decidable theories occur infrequently amongst the more familiar 
finitely based theories. Though many of the examples of  base decidable 
theories presented here are rooted in semigroups, several are simpb 
artificial. Part of the energy that generated tliese examples stemmed 
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from an investigation o f  the connection between the base decidability o f  
a theory and whether it could have arbitrarily large finite irredundant 
bases. The reason for suspecting such a connection is contained in the 
following theorem. 

Theorem 4.0. Let 0 be a similarity type. I f  I" c_ Eqv, l" is finite, and there 
is a non-irivial term 0 such that VO ~ Oand m(O) u tl" absorbs 0 for r' 
then O[V]o has irredz.ndant bases o f  arbitrarily large.finite cardlnality 
(i.e. v O[I'] e / s  infinite). 

Proof. By Theorem 2'.33 there is a set :~ o f  terms so that ~ is infinite and 
jointly Iol + ca universal and ~ u tl" absorbs ~ for 1" and I" I-- ( ~  ~ ~p: 
~, ~0 ¢ ~ }. Let 6 ~ '~:~ such that  6 is one-to-one. 

For n E ca iet 

A~ = {6i[~]  = ?: */E tI' and i 6 n } 

u {6o[6 ! [... 6 ._!  [%l ... ] 6ol6! [... 6 ._!  I%1 ...1: I" }. 

Then A n I-- V for each n ¢ ca and, since tl" absorbs the range o f  6 for I" 
ti follcws that I" I-- An. Hence O[I']o = O[A n ]o. For each n ~ ca, let A n 
be an i :redundant subset o f A  n such that O[[']o = O[A n ]o. 

Claim For each n ¢ co ~ 2 and i 6 n there is 7 6 tl" such that  6i['y ] 

Proof. Suppose otherwise and, without  loss of  generality that  

Since {61: ~ n } is jointly Iol + ~o universal let ~ be an algebra of  type 
o so that 67" is the identity function on A i f / <  n--  ! and 6~_* ! is a con- 
stant function. Then ~ I= A n ~ ~i6,t_l [7] "~ 7: ~" ~ tU }. So • I = A n and 
therefore ~1 I= I'. But tlbt 6n_ l .~ 6 0 and thus 1" ~ 6n_ 1 ~ 6 0 but this 
is contrary to I" I-- {0 ~ ~0: 0,~o~- ~ }. So the claim is finished. 

It follows from the claim that I An I • n for each n ¢ ca ~ 2. So *.he 
theorem is established. 

In [36 l ,  it was announced that if T is a finitely based equational theory 
and there is a term 0 in which v 0 occurs at least twice, such that 0 ~ v 0 ¢ T 
then VT is infinite. Theorem 4.0 extends this result. Theorems 3.12, 3.2 I 
and 4.0 have essentially the same hypotheses, though different conclusions. 
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Below, a finitely based theory T of  commutative semigroups is pre~nted 
such that T is base decidable, V T is infinite, and T has infinitely many 
finitely based undecidable subtheories. Another finitely based theory T 
of  commutative semigroups is provided that is base decidable so that V T 
is finite, T is the theory of  a finite algebra, but T has infinitely many es- 
sentially different irredundant bases. It is not known whether ¢. ~ery finS;* - 
ly based-theory T in a recursive similarity tyl~. such that V T is finite is 
base decidable. 

Because semigroups play such a role in this section, • is introduced as 
a binary operation symbol and terms are constructed so that (~o • ~) is the 
term resulting from applying• to ~0 and ~. " ( "  and " ) "  must be added to 
the fundamental symbols of  equational logic. The similarity type having 
• as its only operation symbol is taken to be recursive. Whenever ~0 is a 
term in • then ~0 t is ~o and ~d '÷t is ~0. ~ for each n E co ~ 1. This should 
give rise to no confusion with the notation of  previous sections in what 
follows. 

Definition 4. I .s Let o be any similarity type. 
(i) For each l G co and O G T%, let i(O) be the number of  times u i oc- 

curs in O. 
(ii) For each Q in the domain of  o and 0 ~ Tea, let Q[0 ] be the num- 

ber of  times Q occurs in 0. • [0] is the number of  t imes,  occurs in 0. 
(iii) For I" c__ Eqo, let RU = ('yl[0] ~ 7r[0]: either ~ I" or~r  ~ 3'1 ~ I" 

and 0 ~ "Te  e and V0 i = {0} for each i ~ co}. 
(iv) Let eG Eq e. e is balanced if and only if i(e/) = i(e r) and Q[ell = 

Q[e r ], for each 1 ~ co and each Q in the domain of  o such that oQ ~ 1. 
As a matter of  convenience the greatest common divisor of the empty 

set is taken to be 0 and min0 = 0. n I m means n divides m for every 
m,  n E  co. 

Lemma 4.2. Let  I" be a set o f  equations in the operation symbol  .. Le t  
m = ra in({ . [0]+ 1: there is a term lr such that either f ~ 0 E I" or 
0 ~ f G  V a n d  .[0] ~ "[~rl } u {-[0] + i(O)+ 1: i E  coand there is a term 

3 An earlieg definition of balanced equation appeattnlg in [21] b incorgeet in that opegation 
symbols age ignored. ! would like to thank Don Pigozzi for pointinlg out thb mistake. Also the 
condition that t lnvolvu a vagiable must be added to the hypothesis of the theorem anmmnceO 
~i2tl .  
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t such that  e i ther  ~r ~ 0 ~ P or 0 ~ w ~ I" and i(0)  ~ i (f)} ). Le t  r be the 
greatest  c o m m o n  divisor o f  {i(71) - i(Tr): i ~ w and ~/~ I" }. Then 

(i) O[{(v  o . v  l ) ' v  2 ~ v  o ' ( v  1 " v  2 ) } U R I ' }  = • 

= o [ { ( v  o • v l ) .  v 2 ~ Vo" (v ~ • v2 ) ,~o  ~ ~ o ÷ ' } I  

(ii) {(v 0 • v! )" v 2 ~ v 0 • (v I • v I )} u I" I-- v'~o' ~ V~o '+r' 

i f  and only  i f  m'  ~ m and r I r'o f o r  every m °, r' ¢ co ~ I. 

The proof of  this lemma is elaborate but uninteresting, essentially 
some easy number-theoretical manipulations combined with rules o f  
inference for e~luational logic. For brevity the proo" is not given, in any 
case, some o ~ the principles used in the proof  o f  thi~ lemma arise again 
in the proof 3f the next theorem. 

Theorem 4.3. Le t  m ~ co ~ 2 and r ¢ c~ Le t  T be the theory  base.q on 

{ ( % .  v, ) .  v,_ ~ v o • O' l"  "~ ), Vo" ul = v , ,  % .  ~ = ~o +' }. 

T is ba~'e decidable and  V T Is inf ini te  i f  r > O. 

Proof. 177~  T then  VTi = V%. 

Claim 1. 7 E  T if  and only i f r l  i(~ l) - i(~r) and either i(Ti) = i(Tr) 
or min(i(T/), i(Tr)) ~ m,  for each i ~ co. 

Proof. Suppose 7 satisfies the conditions on the right side. Let 
rt = 1i(7i) - i(Tr)l and m i = min(i(~t),  i(%)). By Lemma 4.2, attn. i 
v~l ÷ri ~ T. Since the commutative law, as well as the associative law, is 
in T then 7 ~ T. 

Conversely, suppose , / ~  T. Let k ~ 6o such that V~! c__ k and let 
X=t~0 • t~l • ... • ~ .  F o r i , / ~  colet - 

v o if  i = ] ,  
:" Oil= vv 0 if  i ~ ] ,  

and 0 i ~<Oi./ :  / ~ co). Le t  r i = 1i(Tz) - i(%)1 fo r  i ~ ~ .  Let  q ~ w .  

X[O q ] °  "~l[O q ] ~ X[e q ] "  "~r[O q ] E T ,  
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so there are pq ~ co ~ m and ~ e~ co such that 

or else 

opq+dqr+rq p 
~ Voq E T 

p,, + d,,r 
UPO q + r q == U O'l " ~ T. 

Then by Lemma 4.2 ~ #  ~ ~q+rq E T and by Lem,na 4.2 again r I rq. 
Now suppose q(71) > q('Yr). Since both the commutative law and the 
associative law are balanced and since T I- 7, by the definition o f  deri- 
vation there must be a term so such that either SOre or som+r is a subterm 
o f %  and furthermore vq occurs in s0. Therefore q(~'r) • m. The claim is 
proven. 

In particular, T is decidable. 

Claim 2. Let 4 be a set o f  equations. 4 is a base for T if and only if 
(1) T I -  A; 
(2) The commutative law is in 4 ;  
(3) One of  the sixteen commutat ions o f  the associative law is in A; 
( 4 )  r is the greatest common divisor of  {i( 'Yt)  - i('}'r): " /~  4 and i E co}; 
(5) m = rain({.  [0 ] + 1 : there is a term ~¢ such that  either lr ~ 0 ~ 4 or  

0 ~. l r~  4 and "[0l ~ .[lr] } u {.[0] +i(O)+ 1: i E  co and there is a term lr 
such that  either 0 ~ x ~ 4 or I, ~. 0 E 4 and i(O) ~ i(x) }). 

l¥oof. Suppose ( i ) - ( 5 )  hold. Then T I - / t  and both the commutative and 
associative laws are derivable from 4 .  Lemma 4.2 together with ( 4 ) a n d  
(5) insures that  A is a base for T. 

To demonstrate the converse, suppose 4 is a base for T. (1) is immedi- 
ate and (2) and (3) follow from the definition of  derivation considering 
m • 2. By Lemma 4.20)  

e [ ( v  o -  v I ) .  v 2 :~ v o • (v  I • v 2 ) }  u R A ] =  

= e (  ( ( v  o • v I ) .  , ~  ~ v o • (v  I • v 2 ) ,  ~ o  ~ '~o ÷' ; ) • 

By Lcmma 4.2(ii), (4) and (5) are fulfilled. The claim is established. 
Claims ! and 2 provide a decision procedure that determines which 

finite sets o f  equations are bases for T and so T is base decidable. 
Now suppose r > 0. For each n E w ~ ! there is s n E "(co ~ I )  such 

that s n is one-to-one and r is the greatest common divisor of  the range 
ofs  n but not of  any proper non-empty subset of  the range o f s  n. Let 



244 G.F. McNulty / The decision problem )or equatios~! basel o f  allele# 

((Vo" vl ) "  v2 ~ Vo • (vl • v2), Vo" vl *~ vl • v0) u { ~  .~ ~ + ' . / :  / ¢ n). 
By Lemma 4.2 ~ is a base for T and A,, is irredundant by construction. 
So V T is infinite and the theorem is established. 

Example 4.4. Let T be the theory based on ((v o • v o ) .  (v o • v 0) = v o • v 0 ) 
T is base undecidable but T is not essentially base ur decidable. In addition, 
T has infmitely many finitely based undecidable sub,heories but T is it- 
self decidable. 

Proof. Let 0 be (v o • v o ) .  (v 0 • v 0). Then 0 is non-trivial and re(O) = 
(0, v o • Vo). Observe that re(O) absorbs 0 for ((v 0 • Vo). (v o • v o) 
v 0 • v 0 ). So that by ,theorems 3.12 and 3.21 the undecidability results 
mentioned follow. ,By Theorem 4.3 the extension of  T by the addition 
of the commuta:ive and associative laws is base decidable. Therefore T 
is not essentiahy base undecidable. The decidability ~,f T can either be 
seen by an ex.,austive analysis or by employing the result of  Pigozzi 
mentioned in t;~e remarks at the end of  Section 3. Let 6 be the system 
of definitions f o r f  in .  such that f v  o is defined as v o • v o. By Pigozzi's 
theorem T ~as the same Turing degree as the theory based on f2  v0 
f vo .  This last theory is easily seen to be decidable; in fact it is 

( f n + l v  i ~" fm+lVi: n,m,i  ~ co) U (v  i ~ vi: i ¢  co) . 

Example ,' .5. Let f and g be two unary operation symbols. The theory 
based on ~ f v  o ~ v 0, gv 0 ~ gv I } is equationally complete and base deci- 
dable. In fact, this theory is the only equationally complete based deci- 
dable finitely based equational theory in a non-trivial similarity type, up 
to renaming the operation symbols and including constant symbols. 

ProoL Let T be the theory based on ( f v  0 ~. v o, g v  o ~ g v  I ). ~o ~, Co G T 
if and only i fg  occurs in both ¢ and ~ or else V~o = V~, and g occurs in 
neither ~o nor 0. T is therefore decidable and equationally complete. 

Claim. A is a base for T if and only if 
( I )  T I -  A. 
(2) For some i ¢ co and n ¢ co .,, I, either v i ~ f~ v i ~ A or f n  vi , ,  vi ~ A. 
(3) 1 is the greatest common divisor of  ( I n - m l :  f n v  i ~ f m v  i ~ A and 

i , n , m ~  co). 

(4) For some 'y E A, V'y l ~ V%. 
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(5) For some 1' E A, g occurs exactly once on one side of 1, and either 
VTi ~ V1,r or else g occur at least twice on some side of 1,. 

Proof. Suppose A is a base for T. Then A i-  fv 0 ~ v 0. (2) and (3) follow 
by easy induction on derivations. (I)  is immediate. (4) holds since 
& I- gu 0 ~ gu t • (5) holds because otherwise <3, h, k) I= A where h is the 
identi ty  function on 3 and k( ) = 1, k ( I )  = 0,  k(0)  = 0. 

Conversely, suppose & satisfies (1)-(5) .  By (2) and (3) & I- fv  0 ~ u 0 • 
Then by (4) and (5) & I- gu o ~ ~P'I- So by (1) & is a base for T. 

The claim is enough to insure that T is base decidable. Let T' be any 
other equationally complete finitely based theory in f and g. If T' is the 
constant theory then T' is base undecidable by Theorem 3.18. Otherwise 
there must be a non-trivial terrr, 0 so that 0 ~ v 0 ¢E T' and by Theorem 
3.12 T' is essentially base undecidable. By Corollary 3.20 all other cases 
follow. 

Definition 4.6. Let & and r' be sets of  equations. ,~ and P are essentially 
the same if  and only if  for every e ¢ A ~ Ta and 1, ~ 1 ~ ~ Ta there are 
permutations r/and ~r of Va such that 

or else 

and 

or else 

%[<rmt: i ¢  co)] ~ %[<rmi: i ~  ~>1 ~ 

%[<nv, t: im ~>] ~ 1,,tl<,nv,t: im ~>] m ,x 

~++[<+i: im o:>] +. e,l<~mi: im ¢0>] m r 

e~[<+m+: im o:>] + e+[<xv+: im o:>] ~ P. 

Two sets of  equations are essentially the same if, aside from tauto- 
logies, the renaming of  variables, and changing the symmetry of  their 
members, they are identical. P and & are essentially different if  they 
are not escentially the same. If T is a finitely based, decidable theory 
such that any maxima! set of  pairwise essentially different irredundant 
bases is recursive, then T must be base decidable. It should also be noted 
that if  U is a set of  balanced equations, then O[P] is also a set of balanced 
equations, as is easily established by induction on derivations. 

Theorem 4.7. I f  T is a finitely based theory in a finite recursive similarity 
type and T is a set o f  balanced equations then T is decidable, o T is finite, 
every set o f  pairwise essentially different trredundant bases o f  T is pnite, 
and T Is base decidable. 
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Proof. It is sufficient to establish that T is decidable and that every set of  
palrwise essentially different irredundant bases of 7' is finite. Let 0 be any 
term. Then there are only finitely many terms ~ such that 0 ~ ~0 is balanced, 
since the similarity type is finite. Hence, there are only finitely many one-to- 
one sequences of  such terms. Since T is bala~tced, 0 ~ ~0 must have a deriva- 
tion appearing as one of  these, sequences if T I- 0 ~ ~0. Because T is finitely 
based, there is a recursive procedure which determines if any given finite 
sequence of  terms is a derivation from T. Hence T is decidable. 

Let k be the total number of  occurrences of  variables, constants, and 
unaryoperation symbols in some fixed though arbitrary finite base of 7". 
Let 4 be the set of all balanced equations e such that Ve t u Ve r c_. k and 
such that no variable, constant, or unary operation symbol occurs in e 
more than 2k times. For any term 0 let 0" be term obtained from 0 by 
renaming the varial-les from left to right so that if n distir ct variables 
occur in 0 then V(" * - n. Evidently * can be defined in st, c,h a way as to 
be recursive. I f ~  i~ a set of equations Y-* - {~0" ~ ~*: ~0~ ~ ¢ T}. Notice 
that ~ and 2~* are e~ ~entiaily the same. 

Claim. I f  2~ is a base for T then ~* n A is a base for 7". 
Proof. Let I" be a base for T such that 1" c_ 4.  Let ~o ~ ~ ¢ F. Then 
I-- ~o ~ ~ "a~d so N* I-- ~0 ~- ~. From the definition of  derivation and 

p c__ & it folk ws that ~* n A I-- ~o ~ ~. Consequently 2"* n A I- V and 
so ~* • A is ~ base for T. 

Let ~ be any irredundant set of equations, then ~* is irredundant. By 
the claim if ~ is an irredundant base for T then ~* c_ ~. But A is finite 
so t'lere are only finitely many essentially different i~edundant bases of  
T. :~ i s  proves the theorem. 

Observe that the limitations imposed on the occurrence of  constants 
and unary operation symbols by the definition of balanced equations are 
essential in this theorem. By considering Marcev's undecidable theory in 
Theorem 3.3 or a finitely presented semigroup with an unsolvable word 
problem it is easy to see that the decidability of  T can fail if these limita- 
tions are relaxed. On the basis of  Theorem 3.12, the base undecidability 
theorem, it would also be easy to construct examples violatint the base 
decidability of  T but which would still be decidable. 

The next theorem is based on a suggestion of  Ralph McKenzie and 
ser,tes to show that the connection between ~7 T and the base decidability 
of  T is at least '1oc entirely simple. 
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Theorem 4.8. I f  T is a theory o f  commutative st nigroups and 

r b '  and  Cvo.o  I • ... . v , _  ! = Vo -2 O2o -a ) f o r  
some n ~ ¢0 ~ 4 then 

(i) V T is finite, 
(ii) T is f initely based and base decidable, 

(iii) T has infinitely many essentially different irredundant bases. 

Proof. The proof  is presented as a sequence of  12 claims. ~ and ~ range 
over terms. The notion of  length is modified so that  LAp denotes the num- 
ber o f  occurrence o f  variables in ~o. 

( I )  If T t- ~ ~ ~ and L,p < n then DO = L~.  
Proof. Observe that  T I-- ~ ~ t~t whenever m • n. Recall that  T I-/- ~ -  1 

~ - I .  Now T I-- v~ ~' ~ v0 L¢' by substituting v o for all variables in ~0 ~, ~. 
Since L~ < n it follows LO < n and furthermore 

Consequently 

Ti-- t~0-1 ~e If0+{Lt-L~ °}-I 

So DO • L~.  By the symmetry  of  the argument LAp = L~. 

(2) If T I- ~o ~ ~ and IAo < n then V~ ~ V~ .  
Proof. This is immediate from (1). 

(3) If  I ~  • n then T I-- ~ ~ '~ just in case L~ • n. 
Proof. This follows from (1) since T I- v o • .. . .  v n_ l ~ ~ .  Let E be the 

set of  all equations e such that [.el, Le r < n. 

(4) i f  U is a base for T then F n E ~ T n E. 
Proof. From (1) and (2) by a simple induction on derivations. 

(5) If  F is a base for T then there are equations e, 7 ~ r' such that, up 
to symmetry  and renaming o f  variables, e I = v o • ... • v,,_ i and either 
Le, > n or  Ve l ¢ Ve, ,  ahd VTl ¢ VT,. 

Proof. V I-- v o- . . . -  v n_ l ~ ~ .  Therefore the existence of  such a 7 is 
assured by the definition o f  derivation. By ( I )  and (2), if 6 E I" and 
L61 < n and there i s0  6 '°Te such that Sl[0] is a subterm o f v  o • ... • vn_ I 
then v 0 • v I ~ v I • Vo I-- 6 and i(B l) ~ I for each i 6 w. Consequently 



2 4 8  G F. McNulty / The d ~  problem [or eq~arioMI ban~ of  algelmn 

I" n E I~ Vo • ... • vn-t  ~ ~ .  The existence of  the specified e now follows 
by the definition of  derivation. 

(6) T is finitely based. 
Proof. Due to a theorem in [28] every commutative semigroup is finitely 

based. However, observe that  ( T n  E) u (v 0 • . . .-  vn_ ! ~ ~ } is a base 
for T b y  ( ! ) ,  (2), and (3). Let ~ be the set o f  equations e such that 
e ~ T n E ~ Ta and V e  i u Ve r c_ n -  I. Then ~ is finite and ~ is a base 
for e tTn  2:! by (1) and (2). Hence ~ u (v 0 • . . . .  v,,_ t ~ ~ ) is a finite 
base for T. 

(7) I f  T I- I" and I" is finite then (~o ~ ~:  IAp < n and I" I-  so ~ q~ } is 
recursive. 

P roof  Let so be a term. There are only finitely many terms ~ so that 
V¢  = Vso and I ~  = L~. Consequently, there are only finitely many 
sequences ~ whic.n are one-to-one and such that I~  i = IAo and V~ t = Vso 
for each I in the domain of/~. If  L ~ <  n, by ( I )  and (2) I" I-- so ~ ~ just  
in case one of  th:se finitely many sequences is a derivp,ion. Since I" is 
finite and the sequence can be recursively constructed from ,o, it follows 
that (so ~ ~:  L~ < n and I" I-- ~o ~ V ) is recursive. 

( 8 )  T i:~ decidable. 
Proof." This follows from (7) and (3) by means of  (6). 

(9) P is t base for T i f f  T I-- I ' ,  I" n E I-- T n E, and there are e ,7 ~ P 
as specifie6 by (5). " 

P r o o f  The necessity of  these conditions follows from (4) and (5). To 
prove the converse two cases will be considered. Assume I" fulfills the 
conditions on the right side o f (9 ) .  In particular, 1 ~ ~ (v 0 • v I ae vl • Vo , 
Vo" Vo 2 . vi,-3, (Vo" vl)" v2 re" (vl" v2)).  

Case I. Vel ¢ V e v  and Le t = Le v. Since I" t- v o • v I *. v t "  Vo, it follows 
that there is ~/~ rico such that ~tE(,~ ~t)~i = .q and 

/~i . . jjYJR-I 
U J-- v o • . . .  • V n _  I ~ v I . . . .  , - I  ' 

(*) 

Assume without loss of  generality that  *It ; '  2. Suppose i E n ~ 2 and 
~t > 0. Then for some 0 and 0' such that L0 = l - I, 

~_ U~! - ~ n - t  . . " " " % - 1  ~ u i ' v i  O.v  s O' 
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by the commutative (and associative law). So ! y (*) 

# w 

" r / !  , . ~ n - I  
r l -  vo  . . . . .  v . _ l  ~ v I ... . v . _  1 

where T?' ~ " " l w  such that ~iE~n-l~q~ = n and q~ > q l .  By repeating the 
process no more than n times, one obtains r I-- v o • ... • Vn-i ~ ~ .  By 
the commutative and associative laws r' t-- Vo • ... • Vn-l ~ ~ .  Conse- 
quently,  r I-- Vo • ..." Vn-l * d,~ and r ~s a base for T. 

Case 11. Vel = Ve, or  Le t ~ Let. So Le r > n. By means o f  the associa- 
tive and commutative laws and a suitable substitution instance of  e, it 
follows that  there is q 6 n(w ~ 1) such that  ~iGn ~i > n and 

r , -  v o • . . . . . .  • v . - I  ~ v ~  ° • • ~ . - l"" • ( * * )  

By means of  the associative and commutative laws and (**), after re- 
peated apphcation, it follows that,  for M - % q l  ... t i n - l ,  

r 

r t -  Vo • . . . .  v._~ ~ ~ . . . . .  ~ . l  • 

Note  that M ~ n > 2. So for any j 6 w 

r ~- Vo • . . ." Vn_~ ~ (% " ..." v . _ ~ ) M / .  
(***)  

Assume, without  loss o f  generality that  V3'! ~ V% 4: 0. Then 

r ~- v~ ~ v p v q 0 1 '  

where p + q - LT t and • - L%. Let N -- rq. 
Hence 

r !- v~ v ~ v~ q v pq 

and thus 

r l- v~ ~ vPqo vpql 

by the commutat ive law. Finally 

r . . 
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Pick/so large that M / > N +  n. From (***) 

I" I-- v 0 • . . . -  v~_~ ~, (v  o • . . . .  v ._~  ~i-'V(v o • 

Therefore from r' i-- v~ ~. v~ it follows that 

. . . - v . _ , P ' .  

Repeat this process N - 2  times to obtain 

I" I-" v o • . . ."  v , , _  t ~ ( v  o • . . . .  v , , _ l  ) M l - I  . v , ,  . ( * * * * )  

Moreover I" I'- v~ ~. v~ <Mi-l) • v.  by substituting v 0 for v o, v I .... , and 
vn_ l in (****). Consequently 

r I-- ~ ~ ~ M / - ~ .  ( % . . . . .  vn_~)M/-x . v,+m 

by substitution. But also 

f" I-- v o • . . . .  v . _  l = ( v  0 • 

by substitution in (****). So at last 

. . . .  v ._ i  )~J-I . v,,. l 

r t -  vo • . . . .  v . _  l ~ 

and thus V is a base for T. 

(10) T is base decidable. 
Proof. From (9) by means of (8) and (7) and (6). 

(1 l)V Tis finite. 

Proof  Observe that O{ T n  E] has only finitely many essentially different 
irredundant bases. Let m be a bound t,n their cardinalities. Then m + 2 is 
a bound on v T by (9). 

(12) T has infinitely many essentially different irredundant bases. 
Proof Let A be an irredundant base for O[ T n  El. For each m ~ ca, 
u {v 0 • ... • vn_l ~ ~+m } is an irredundant base for T and no two of  

these are essentially the same. 
The theorem is established by (I ! ), (6), (10), and (12). 

r ~- v o . . . . .  v._ i ~ (v o . . . . .  v ._~)MJ- ," ,  v ~ .  

Recall that V I-- v ~ - 2 . v  0 ~ ~ - 3 .  v 2 and so 

r '  l -  v o • . . . .  v , _  1 ~, (v  o • . . . .  v , _  l )M/-N~ l . v ~ - l .  
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Example 4.9. For n ¢ co ~ 4 there is a commutative semigroup ~! such 
that 

(i) ~i has cardinality n, 
(ii) Thin is finitely based and base decidable, 

(iii) s7 Thai is linite, 
(iv) Th~{ has infinitely many essentially different irredundant bases. 

P~oof. Let ~ = (n, ~) where 

k -  ! if a.d a.d k 0, 
m o  

[o  otherwise, 

for every m, k ¢ n. Then • is clearly a commutative semigroup and 
P v 0 "v.l" ..." vn_ ! ~ ~ since moo mlo ...o ran_ ! = 0 for m E nn. 

Let a ~ n-In and observe that 

n -  I if a s = I for all i ¢ n -  1, 
a 0 o a I o . . . O a n _  2 ffi 

0 otherwise. 

So 9~1= v 0 • v[ ~-2 ~ v~. v[ J-3 and ~ ~ ~ - l  ~ v~,-l. So Tht{ satisfies 
the hypotheses of Theorem 4.8 and the conclusion follows. 

Remark 4.10. In the course of proving Theorem 7 of [36], J. Ng and 
A. Tarsk! observed that each of the following theories is base decidable: 
the theory of all semigroups, the theory of all commutative groupoids, 
and the theory of  all commutative semigrol~ps. Since each of these 
theories is evidently finitely based and balanced their base decidability 
follows from Theorem 4.7. 

Instead of  considering whether or not arbitrary finite sets may be 
bases for some equational theory it is reasonable to consider only those 
sets already containing some specified equations. For example, let T be 
the theory of semi-lattices. It turns out that the family of  all bases for 
T which contain the associative law is recursive, while the family of all 
bases for T which contain the commutative law is not recursive. The 
final portion of this section will deal with such relativized notions of  
base decidability. 

Definition 4.11. T is base dec idable  m o d u l o  ,x if  and only if T is an equa- 
tional theory in a recursive similarity type, ,x is a set of  equations in the 
same type and {U: U is finite and U u ,x is a base for T) is a recursive set. 

The notions of T being base undec.idable modulo ,x and being essen- 
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tially base undecidable  m o d u l o  A Can be introduced in the same way the 
analogous concepts were introduced in Section 3. 

Theorem 4.12. Let Tbe the theory based on ((v o • v I )" v 2 ,e v o • (v I • v2) , 

Vo. vl ~ v t • Vo,V o • v o , ,  Vo). ( T  is the  theory  o f  semilatt ices).  T l s b a s e  
decidable modu lo  the associative law. 

Proof. T = (~o ~ qJ: ~o and ~ are terms and V~o = V ~  }. Therefore  T is deci-  
dable. The theorem is an immediate consequence of  

Claim. V u ((v o • v I ) .  v 2 ~ v o • (v I • v 2) } is a base for T if  and only if 
(1)  T ~ -  r ,  
(2) (i('y t) - i(~tr): i ~ to and ~, ~ P } is relatively prime, 
(3) 1 = min(L'y: ~ E  t(P ~ Ta)},  
(4) There are e,7 ~ U such that  for some i, L k, l ~ to, i ~ L k ~ l, v i is 

the left most sywbol in e l, v/ is  the left most symbol in er, vt is the right 
most symbol in .'t, and v k is the right most symbol in ~v. 

_Proof. Suppost ( 1 ) - ( 4 )  hold. By Lemma 4.2 

r ' v  ( (v  o • v l ) .  v 2 ~ v o • (v I • v2 ) )  t-- ~o ~ Vo • 

So it is enough to show 

~'~v o • v l ) .  v 2 ~  % • (v  I • v2),V2o ~ Vo, e ,  ~ )  ~- v o • v I ~ v I • v o. 

Let 

= ( ( v  o • v l ) .  v 2 ~ v o • (v  I • v 2 ) ,  Vo 2 ~ Vo, e , ~ )  • 

Evidently ~ t- e I • 7l ~ er" ~r and for every n ~ w ~ !,  ~ I- v~ ~ v o. 
So for some strings (possibly empty)  0 and O' of  the variables v o and 
v l ,  • I- v 0 • 0 • v I ~ v i • 0' • v O. By means  o f  Y~ I- v~ ~ v 0 any s tnng  
of  identical variables may be replaced by a single occurrence o f  that  
variable. 

So 

:~ ~ (v  o • v I )P ~ (v  I • Vo)q 

for some p, q > 0. Therefore 

~ ~ Vo" Vl ~ Vl " V o 
and so 

r '  u ( (v  o '  v l ) .  v 2 ~ v o • (v I • v2 ) )  

is a base for T. 
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Conversely, suppose 

1 ~U((v  0 .  v l ) "  v 2 ~ v ~ .  (v  I • v 2 ) )  

is a base for T. 
( ! )  is immediate. (2) and (3) follow from Lemma 4.2. Let ~ = <2,®) 

and ~ =  ¢2, ®)where a ® b = b  anda  ®b =a,  for all a,b ~ 2. Then 
9{ I~ v o • v I ~, vl • v 0 and l ikewise  ~J ~ v o • v I ~ v! • v 0 . But  o n e  o f  ~/ 
and ~3 is a model of any set of  equations for which (4) fails. Hence V has 
to satisfy (4) and the claim is established and with it the theorem. 

Theorem 4.13. The theory o f  semilattices (In the operation symbol  . )  is 
essentially base undecldable modulo the commutative taw. 

Proof. The proof will only be sketched since it is very much like the proof 
of the base undecidability theorem, in fact, that theorem could be estab- 
lished for these relativized notions provided the relativized notion of  
jointly universal is used rather than the absolute notion. Of course, tlie 
conditions on the non-trivial term will not be so nicely stated once this 
adaptation is instituted. This is largely due to the need to enhance Theo- 
rem 2.33. 

By Theorem 3.15 there are four distinct terms 60 , 61 , 82 , and 63 in 
the variable v 0 such that (60, 61 , 82 , 83 } satisfies the subterm condition 
modulo the commutative law. Let ~, 0 be any non-variable terms in f, g, 
and v 0. 6 is construed as a system of definitions for f, g, h, and k i n . .  
Let V be a base for T. 

Claim. M t-- ~o ~ 0 i f  and only if  

i n ~ M u { v  O. v t ~ v l . v O) 

0 {B2 [ins~Sa[Tt]]] ~, 82[in a OlBa[Trl]]: ,),E l"} 

u (6  2 [ i n  s 0 [ 8  3 ] ] ~ v  0 }  

is a base for T. 
Proof. I fM I-- ~o ~ 0 then the set on the right, B(~o ~, 0 ,8 ,  P) u 

{v o • v I ~ v I • v o }, is certainly a base for T. (Ob.~,erve that T ~- B(~o ~ 0, 8, U).) 
The converse is established just as in the proof ot Theorem 3.12. Suppose 
M b • ~ ~ 0. Then in~M u (v 0 • v I ~ v I • v 0 } ~ in 6 te ~ in s 0 by the 
relativized version of the reduction theorem. Let • be a denumerably 
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infinite algebra such that Th~l = O[in~M]. By Lemma 3.8 there is another 
denumerably infinite algebra ~B so that ~ ~ in~M and ~ invalidates 
in s ~0 ~ in s ~ infinitely often (see Lemma 3.8 for precision). Finally, since 
{80, St,  82 , 83 } is jointly co universal modulo the ~omn~utative law, there 
is an algebra ~ with universe B such that ~ I= B(~0 ~ ~,, 8, P) u (u 0 • u t 
u I , v 0 } and 82~ = 82~3 • 8~ = b~3. Consequently, ~ I~ T and B(~o ~ q:, B, V) u 
{u 0 • u I ~e v I • u0} is not a base for T. In this way the claim is proven. 

Evidently, by the claim, T is base urdecidable modulo the commutative 
law. To see that it is essentially undecidable modulo the commutative law 
let T' ~_ T and T' be a f'mitely based equational theory. It is easy to see 
that the claim is going to hold for T' as well as T. So the theorem is estab- 
lished. 

It should be noted that the proof sketched above used almost no explicit 
information about 7". In fact, most of the theorems of  Section 3 have ana- 
logs modulo the commutative law. For example, the theory of abelian 
groups is also es .mtially base undecidable modulo the commutative law. 
In consequence, 'his also applies to all finitely based theories of commu- 
tative groups and :ings, to theories of lattices, and to theories of Boolean 
algebras. 

Theorem 4.!4. Let T be any finitely based undecidable equational theory 
and A C__ 7". T is a base undecidable modulo LL 

A finitel:, based undecidable theory of semigroups is presented in [25]. 
By Theoren 4.14 this theory must be base undecidable modulo the asso- 
ciative law. 

The notion of compatibility decidable set of equations is closely con- 
nected with base. decidability modulo a set of equations. 

Definition 4.15. Let o be a recursive similarity type. A set L~ g E% is 
called compatibility decidable if and only if Eq e is base decidable modulo 
A. 

P. Perkins, in his doctoral thesis, showed that the theory of semigroups 
is compatibility decidable. It turns out that, by various simple construc- 
tions, this also holds true for the theory of groups, the theory of abelian 
groups, the theory of rings, the theory of lattices, and some other com- 
mon equational theories. This means it is possible: at least in principle 
to determine in each particular cas~. whether a finite set of equations is 
true in some non-trivial group, abelian group, ring, lattice, etc. 
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Letmna 4.16. I f  T is a compatibility decidable equational theory o f  simi- 
larity type o then every finitely based extension o f  T in siwllarity type o 
is compat!bility decidable. 

Lemma 4.17. Let o and 1" be finite recursive similarity types. Let T be an 
equational theory o f  type o and T' be an equational theory o f  type r 
such that T and T' are definitionaUy equivalent. T is compatibility decb 
dable i f  and only i f  T' is compatibiliO decidable. 

Theorem 4.18. Each o f  the following theories is compatibility decidable 
provided it is formulated in a finite recursive similarity type: 

(!)  (1'. Perkins [28 ] ) The theory o f  semigroups; 
(2) , 'he theory o f  groups; 
(3) The theory o f  rlng~; 
(4) The theory o f  lattWes; 
(5) The theory o f  Boolean algebras. 

Proof. The general idea of the proof is the same !~ all cases. First it is 
shown that each equationally complete theory, ia every case, is the theory 
of some fijzite algebra. It is then established, in every case, that for any 
finite set of  equations a number k can be effectively found so that if  the 
set of  equations is true in any non-trivial model then it is true in a model 
of  one of the complete theories of cardinality less than k. 

(1) Semigroups. Equationally complete semigroups were classified in 
[ 14]. They are: the theories of  (i) the constant semigroup, (ii) semi- 
lattices, (iii) left multiplication, i.e. x • y ~ y, and fight multiplication 
semigroups, and (iv) cycl.~c groups of  order p, for every prime p. 

Let I" be a finite set of  equations. Since (i)-(i; i)  are all theories of  two 
element algebras it is simple to check if  F is trae in one of them. 

:Now 

' ( (Vo" ~ t ) "  v2 ~" Vo " (vt  " v 2 ) }  u r' t-- R P .  

Pick m and r as in Lemma 4.2. Then 

((Vo • vl  )"  v2 ~- Vo • (v l  • v 2 ) }  u r' 1- ~ ~ ~+'. 
If I" fails to hold'in the two element constant semigroup tLen 

( ( % -  v I ) -  v 2 ~ % • (v  I • v 2 ) ,  v o ~ v~ ) 

must be consistent if I ~ is compatible w.~th the associative law. Now if 
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p > r and p is prime then v 0 ~ ~ fails to hold in the cyclic group of 
order p. So I" is true in some semigroup if and only if I" is true in one 
of the algebras in (i)-(iii) or in some cyclic form of prime order no 
greater than r. Hence the theory of semigroups is compatibility deci- 
4able. 

(2) Groups. The equationally complete theories of groups are easily 
seen to be the theories of cyclic groups of prime order. Let I" be a 
finite set of equations in • and - t .  I" is compatible with group theory 
if and only if it is compatible with the theory of Abelian groups. With 
the help of the group axioms and the commutative law I" is equivalent 
to a set P' of equations in jus t . .  Now use case (1) to deci:le whether I" 
ho::ls in a cyclic grot:p of prime order. Hence the theory of groups is 
compatibifity decidable. 

(3) Rings. Equa'ionally complete rings were classified in [35]. They 
are just the theories of p-rings for each prime p (the ring of integers 
modulo p) :tnd the theories of p-zero rings (i.e. rings whose multiplica- 
tion is cor~;tantly zero and whose additive group is the cycfic group of  
order p). 

Let I" be ~my finite set of equations i n . ,  +, and the unary operation - .  
I" is compatible with ring theory if and only if it is compatible with the 
theory of col tmutative rings. With the help of the axioms of commuta- 
tive ring theory I" is equivalent to a set I "° in which each equation is in 
only the operation symbols • and +. If I "° is a set of tautologies then I" is 
true in every commutative ring. Otherwise I "° fails in the ring of integers 
and in fact in the semirin8 of natural numbers. Hence, there is an assign- 
ment of natural numbers to the variables in P' so that some equation in 
P' fails. This a~gnment can, moreover, be effectively found since I"  is 
fmite. Pick n so large that the values of all polynomials used to evaluate 
P° from this assignment are less than n. I fp  ~ n  andp is prime then I" 
fails in the ring of integers modulo p. if P° holds in the ring of integers 
modulo q, for some prime q < n, then I' is compatible with ring theory. 
Otherwise P and, hence 1 ~, holds in no p-ring. Thus f fP is compatible 
with the theory of rings then I' holds in some p-zero ring. Hence 1 ~ may 
be reduced yet again to I "  by eliminating all occurrences of  .. In this 
way I'" becomes a set of semigroup equations that can be handled as in 
(1). Therefore the theory of rings is compatibifity decidable." 
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(4"~ and (5) Lattices and Boolean algebr~z~. The ")nly equationally com- 
plete theories in these cases are the theories of the two element algebras. 
Consequently, these cases are immediate. 

Probletr~ raised by Section 4 
1. If T is a finitely based equational theory in a recursive similarity tyler 

and T is finite, is T base decidable? 
2. Is there a finitely ba~ed decidable theory of semigroups which is oase 

undecidable modulo the associative law? 
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