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0. Introduction

An equational theory (or more simply just theory) is the set of all
equations holding universally in some algebra. A set B of equations is a
base for the theory T provided B and T have the same models. A tl. :ory
T is base decidable if and only if the set of finite bases of T is recursive.
T is sai! to be base undecidable whenever it is not base decidable and T
is essentially base undecidable just in the case that every tlieory based on
any extension of T by fiiitely many equations (even allowing new oper-
ation symbols) is base undecidable. This paper is primarily concerned
with exploring base decidability of equational theories. As consequences
of the theorems proved here it turns out that almost every familiar finite-
ly based equational theory is essentially base undecidable. As a very par-
ticular case we establish that the equational theory of Boolean algebras
is essentially base undecidable, answering a question in |36]. The study
of equational logic was essentially initiated by Birkhoff in [1] where a
completeness theorem for equational logic is proved. Ref. {36] is a survey
of equational logic prior to 1968 and is useful in placing our results in
perspective.

It is a simple observation that every finitely based undecidable equa-
tional theory is base undecidable. The constructions of [18] and [31]
of finitcly presented semigroups whose word problems are each recur-
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194 G.F. McNulty | The decision problem for equational bases of algebras

sively unsolvable provide the first examples of finitely based equational
theories which are undecidable and hence base undecidable. Tarski [34)
found a finitely based undecidable equational theory of relation algebras.
Mal’cev [.7] showed that there were finitely based undeciaable equa-
tional theories in just two urary operation symbols and also that various
finitely based theories of loops and quasigroups were undecidable. A
finitely based undecidable theory of semigroups is presented in {25].
I do not know if any finitely based theory of groups is undecidable. Our
theorems below yield many decidable theories that are essentially base
undecidable. Perkins [28, 29] was the first to find a decidable equational
theory which is base undecidable. He showed that the theory of the one
element groupoid is essentially base undecidable. Perkins' terminology is
different.

The principal results of {his paper concerning base-decidability are:

0.1. If T is a finitely based theory such that there is a terin 6 and a vari-
able x with 6 = x € T and : yme operation symbol of rank at least two
or at least two distinct unary operation symbols occur in 0, then T is
essentially base unlecidable.

0.2. Fix a similarity type (equational language) provided with at least
three unary operatic n symbols or some opesation symbol of rank at least
two. Every finitely based equational theory with a non-trivial model can
be extended to a base undecidable theory in the same similarity type
which also has a non-trivial model.

0.3. There is-a base undecidable theory which is not essentially base un-
decidable, moreover this theory can be chosen in the language of groupoids:
one binary operation symbol.

0.4. In the similarity type of two unary operation symbols there is
exactly one finitely based equationally complete base decidable theory.

0.5. The equational theory of semilattices is base undecidable modulo
the commutative law but base decidable modulo the associative law. (A
theory T is base decidable modulo an equation if and only if the set of
bases of T which include the equation is recursive.)

All ¢ the results concerning base undecidability are proved by a uni-
form method of translating one theory into another. Although this trans-



G.F. McNulty | The decision problcin for equational bases of algebras 195

lation is syntactical in character the preofs depend essentially on a model-
theoretic device which, roughly speaking, descends from the construction
of free algebras such as are typically 1sed in the proof of the complete-
ness theorem. This model-theoretic construction has proved useful and
in fact originates in parts of (equation:l) logic having ostensibly little to
do with decision problems. See the remarhs at the end of Section 2. In
this connection Theorems 2.9, 2.33, and 2.34, though technical in their
statements, are major results of this paper and among those most likely
to find other applications. Theorem 2.5 generalizes a result of Isbell [10]
concerning Mycielski’s universal terms. V.L. Murskii found 0.1 indepen-
dently of me and at about the same time. His result is announc:d in [26]
and a proof is sketched which is somewhat different from the one given
here. In fact, I have been unable to usc Murskii’s methocs to obtain the
case with just two unary operation symbols.

Some of the results presented here were announded in [ 19-22].

Section | deals with notation and includes some well-known theorems
from the literaturc that are used in later sections. The principal purpose
of section | is to develop a notationul system for equational logic. The
section includes no new results. Section 2 contains the development of
the major techniques used to establish the results stated above. In parti-
cular, the syntactical translations of one theory into another which were
already mentioned, are studied in detail and for this purpose Jan Mycieiski’s
notion of universal term is generalized. In section 3 the rcsults of the prev-
ious section are used to establish thecrems concerning base undecidable
equational theories. Base decidable theories are the subject of Section 4
which also includes an example of a base undecidable theory which is not
essentially base undecidable. Relevant open questions are gathered at the
end of each of these sections. In Section 5 I take the opportunity to ack-
nowledge the assistance many people have given to me connected with
this paper.

1. Some fundamental notions from equationai logic

This paper is written in the context of a set theory admitting proper
classes as well as sets. Ordinals are conceived in such a way that each or-
dinal is the set of all smaller ordinals. Cardinals are initial ordinals. In par-
ticular, each natural number is a finite cardinal and O denotes at or.ce the
empty set and the least cardinal while w denotes at once the set of natu-
ral numbers and the least infinite cardinal. If 4 is a set .1] denotes the
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cardinality of A. If A and B are any classes AB is the class of all functions
from A into B. “System” and “‘sequence” are each synonymous with
function. If fis a function and a is in the domain of f then f,, fla), and
fa each denote the value of f at a. Whenever A is a subset of the domain
of f,f*A = {f,: a€ A}. When A is the domain of the function f, then f
is sometimes written as (f,: a € A) or (f,),c 4 - If the domain of the func-
tion f is the natural number n, then f can also be written as (f,, ..., f,,_ ).
Notice that the notion of ordered pair used to define the concept of func-
tion differs from the notion of two-termed sequence. Direct products of
systems of sets are defined so as to be sets of functions. Consequently,
the direct product of ( 4, B) is a set of two-termed sequences rather than
a set of ordered pairs, for any sets A4 and B. If A is a system of scts PA
denotes the direct product of A; if 1 is the domain of A, PA is sometimes
wnitten Pic; A;. Q is an n- .ry operation on the set A provided Q € "V A.
Q is a finitary operation 1 A if Q is an n-ary operation on A for some

n € w. Unary operations 0.1 4, i.e., elements of 'V A, are generally iden-
tified with the naturally correlated functions in 44, while a O-ary is iden-
tified with the single element in its range. If Q is an #-ary operation on a
non-empty set then n is said to be the rank of Q. p is the rank function:
the domain of p is the class of operations on non-enipty sets and if Q is
in the domain of p t™en pQ@ is the rank of Q.

Algebraic notions

An algebra ¥ is a two termed sequence (A4, F) where A is a nonempty
set and F is a system of finitary operations on A4; A4 is the universe of %,
the domain of F is the index set of U, and F is the system of fundamen-
tal operations of . If A is an algebra, Op A denotes the system of funda-
mental operations of % ; if Q is in the index set of A the Q"’l and Op ‘.’IQ
both denote the corresponding operation of . Algebras will usually be
denoted by German capitals; their universes by the corresponding italic
capitals.

The similarity type of the algebra % is the system (p(Op W,): i€ I
where / is the index set of ¥. i.e. the similarity type of % is the sequence
of ranks of the fundamental operations in ¥. Two algebras are similar
just in case they have the same similarity type. If % is a >, stem of similar
algebras and the domain of ¥ is a set then P % denotes the usual direct
product; ii the range of % is {B } and the domain of N is l then PAcan
be written as B/. When ¥ is an algebra and X € A, then S tx denotes the
suburiverse of U generated by X and, provided S, )')( # 0, C(S) NX denotes
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the subalgebra of A generated by X. Pl is the subalgebra of “4 ¥ gener-
ated by the set of projection functions. The universe of Pl is the set of
polvnomials, in w variables over .

For a more detailed development of these notions the reader is referred
to [9, Chapter 0]. The notation adopted above differs only slightly from
the notation in that book. A somewhat different notation is used in [7]
which also includes an extensive bibliogr..phy of the general theory of
algebras.

Equational logic

Associated w th each similarity type is a first order language suitable
for the expression of elementary properties of algebras with that simi-
larity type. Of interest here is the associated equational language. This
language is conc zived as that fragment of the first order language which
admits as formu tas only universal sentences in prenex normal form whose
quantifier free jart is an equation between terms. Consequently, all con-
nectives and qu.ntifiers may be surpressed in equational languages. The
development of equational logic sketched below follows closely the
development Tarski presented in a course at Berkeley in 1968—-69.

Equaticonal languages are provided with three kinds ot symbols: variable
symbols, operation symbols, and a symbol for equality. Two equational
languages differ only in operation symbols. The set of variable symbols
is countably infinite but the set of operation symbols depends upon the
similarity type and may be of any cardinality.

= is the equality symbol. For each i € w, y; is the ith variable and
Va = {v;: i € w} is the set of variables. If g is a similarity type then the
domain of o is the set of operation symbols. Ail these symbols are taken
to be distinct one termed sequences and ~ and v;, for each i € w, are to
be sets of finite rank (see Definition 1.14 below). The set of expressions
of similarity type o is just the set of all finite sequences generated by
{=} U Va U domain of ¢ under concatenation. Juxtaposition of sequences
(such as variables and operation symbols) represents concatenation.

Definition 1.0. Let o be a similarity type. Te,, the set of terms of type
o, is the smallest set, X, such that

(i) VaC X.

(ii) For each Q in the domain of ¢ and for each 9 € °2X

Qo, ... BOQ_I € X.
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In particular, if 6Q = 0, then Q € Te,. 0-ary operatiun symbols are
called constants. Terms result from the concatenation of firite sequences
of variable symbols and operation symbols. Terms are uniquely readable
in the sense no term can arise in this way from two different sequences
of variable symbols and operation symbols, Subterms of a term are de-
fined as usual.

Definition 1.1. Let o be a similarity type and 6 € Te,,.
(i) VO = {i: v; is a subterm of 6 },
(i) CO = {Q: Qis asubtermof § and 0@ =01},
(iii) L8 is the number of occurrences of variable symbols and operation
symbols in §.
For any term 0, V0 is the variable support of 8, CO is the constant sup-
port of 0, and L@ is the length of 6. -

Definition 1.2, Let ¢ be « similarity type. Eq, = {¢= y: o, ¥ € Te,).
Eq, is the set of equaticns of type o. If € is the equation p = ¥, then
€ispande, is .

Definition 1.3. Le: ¢ be a similarity type and I' € Eq,. "= ¢:e€l'}u
{e,:e€T}.
tT is the set of all terms appearing as left or right sides of equations in T".

Definition 1.4. Let § € “Te, where o is a similarity type. 7'0] is defined
for all 7€ Te, by recursion:
) y;[0] =0, forv; € Va
(i) Qmg .. m,9_110) =Qmy [6]... myp _, {0] for all Q in the domain
ofgand € °CTe,.

Strict use of this notation will be violated often since only a finite part
of the sequence 0 is needed to determine 7{0 ]. (0] is called a substitution
instance of .
Definition 1.5. Let y, ¥ and 7 be terms.
R(p= ¢, 7) = {8py: 8y = r for some expressions & and v}
U {6yv: bpy = 7 for some expressions & and v }.

R(p = ¥, 7) is the set of terms that result from replacement in T by means
of o~ .
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Substitution and replacement can be used to describe rule. of inference
fo- equational logic. These rules will be formulated with the symbol |-,
and T -, € should read *‘e is derivable from £”. |, is a relation holding
between sets of equations and single equations. '

Definition 1.6. |-, is the least relation R holding between subsets of Eq, and
members of Eq, such that:
() ZRyy ~ vy and ZRe forall T < Eq, and foralle € Z;

(i')if ZRp = Y and 0 € “Te,, then ZRy[0] = Y[0];

(ii) if ZRo=~ Y, ZRO =~ 7and 8 € R(p=~ |, 0), then ZRT= §.

0 |-, € is usually written as I, €. Ta, = {€: I, €} is the set of equa-
tional tautologies of similarity type 0. £ -, A, where A € Eq,, means
T, b foralld€ A. Z i, 6 means that £ -, § does not hold.

Definition 1.7. Let o be a similarity type.
(i) T is an equational theory (of similarity type o) if and only if
TC€ Eq, and foralle € Eq, if T e thene€ T.
(iO[r), = {e:Tt,e€l.
(iii) T is a base for T if and only if O[I'], = T for some similarity typex
o such that " € Eq,.

Another -haracterization of the notion of derivability proves useful,
especially in proofs that require some kind of induction of derivations.
This characterization providzs a linca~ notion of derivation and limits the
use of substitution.

Theorem 1.8. Let 0 be a similarity typeand ZV {9~ y} S Eq,. ZH, ¢=V¥
if and conly if for some n € w ~ {0} there is J € "Te, such that
(Yp=0gand Y =0,_y.
(ii) for all k < n - 1 there is an equation # = 1€ Z and n € “Te, 5o that
Oxs1 € Rix[n] = 7(n), 6,).

The proof of this theorem follows by a straightforward induction argu-

ment. There are no unusual details in the proof so it is omitted. Notice,

however, that if (6, ..., 8, _, ) has the properties described above then

Z -, 0g = 04 foreach k < n. Such a sequence will be called a derivation.
Many concepts which apply to formal logical systems have natural

formulations in equational logic. The following definition specifies some

of these notions.
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Definition 1.9. Let 7 be an equational theory of similarity type o.
(i) T is consistent if and only if T # Eq,.

(ii) T is equationally complete if and only if T is consistent and for
all equational theories, A, such that T € A € Eq,, either T= A or A = Eq,.

(iii) T is finitely based if and only if T has a finite base.

(iv) A setT" € Eq, isirredundunt if and only if y ¢ O[T ~ ‘y3 ], for
alyerT.

(V)Y T = {II'l: T is an irredundant base for T'}.

Certain relationships which hold between equational theories of differ-
ent similarity types are central to the results and techniques of this paper.
Two of the more prominent of these relationships are definitional equiv-
alence and interpretability. Their treatment is based on the following
definition.

Definition 1.10. Let o a. d 7 be similarity types where / is the domain of
o.Let € /Te, and e €’ Ve, where J is the domain of 7.
(i) 6 is asystem of dejwnitions for o in 7 if and only if 0Q = Vé, for

eachQe€ Il

(ii) & is a system of definitions for o in t in the wider sense if and only
if V6, & oQ U {G} forall Q€ /.

(iii) If & is a systzm of definitions for o in 7 in the wider sense, then in,,
the interpretation ¢ perator on 8, is defined of Te, by recursion:

(a) ingy; =v; for illie w

(b)ing @~ 0y ... 0,9_; =8,lin 0 ... ing0,,_, 1 for 6 € °®Te, and
Q€.

(iv) Let

Co; = {BQ = ‘5Q["1’ v;,...1: 0 € land 0Q =0)

U{ingep = Py, ...v p_,: PEJ}.

Ifo=~ Y € Eq,, then ing (p =~ ) denotes ingp = ing .
~ Roughly, interpretation operators are the major tools used in this paper
and the next section is devoted to their development. The notion of a sys-
tem of definitions in the wider sense eases the definition of definitional
equivalence. In particular, the condition of (ii) that V8, € gi U {0} is used
rather than V§; < oi in order that constants may be defined by terms with
variables.

Definition 1.11. Let £ be an equational theory of similarity type o and
T be an equational theory of similarity type . £ =, . T iff & is a system
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of definitions in the wider sense for g in 7 and € is a system of definitions
in the wider sense for 7in 0 and Ofing £ U Co§ |, = T and Olin}T U

C of |, = 2. Z and T are definitionally equivalent just in case there are €
and 6 such that Z=, T.

Definitional equivalence has been studied often. In the literature it is
also called equational equivalence, polynomial equivalence, and even
rational cquivalence. It is elaborated in [6,16,36].

Equational logic inherits the concepts of satisfaction and logical con-
sequence from first order logic. Whenever U is an algebra of similarity
type o and 7€ Te,. 7¥denotes the polynomial on % which is represented
bv 7. Note that the domain of 7%is “4. However, 'r‘)‘depends on only
finitely many coordinates in “A so it is convenient to let 72" denote the
function whose domain is Y4 and for which if a € “A then 1(a) =
%@ Vr). Let v be an algebra and ¢ = Y an equation in the similarity
type of %. A= =~ ¢ iff pA= Y In this case U is said to be a model of
v = . This notation is also extended to sets of cquations. For a set of
cquations, £ U {e}, Z k=, € meuns that every model of I of similarity type
o is a model of €; Mo, Z denotes the class of models of T of similarity
type . If K is a class of algebras of similarity type o then Th K = {e: €€ Eq,
and M k= € for all Y € K'}. ThK is the equational theory of K. Th (¥ } is
written Th¥. Notions originally defined for equational theories are applied
to algebras and classes of algebras, e.g. algebras are said to be equationally
complete or finitely based just in case their equational theories are.

The following theorem is a very strong completeness theorem established
by Birkhoff {1].

Theorem 1.12. Let £ € Eq, for some similarity type . There is an algebra
A of type o such that Th A= O[Z], and if O[Z ]}, is consistent then % is
generated by a countably infinite set and if ©| X}, is inconsisten? then Y
has one element. ,

Actually Birkhoff proved more. A full treatment of this result can be
found in either [7] or [9]. We note the following corollary in passing.

Corollary 1.13. Let K be a class of algebras of similarity type ¢ and Z S Eq,.
(i) ThMo, ThK =ThK
(ii) Mo, ThMo_, £ = Mo, Z
(iii) ThMo, Z = Q| Z],
(iv) Th K is an equational theory.
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Most of the notation just described used subscripts to specify the
similarity type. In practice, most of these subscripts will be suppressed.
especially if there is only one similarity type at hand.

Recursive functions

The final portion of this section concerns the application of the notion
of algorithm to equational logic. In fact. there is nothing particularly
equational involved and the remarks apply cqually well to a much wider
class of systems. What is desired is to replace the intuitive idea of an algo-
rithmic decision procedure by a precise mathematical definition. This is
more usually done through the offices of some family of Godel number-
ings, in our case one for each of an infinity of similarity types, which
reduce the problem to findirg an adequate notion of algorithm on weFor
w it is generally agreed thz.¢ the recursive functions correspond to the in-
tuitive algorithms. What = suggested here is to forsake w and to make the
definition of recursive fur.ction with respect to the set of hereditarily
finite sets instead. This yiei s the immediate advantage that one may speak
of sets, sets of finite sets, sets of finite sequences, and so on as recursive or
not recursive without recourse to any Gddel numbering. To this end each
variable and the equality symbol was taken from the family of all heredi-
tarily finite sets. In iddition, there is a plentitude of operation symbols
that are, in fact, her. ditarily { ~ite sets. Moreover, it is only necessary to
define what a unary recursive function is because the set of hereditarily
finite sets is clcsed with respect t: finite direct products. Instead of pro-
c:2eding entirely within the set of hereditarily finite sets with this defini-
t'on, an explicit Godel numbering of the hereditarily finite sets is given.

Definition 1.14. Let A be the smallest set X such that

(i) 0e X;

Gi)IfA,B€ X, then {A}e XandAU B€ X.

The sets in H are calied the hereditarily finite sets or sets of finite rank.
Zvidently H includes w. It is not difficult to show that € is a transitive
relation of H, that if KU L € H then K X L € H, that all iinite subsets of
H are themse!lves members of H, or that all finite sequences of members
of H are again members of H.

The next definition provides the Gddel numbering of H.

Definition 1.15. Let F€ “H such that
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(1) FO=0
(i) FQR2" +j)={Fn} U Fjfornj€ wandj< 2".

Verification of the next theorem is straightforward.
Theorem 1.16. F is one-to-one and onto H.

Definition 1.17. f€ Qe is recursive if and only if F~ 1 fF is a recursive
function on w. the set of natural numbers.

For an exposition of recursive functions on the natural numbers see
Rogers [33]. All that is needed here is the theory of recursive functions
of one variable on the natural numbers. In this connection, Julia Robin-
son has given a particularly nice formulation in {32]. Since F defined
above is so simple, it is not difficult to see that Definition 1.17 supplies
a formalization of the notion of algorithm exactly as adequate as that of
recursive function on the natural numbers. A subset of H is recursive just
in case its characteristic function is recursive. In this paper no functions
or scts are shown to be recursive in all details. Such demonstrations would
be extremely complex, though not essentially difficult. Instead, a more
informal approach is taken: an algorithm is described for computing the
desired function. From such a description, the process of actually con-
structing the recursive function will present no difficulties other than those
attendant on the complexity of the algorithm.

Definition 1.18. Let o be a similarity type. o is recursive if and only if
o € H and o has a recursive domain and ¢ is a recursive set.

Now we make one more stipulation: Va is a recursive set. Suppose o
is recursive. Apparently Te,, Eq,, and (I': IT' < w and I € Eq, } are all
recursive subsets of /1. If £ € Eq, and Z is recursively enumerable then
©[Z], is also recursively enumerable.

For another formalization of the notion of recursive functions over
the family of sets of finite rank see Platek {30].

2. How to build jointly universal sets of terms and use them to reduce
one similarity type to another.

Given two different similarity types o and 7 it is nati.ral to ask whether
everything expressible in o is also expressible in 7 in such a way that the
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notion of logical consequence is preserved. More precisely whether there
is a function F € Fl0 Eq, that is one-to-one and such that if £ U {e} € Eq,
then 2 |, € iff F*Z -, Fe. One of the goals of this section is to show that
many such functions exist between almost any two similarity types. (The
only restrictions necessary are those regarding cardinalities and the fact
that operations of rank less than two cannot be used exclusively to con-
struct a polynomial depending on more variables.) In fact all such func-
tions constructed here turn out to be natural extensions of the interpre-
tation operators defined in the previous section and some have even
stronger and more convenient syntactical properties. The first part of this
section provides an analysis of when interpretation operators can be used
in this way. According to Definition 1.10, the interpretation operator in;
is completely determined by §. The analysis below provides two sufficient
conditions on the range ol 8 -- that it is jointly universal or that it satisfy
the subterm condition - under which in, reduces o to 7 as described above
The property of being jo.ntly universal has a model theoretic character
while the stronger subtern condition is purely syntactical. After a brief
discussion on how to relativize these notions - particularly in connection
with the commutative and associative laws — some of their fundamental
properties are developed. Section 2 concludes with constructions of infi-
nite sets of terms having one of these two properties and such that cach
element of the set 1.:tains some nice logic 1l properties of a fixed predeter-
imined term. For ex mple. suppose 0 is a term composed from the variable
X and a binary operation symbol. Then there is an infinite set. A, of terms
in the binary operation symbol and the variable x so that A satisfies the
above-mentioned syntactic condition and {0 = x} - {p= x: p€ A}.

It turns out that the existence of such sets of terms and the possibility
of constructing them from a single nearly arbitrary term have applications
beyond the scope of 1..is p iper. For this reason, this section is more sub-
stantial than is nccessary to prove the theorems mentioned in the intro-
duction. Further application of these results are given in [23,24].

Definition 2.0. Let ¢ and - be similarity types and let § be a system of
definitions for ¢ in 7. in, is a reduction of o to 7 if and on., if for all
Z U {€} € Zq,, T b, €just in case in? T I, ing e.

Remark 2.1. It is true that for any interpretation operator, in, , and any
2. U{e} & I:Zqo if Z |-, € then ing T |-, ing €, as can be easily established
either prooi theoretically or by mieans of models. Consequently, to show
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that.in, is a reduction it is only necessary to show that if iny Z -, in, €
then Z -, €. forevery Z U {e} € kq,. I in, is a reduction it is easy to
see that 8 is one-to-one. Recall that whenever 8 is a systemn of definitions
for o in 7 and i is in the domain of o then g1 = Véi, i.e. § prescrves rank.
The condition “if ing Z I, inye then 2 —, ¢ forany Z U {€} € Eq,”
insists that ing’ £ have enough models to invelidate in, € wienever £ 1 e.
One way to accomplish this is to provide a nive way to convert every
algebra, A, with w generators into an algebra Y o that A E € iff
B in, € for cach € € Eq,. This is the point of th= next definition. Say
that an assignment of finitary functions over some set to a set A of terms
agrees according to rank provided that whenever 0 € A has exactly n dis-
tinct variables then the function assigned to 0 is n-ary.

Definition 2.2. Let k be a cardinal. A is jointly « universal if and only if
A is a set of terms and for any assignment J of finitary functions over k
to A which agrees according to rank there is an algebra % such that

0%" = 18 for every 0 € A.

The prototypical example of a jointly universal set of terins is
{Quq ... Vo -1+ Q is in the domain of 0} for any similarity type o. This
fifs well with the intuition that the terms assigned to the ‘“operation
symbols™ by a reduction should behave like operation symbols at least
with respect to algebras with w generators. For this reason “A is a set of
generalized operation symbols™ would be a better phrase than ““A is jointiy
lol + w universal’. The second phrase is adopted here for several reasons:
(A) It reveals the dependence on the cardinal k; (B) It is not yet known
whether range 6 is jointly lo} + w universal whenever in, is a reduction of
o0 to 7;(C) The second phrase extends already established terminology. In
fact Jan Mycielski calls a term, 0, x universal if {6} is jointly k¥ universal.
He raised questions about the existence of terms universal in some cardi-
nals but not in others and especially the question whether {8: 8 € Te,
and @ is k universal for each Kk € §'} is recursive for varicus recursive simi-
larity types o and various classes S of cardinals. The problem remains
open, even when g gives just two operation symbols both of which are
unary and S is just {¢'}. This particular instance of the problem, together
with some related material, is dealt with in [ 10]. Some results below gen-
eralize theorems of Isbell.

Theorem 2.3. (The reduction theorem.) Let g and T be similarity types
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and let & be a system of definitions for o in T such that b is one-to-one
and the range of § is jointly \ol + w universal. insu's a reduction of o to 1.

Proof. By Remark 2.1 it is only necessary to establich in} 2 I, ing ¢ implies
% |-, € for every £ U {€} € Eq,. Fix Z U {¢} & Eq, such that Z I, €. By
Theorem 1.12 £ has a model ¥ of cardinality |0l + w and A ¥ ¢. Assign
to elements of the range of 8 operations of ¥ in the natural way: for @
in the domain of o assign to §,, the operation QY. Since 8 is one-to-one
every element of the range of § is assigned exactly one operation of
Since & is a system of definitions, this assignment agrees according to
rank. Since the range of 8 is jointly |ol + w universal there is an algebra
% so that for Q in domain o, le = 8?. A simple induction on terms
establishes %= (in; tp)sa for cach term ¢ of type ¢. The theorem follows
immediately.

We have no algorithm i.>r checking whether a given set is jointly uni-
versal, not even an immedi. te way to build jointly universal sets. This is
a reason why Mycielski’s question concerning the recursiveness of
{0: 8 € Te, and 0 is k-universal } is interesting. The remainder of this
section is devoted 10 providing partial remedies for th:- situation.

Various jointly uiiversal sets of terms have appeared in the literature.
Some historical remetks are included at the end of this section. However,
here it chould be noted that Ralph McKenzie was, to my knowledge,
first to formulate a n.ce syniactic condition on sets of terms sufficient
to insure that they be jointly universal. In fact, he established a version
of the reduction theorem and a weaker version of Theorem 2.5.

Definition 2.4. [McKenzie] A satisfies the subterm condition if and only
if A is a set of terms, none of which are variables, such that if 5,0 € A

and v is a non-variable subterm of & such that 6 has a substitution instance
identical with a substitution instance of y then 0 = 8§ = .

What the subterm condition guarantees is that in evaluating a term 6
from a set A satisfying the subterm condition, all the proper subterms of
¢ can ve evaluated just as they are in the absolutely free algebra without
affecting the value of 6 or any other member of A. This fact is reflected
in the proof of the following theorem.

Theorem 2.5. Let o be a similarity type. If A is a set of terms of type o
which satisfies the subterm condition, ¢, Y, m € Te, such that ¢ # { and
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Ly, LY < L& for every 6 € A and F is an assignment of finitary functions
over |0l + w 20 A that agrees according to rank then there is an algebra,
A, such that A = |ol + w and
(i) 8%’ = F8 for each 5 € A;
(iAFe=Y;
(iii) If F&(a) = 0 for each 6 € A and a € VA such that O € range of a
then A= 9=~ nonly if Vo 2 Vr.

Proof. There are two cases. First suppose (iii) holds vacuously. It is enough
to discover an algebra ¥ with universe Te that satisfies (i) and (ii) where
F is construed as an assignment over Te, to A that agrees according to
rank. To this end let Q be in the domam ofoand @ € "QTe and define
QQ‘(O) as follows:

-Fé(n) if QOO oaQ-—l =6[n]
Q"‘(Oo, s Oy = for some § € A and some n€VéTe,;
QG .y Otherwise.

In order to see that Q¥ is well defined suppose.that 0 ... fog_y
8[n)=8'[n'] for 8,86'€ A and ne€ VéTe, and ' € V¥ Te,. Since A satis-
fies the subterm condition it follows that 6=8"and furthermore n=n.
Hence Q is well defined.

Claim 1. If 6 € A and 7 is a proper subterm of § thea nu(O) =n[8] for
each 6 € “Te,.

Proof. Proceed by induction on 7. Suppose 7 is v, for some j € w. Clearly
v 0) =6, =ul0]. If nis Qyg .. 7,,0 y for some 4 < °2Te,, then

n%(0) = QUO), ..., v, ¥ _, (8)) = M2, 6], ... 7,9, [0])

by induction hypothesis. It follows now by the subterm condition on A
that

n%(0) = Q¥(74 (8], ... 7,5_; 6D = @7, [6] ... 7,5 _, [6].
Therefore
140) = (Qvy - Vo )[0] = nl0]

and the claim is finished.
Claim 2. 84° = F§ for each § € A.
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Proof. Suppose
=01 . Nog-1 and 60€ “Te, .
Then
8%(60) = Q¥Uny (6). .... i¥y_, 00 = QMg (01, .., m, ., 16])

by Claim 1. So 8%(8) = F&(6 I V), by the definition of Q¥. Hence 8" = F§
establishing the claim and property (i) of the theorem.

Claim 3. UK o= VY.

Proof. Let @ =¢ Y :j € w) Proceed by induction on ¢ to show that
¢%(0) = ¢. If @ is vy, for some k € w then (B) = vy is clear. If p is
QN - Mog - for some n € °@Te, then ¢¥(0) = Q¥(ny (6), ..., N,0_1 (0))-
Now Ln; < Ly < & for ea.h § € A and so by inductive hypothesis
N (0) =y, foreach k< Q.

9 It follows that ¢9[(0) = Q”(no s ees gQ-1 ). Consequently, ¢9‘(0) =p by
the definition of Q* and th. induction is complete. The same induction
argument shows Y*(0) = ¢. Since ¢ # ¢ it follows that ¥ # ¢ = Y and
the claim and proparty (ii) of the theorem are established.

Now suppose property (iii) of the theorem does not hold vacuously,
i.e. F6(4) = 0 for each § € A and a € Y®|o| + w such that O is in the range
of a. It is enough to .iiscover an algebra, ¥, with universe Te, U {C} that
Te, U {0} to A that agrees according to rank and such that (iii) is not
vacuous. Again let Q be in the domainof g and 6 € °Q(Teo U {0}) and
define _Q‘)((G) as follows:

0¥6)=0 if 6,=0 forsome j€ oQ

otherwise define Q‘” just as in the first case.

It is routine to establish Claims 1, 2, and 3 for this new definition of
0% noting in Claim 2 that F8(8) = 0 when 8 € Y3(Te, U {0}) such that
0 is in the range of 4.

Claim 4. A= o=~ mwonly if Vo 2 V.
Proof. Suppose A Fyp = m. Let 6 € “(Te, Y {0}) such that

., {UI if J€ V¢ ’
I 0 otherwise.
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Then ¥(0) = o, just as in Claim 3. Cunsequently 7%(6) # 0 and therefore
V¢ 2 Vx, completing the proof of Claim 4.
Theorem 2.5 is established in all particulars.

Corollary 2.6. Let o be a similurity type. If A € Te, and A satisfies tne
subterm condition then A is jointly k universal for each k » 0] + w.

Corollary 2.7. Let o and 1 be similarity types and 6 be a one-to-one sys-
tem of definitions for o in 1 such tk:at the range of & satisfies the subterm
condition. in; is a reduction of ¢ to 7.

Proof. Observe that the range of 6 has cardinality |o] and so thereist' &7
so that Te,. 2 range of § and |7'| + ) = |0l + w. Apply Corollary 2.6 to
Theorem 2.3.

Notational Remark. Whenever Q is an expression and n 1s a natural num-
ber @7 denotes Q concatenated with itself n times. Q0 is the empty ex-
pression and @"*! = Q"Qforn€ w.

Example 2.8. Let f and g be distinct unary operation symbols.
{f2g"*! fguy: n € w} satisfies the subterm condition.

Proof. Let 0 and ¢ be any terms and suppose ¢ is a non-variable subterm
of f2gn*! fgyy and Yly] = f2gm*! fi(0]. ¥ falls into one of the cases be-
low.
(i) ¥ = gyg. This is impossible since g # f.
(ii) ¥ = fgvy. This is impossible since fg # f2.
(iii) ¥ = gk fguy where 0 < k < n+1. This is impossible since g # f.
(iv) ¥ = fg"*! fgu,. This is impossible since fg # f2.
(v) ¥ = f2gn*1 fgu,. This is possible only if n = m.
Consequently {f2g"*! fgu,y: n € ¢»} satisfies the subterm condition.
Whenever o is said to have k operation symbols of rank n just in case
=1{Q: Q is in the domain of 0 and 0Q = n}|.
The next theorem e¢stablishes the existence of sets or terms which arc,
in some sense, maximal with respect to the subterm condition.

Theorem 2.9. (The existence theor2m). Let o be a similarity type.
(i) If 0 = O then the only subset of Te, satisfying the subterm condi-
tion is the empty set.
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(i) If o has only operations of rank O then A C Te, satisfies the sub-
term condition if and only if no variables occur in any member of A.

(iii) If o has one unary operation symbol and no other operation sym-
bol then A € Te, satisfies the subterm condition if and only if AN Va=0
and the operation symbol occurs no more than once in A.

(iv) If 0 = ¢’ U ¢" and o' has only operation symbols of rank 0 und o"
‘has exactly one operation svmbol and that one unary then A € Te satis-
fies the subterm condition if and only if no constant symbol occurs in
more than one member of A and if 0 € A and a variable occurs in 0 then
the unary operation symbol occurs exactly once in 8 and in no other
member of A.

(v) If o has an operation symbol of rank at least two or at least two
unary operation symbols then there is A S Te, such that

IAN {8:'V€ =n and 0 € Te } =
=1{0: V" =n and 8 € Te_}i

for each n € w and A satisfies the subterm condition.

Proof. (i)—(iv) ar> immediate from the definition of the subterm condi-
tion. By means o1 a construction similar to Example 2.8, (v) follows un-
less 0 has an operation symbol of rank at least two. For the sake of sim-
plicity assume tha: o has a binary operation symbol and denote it by Q.
The construction given below adapts easily to the case of operation sym-
bols of greater rank.

To begin the construction let v, = Qu;Q*¥*2vk*3 and Y, = Q'y, ... v,
for every j, k € w. Finally, let 0i.x =0 ¥ [0rar Vg ], .. 04y [v;11] and
let Ao = {0,-',‘ . j,ke w}.

Claim ]. {g;: k € w} satisfies the subterm condition.

Proof. Suppose 7 is a non-variatle subterm of ¢, , and ¥ are terms and
#[n] = ¢p:[7]). Now  is either g itself or else @Q"*1v3*2 for some n < k+2.
In the first case it follows easily that p =y andsok=k" and r = Yk =¥y
The second case is impossible since then Q"n"*1 =y and n = Q¥+ 24k"+3
So {¢;: k € w} satisfies the subterm condition.

Claim 2. A satisfies the subterm condition.
Proof. Suppose 7 is a non-variable subterm of 64,07 € “le, and
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winf=0; x[v]. 7 is limited to

Case 1. 7 is a non-variable subterm of @, (v, ] for some n <j. This is
impossible since 8, ;- is a substitution instance of ¢, and {g;: k € w}
satisfies the subterm condition by Claim 1.

Case 2. 7= Q" 041 [Vg] ... Pp4y [v,] fOr somen, 0 <n<j. Let
E=(ppey 17i]: 1€ ). Then 0p i [y] = QY] Qv 11y (€] 1t follows
that g,y In,) = QU L] tl/,~[£] and this is impossible by the definition of
Pt -

Case 3. 1= QU;lekey g1, --os Prat [U11Wjl0k41 (00 )5 .es Ppaq [¥7]]. This
is impossible since {y,} satisfies the subterm condition by Claim 1.

Case 4. #=6; ;. Then Y;lpesy (Mol oo Okar [1] = ¥y l0p4y [0 ], oo
Vi1 171 S0 @4y (1) =44y [7;] and by Claim 1 k = k', Evidently j =/’
3nd SO 0,"* = 0,-',‘:.

Consequently 4, satisfics the subterm condition and Claim 2 is established.

Let mg be Ruyuyg ... vy for each R in the domain of ¢. For j, k € w and
R in the domain of o let 6; 4 g be 0; x[vg, vy, ..., v;_y, Tg]. Finally let
0, k.r.pbeb; i alvg, vy, ....u_3, mp] foreachj k€ w and each R, P in
the domain of 0. Let A = {0, g p: j.k € w and R, P in the domain of o
such that R # Q # P}. It is easy to see that A satisfies the subterm condi-
tion since it has already been shown that A, satisfies th: subterm condi-
tion and A was obtained from A, by some simple substitutions. A also has
the required cardinality properties since

j—-2 ifj»2,

1 ifon>0, j=1

] if on>0, j=0 and oR> 0
0 ifon=0, j<2

0 if gi=0, j=0.

VO, v rp=

Hence the proof of the theorem is complete.

The proof of Theorem 2.9 was carried out in such detail in order to
demonstrate how the subterm condition may be established. Subsequent-
ly, the demonstrations that various sets of terms satisfy the subterm con-
dition will be less detailed. Theorem 2.9 leads to the following definition.

Definition 2.10. (i) A similarity type o is trivial if and only if ¢ has at
most one unary operation symbol and no operation symbol of rank more
than one.



212 G.F. McNulty | The decision problem for equational bases of algebras

(ii) A term @ is trivial if and only if 6 € Te, for some trivial similarity
type o.

Corollary 2.11. Let o and 7 be similarity types. If lo| € {7| + w, T is non-
trivial, o has « constant symbol only if T has a constant symbol, and ¢

has an operation symbol of rank more than one only if T does, then there
is a system of definitions & for o in t such that ing is a reduction of o to r.

Remark 2.12. It should be noticed that a more elaborate notion of reduc-
tion is possible that eliminates the necessity to be concerned about con-
stant symbols in this corollary. Recalling Definition 1.10 “6 is a system
of definitions for ¢ in 7’ could be changed to mean Vb, = 0@ forall @
in the domain of 8 such that ¢Q > 0 and V8, < {0} for ail Q in the do-
main of o such tha* ¢Q = 0. m, could then be called a reduction of ¢ to
7 provided Z |-, € iff inf T U Cos b, ing €. This broader notion of reduc-
tion does not ﬂnd aophcatlon in this paper but does give rise to some un-
interesting complications in some of the proofs presented here.

It is natural to wonder if the concepts of reduction, joint universality,
and the subterm condition can be relativized to equational classes differ-
ent from the class of all algebras of some similarity type. This is the sub-
Ject of the fo'lowing dig‘ression.

Definition 2.13. Let 0 and 7 be similarity types, § be a system of defini-
tions foro in7, A € Te,,I" € Eq, and k be a cardinal.

(i) in, is a reduction of o tc T modulo T if and only if X - € just in
case ing ZU T |- inge, forall ZU {e} € Eq,.

(i1) A is jointly k universal modulo T if and only if for every assign-
ment f of functions over «k to A that agrees a«.cordmg to rank there is an
algebra % with universe k such that % I and 6%° = = f0 forevery 8 € A.

(iii) A satisfies the subterm condition modulo T if and only if

(a)T' £ 0[n] = p for any 0 € A, n € “Te, where p is any variable or
any substitution instance of a proper non-variable subterm of any mem-
ber of ¢tT";

(b)if 0,p€ A, 7, 7€ “Te,, and v is any nonvariable subterm of 8
such that " - y{n] = ¢[n], then @ =y =p ané [ - &; = ; for every i € V6.

Analogs to the reduction theorem and Theorem 2.5 can be established
for these notions. Apparently, the existence of diverse sets of terms satis-
fying the subterm condition modulo I'" would make it possible to find
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models of I" possessing “‘reducts” with similarly diverse properties. For
example, if there were a term 8 in which the variables v, and v; occur and
such that {0} is jointly w universal modulo I then I would have a coun-
table model % such that if 9 is expanded to %’ by adjoining all finitary
polynomials over A as new operation symbols and Z is any set of equa-
tions in any countable similarity type then %' has a reduct which is a
model of T, up to some permutation of operations of ¥'. This property
is too strong to expect it to hold for many sets of equations — especially
those which arise most commonly. It cannot happen, for example, for
any set I" of equations such that 3[I'] has only countably many equa-
tionally complete extensions. This will be demonstrated in {24]. Among
the equational theories which have only countably many equationally
complete extensions occur all equational theories of semigroups, groups,
rings, lattices, and Boolean algebras. What is demonstrated below is that
there is no term, 9, (even in one variable) and no cardinal x.> 1 such that
{0} is jointly x universal modulo the associative law. In a more positive
vein an analog for the existence theorem is established modulo the com-
mutative law.

As a matter of convenience terms and polynomials will be written in
the most familiar manner: the convention of writing operations on the
left is dropped, momentarily, and a binary operation symbol - is intro-
duced and terms (similarly polynomials) are defined ir: such a way that
¢ * ¢ is the term resulting from applying the operation symbol to ¢ and
¥. For the next two theorems, the similarity type has - as its only opera-
tion symbol.

*Theorem 2.14. For any term 6 and any cardinal x > 1, {8} is not jointly
k universal modulo the associative law.

Proof. It is only necessary to consider terms in one variable. Suppose x
is the variable occurring in 0. Hence there is n > 0 so that
xy)ezex-(y-2)F0=x".

There are two cases according to whether ¥ > 2 or not.

Case I. k= 2. Let f€ 22 such that f = 1 and f; = 0. Let (2,0) be 2ny
two element semigroup und suppose 0" =1 and 1" =0.Now 1 o 1 =0
for otherwise 1" = 1. Similarly 0 0 0= 1. Therefore l c 0=10(l 0 1) =
(lol)ol=00landso(100)o (Lc0)=(00c0)o(lcl)=100.But
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this means that 1 o 0 can’t be either O or 1 — a contradiction. It follows
that the assignment of f to 0 can’t work in any two element semigroup.

Case 2. k > 2. This case, though slightly more complicated, can be
handled in a similar manner. Its proof is omitted.

Theorem 2.15. There is a set A of terms which satisfies the subterm con-
dition modulo the commutative law such that |AN {0: VO =n+1and 0
isaterm}|=w, for every n € w.

Proof. The proof follows closely that a case (v) of the existence theorem.
Let
o =y Ug) ° (Vg * (vg * ... (Y ° v ...)

k+3v,’s for every K € w
and let
¢. = vy - (v - .. (u,._l . ”i) o) - foreveryj€ w.
Again let
0 x =9ol¥;l0psy[vg] sy [011] for every j, k€ w.
Finally let

A= {ﬂi'k:i,ke w}.

it is enough to show that A satisfies the subterm condition modulo the
commutative law. We leave this to the reader.

Before returning to the mjor task of this section, some compactness
type notions will be discussed. A set A of terms of similarity typerisa
reduction set if and only if there is a similarity type o and a system & of
definitions for o in 7 such that A is the range of § and in, is a reduction
of o to 7. David Kelly pointed out to me that it is an easy consequence
of the compactness theorerr that a set of terms is a reduction set just in
case every finite subset of it is also a reduction set. It is even clearer that
a set of terms satisfies the subterm condition if and only if every subset
witli no more than two members satisfies the subterm condition. It is
therefore surprising that coripactness properties for jointly universal sets
of terms are largely unknow n and perhaps rare.
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Theorem 2.16. Let 0 < k < w. If A is any set of terms «ch that every
finite subset of A is jointly k universal then A is jointi, k universal.

Proof. Suppose A is not jointly k universal. Then there is an assignment
S of finitary functions over k to A whick agrees according to rank and
yet such that for any algebra A with universe k there is 8 € A so that
Jo# 0% . Let =(k;0,..,k-1,/,)c,. Define T to be

(VX[0~ [,%): 0 A} U (Vx [V x=i]}

together with the first order theory of 8. Then I'' must be inconsistent.
So by the compactness theorem there is a finite subset, 4, of A so that

{(Vx[0=[,x]:60€ A4} U {Vx[igkx = 1]}

together widli the first-order theory of (k; 0, ..., k—1, fy)e¢ a0 inconsis-
tent. Thercfore A is not jointly k universal and the theorem is cstablished.

Corollary 2.17. A is jointly universal in every finite cardinal if and only if
every finite subset of A is jointly universal in every finite cardinal.

The remainder of this section is devoted to the construction of infinite,
jointly universal sets of terms each of which retain some convenient proper-
ties of a fixed though arbitrary non-trivial term. The next result is a corol-
lary of the definitions involved.

Corollary 2.18. Suppuse &y and A, are disjoint sets of terms and that
0 € YA, and @ is one-to-one. Let k be a cardinal

(i) If &g U A, is jointly k universal then {§[0]: 8 € Ay} is joirrtly k
universal.

(ii) If Ay U A, satisfies the subterm condition then {8[0]): 6 € Ay}
satisfies the subterm condition.

A similar result holds for interpretation operators as well.

Theorem 2.19. Let 0 and 7 be similarity types and & be a system of defi-
nitions for g in r such that & is one-to-one and the range of § is jointly
lol + w universal. If £ C Te, and Z is jointly |6f + w universal then in}Z
is jointly |0l + w universal.
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Proof. Let F be an assignment of finitary functions over [o| + w to in{ Z
that agrees according to rank. in; is one-to-one so dcfine G, an assign-
ment of finitary functions over |g| + w to Z so that G, = Fi,y for@ € Z.
Since & is a system of definitions G agrees according to rank. Since ¥ is
jointly || + w universal there is an algebra with universe |g] + w sO
that 6%* = Gy = Finz0.for each @ € . Since § is a system cf definitions
and the range of § is jointly lal + w universal there is an algebra % with
universe |o] + w such tnat 83° = Q¥ for every Q in the domain of 0. A
simple induction on terms yields (in. ¢)Q3_ cp” for every 9 € Te,. In par-
ticular (in; )$ =¥ = =Gy = Fingo foreachC € Z ana therefore in =
is jointly |g| + w universal.

In order to establish the correspondmg result for the subterm condi-
tion the following definition and lemmas prove useful.

Definition 2.20. I :t 0 and 7 be similarity types and & be a system of deti-
nitions for ¢ in 7. (' is é-simple if and only if @ € Te, and 6 # in, [ Y] for
any g€ Te, ~Vaard Y € “Te,. S; Te, denotes the set of §-simple terms
of type 7.

Lemma 2.2!. Let o and t be similarity types and & be a one-to-one system
of definition. for o in T such that the range of 8 satisfies the subterm con-
dition. Forar.y n€ w, 0, n € "Te, and ¢, Y € “S; Te, if in; 0,[¢] = in; m;{ Y]
for each i € n then there are ', ' € “Te, such that 6,[¢'] = m,{{y'] for
eachi€ n.

Proof. The proof is by induction on m = max ({L8,: i€ n} U {L;: i € n}).
m = I. In inis case {6;: i€ n} U {m;: i € n} consists exclusively of variables
and constants. Since 8 is a one-to-one system of definitions and ¢ and
are sequences of §-simple terms then by letting ' = ' =(y;: i € w} the
theorem holds.

Inductive step. Let ¢ > 1 and assume the theorem is true whenever m < gq.
For any j € n, L; > 1 there is Q; in the domain of 0 and y € °QITC such
that 6; = Q;v, .. -y‘,Q —1- Now m66 [w] = ingm{Y], ing is one-to—one, and
v and { are sequences of §-simple terms Consequently, there isn€ ° ITe
such that i =Q;ng - - No0,-1 and ing v;[p] = in, n,[\l:] for each i € 0(Q;.

So for each J€Enandie JQ let 0,, 7; where 0; is Qyg .. 700;-1 and
. ; =m; where n; is Qing .. nle-l By the inductive hypothesns there are
¢,V € “Te, such thatO W'l =m{y']if L6, =1 and 0,,[4:] # v} if
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L8, > 1 and i € 0Q;. But if L6, > | then 6;(¢'] = 08, o1¥'] ... §; g, [¥'] =
Qi oly] .. % 10j-1 [¥'] = m;[¥’] and the induction is complete.

Lemma 2.22. Let o and 7 be similarity types and § be a system of defini-
tions for a in 1 such that 8 is one-to-one and the range of 8 satisfies the
subterm condition. Let @ be any non-variable term of type o and 0 oc .ny
nonvariable subterm of ing .

(i) There are Q in the domain of o, oy a non-variable subterm of SQ and
V € “Te, such that 0 = y[{].

(ii) For every v in the range of 8 such that 0 is a substitution instance
of y there is ¢', a subterm of ¢, such that 0 = ing ',

Proof. Let ¢ = Py ... ,p_, - The proof proceeds by induction on the num-
ber of proper non-variable subterms of .

(i) v has no proper non-variable subterms. Then n,, ..., #,p_; € Va and
ingw =8plmy, ..., ®p_ ). Since 6 is not a variable there is a non-variable
subterm, v, of 8p and 9 = y[ny, ..., mop_, . If there is 4’ in the range of
6 and 0 is a substitution instance of ' then 4’ =y = 8, by the subterm
condition and so 0 = in, ¢.

(ii) (Inductive step). Assume that every non-variable term with fewer
proper non-variable subterms than g satisfies the theorem. 0 is a subterm
of irgo=06pling 7y, ..., ingm,p_, ]. So either there is a non-variable sub-
term v of 6 such that @ = y[in, 7y, ..., ingwp_, ] or else @ is a subterm
of ing 1, for some k € oP. In the first case if 4 is in the range of § and 6
is a substitution instance of ' then ¥’ =y = §p by the subterm condition.
So 6 = ingy. In the secoad case the induction hypothesis applies so thcre
is R in the domain of o and v, a non-variable subterm of 65 such that 9
is a substitution instance of <. 30 (i) holds. Since =, is a subterm of ¢ it
follows that (ii) holds as well. This establishes the lemma.

Theorem 2.23. Let 0 and 1 be siwilarity types and & be a system of defi-
nitions for 6 in t such that & i ync-19-one and the range of 8 satisfies
then subterm condit'on. If 7, C Te, cad I satisfies the subterm condi-
ticn then ind Z satisf < the -witerm condition.

Proof. Whenever 0 € Te, there are ¢ € Te, and y € “S; Te, such that
0 = in, o ¥]. This may be established by inductionon 0. Let 8, 7€ Z, 5
be a non-variable subteim of iny 0, and , § € “Te, such that nlp] =

in, #{¥]. By Lemma 2.22 there is ', a non-variable subterm of @ such
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that n = in; 0'. Hence ing 0'{y] = ing n{¥}. There are ¢,V € “S,Te, and
@', ¥" € “Te, such that p; = in;9"[p'] and Y, =in, V" y'] for each
i € w. Consequently in, (8'[¢"D¢’] = ing (x[Y"1)[¢']. By Lemma 2.21
there are @, ¥ € “Te, such that (6'(¢" DI@] = (x{¥" DI¥]. By the sub-
term conditionon Z, 0’ =0 =x. Son = ing 8’ = in; 6 = ing n. Therefore
in}T satisfies the subterm condition.

The next definition introduces the notion of absorption, a kind of
idempotence in equational logic, which turns out to be a highly useful
property of terms.

Definition 2.24. A absorbs X for ' if and only if A and Z are sets of terms,
T is a vo: of equations and I" |- {0[5, 8,6, ..]= 8: 6€ AandB € X }.

If 6 and @ are terms and T is a set of equations then “8 absorbs 8 for
I'" usually replaces {8} absorbs {0} for I'”. The next definition is ad-
mittedly artificial but it seems to be the most convenient way to formu-
late Theorems 2.2 > and 2.30 as well as their consequences throughout
the rest of the papir.

Definition 2.25.!

@) If6 = fmHigyfn v;, where f and g are any two distinct unary opera-
tion symbol:, H is a (possibly empty) string of unary operation symbols
such that the rightmost symbol is not £, and m, n,i € w, then let
m(6) = {f™*- gHy,, f™ gHy;}.

(ii) If 6 = B Dyq ... ¢,_1, Where Q is an operation symbol of rank r > 1,
H is a string of unary operation symbols and ¢,, ..., ¢,_, are terms, then
m(0) = (0, ¢y, s ¥y }-

Theorem 2.26. Let 8 be a non-trivial term in which all operation symbols
occurring are unary and V@ # 0. There is a set T of terms in the same
operation symbols as 0 such that
(i) Z is infinite,
(i) 2 satisfies the subterm condition,
(iii) If A U m(0) absorbs 0 forT then A U T absorbs Z for T ard
F'-{p~y:p.y€EZ}

‘_ This definition differs from that of 64 in McNulty (21] in some details, though aot in con-
ception. I don’t know if the earlier definition is adequate for its intended purpose.
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Proof. The proof amounts to a series of constructions beginning with 6
and ending with Z. At each stage the terms developed are closer to satis-
fying the subterm condition. Care is taken at each stage to preserve the
absorption properties of 8. Since @ is non-trivial it has the form

[t gl v; for some distinct unary operations f and g, some (possibly
empty) string of unary operations H not ending in f, and some m,n,i & w.
So without loss of generality assume '

0=,""1gHMy, .

Then
m(8) = {f™*1gHv,, fmgHy, } .

Let
T = fm*k'flgﬂfn—kvo

foreachken+1.
Let _ _
g =Y Mgty

forj € w. Let p—1 be the number of times f occurs in H. Finally, let
Vo =¥2p and ¥; =g, lyp 1. The idea is to show that {y, ¥, } satisfies
(ii) and (iii). So suppose A U m(8@) absorbs 8 for I"'. Observe the follow-
ing:

(a) 170 =0.

(b) m, absorbs m;,, for I whenever k € n.
Proof. my yy(m 1= fmrkt2gH T -(k+l)fm+k+lgﬂf"-kvo =fk+10(fm8Hf"—kvo
So
T+ L [ﬂk] = fm+k+lngn—kvo’
since f™ gHv,, absorbs 6 for T

(c) m, absorbs w; forI" wheneverk€n+1.
Proof, ﬂ.k[ﬂk]=fm+k+lngn—kfm+k+lngn—kvo =fk0[fm+lngn—kvo]_
So
Tt mlm ]~ fm*t g -ky,

since f™*1 gHv, absorbs 6 for I'.

(d) AV m(6) {xn,, ..., 7, } absorbs m, forT.
Proof. Suppose k€n. By (b)I' I~ m = m,,[m;]. Hence

T =a,lm, g Lo ma g dme) )
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Similarly
TEae=m_m,_o L My [me ] ]

SoTH m = w,[m ). By ()T =, = m,[n, ]. Let 6 € A U m(6). Ob-
serve that T |- #y = @, [mg ) and therefore ' |~ 74{8] = =, Jng[6}]. Con-
sequentlyI" - 6 = =, [6].

() =m,.

(T |- ;= ¢ forallj € w.
Proof. By induction on j. If j = O this is immediate. Suppose j > 0 and
Ik y¢_1= ¢y. Now

¢ = (MO gH)Y !y,
= ()i Mg H(F ™ g Y v,
= *Din, fmgHU™ gH)Y v,
So TEP (fn+l)j(fmgmivo
since " - 7, [f™ gHvy ] = f™ gHy, by (d). Consequently ' - ¢; = y;_, -
and by the inductive assumption ﬂp,- = gy

(g)r‘l— ¢'n“‘ W}_and: in faCt9r"- {VJO%‘PO"le‘pO}- ‘
Proof. By (f)T |- Yo= wpand " - ¥, = wylppl, but T - wolwgl = ¢
by (c) and (¢*. Consequently I' - ¢, = ¢,.

(h) AU {yg, ¥,} absorbs {yg, ¥;} forT.
Proof. Suppose § € A. By (d) and (e) I' = ¢,[8]1= & and so by (g)
Tt {Yoldl =3, ¢,[8] ~ &}. Furthermore (g) yields I' - {Yg[¥{] = vy,

t\_l‘][#’;] = o, V1{Vol = vy, Yol¥el= vy} so {Yg, ¥y} absorbs {Yg,¥;]
orT.

(i) {¥g, ¥, } satisfies the subterm condition.
Proof. Notice that

wo =f(2p+l)(n+l)+mgH(fm gmzp Yo
while

‘1’1 =f(”"”("”)+"‘gH(f"'gHY’f“’*m"*”""gH(f"'gH)”vo-

Recall that f occurs only p—1 times in H and that H does not end in f.

It is only a matter of inspection to see that {{, ¥} satisfies the sub-
term condition.



G.F. McNulty [ The decision problem for cquational bases of algebras 221

To complete the proof of the theorem let o be a similarity type whose
only operation symbols are the unary operation symbols fand g. Let 7
be any type in which 0 is a term. Let n be the system of definitions for
o in 7 such that in, fuy = Y, and in, guy = ¥, . 7 is one-to-onc and the
range of 7 satisfies the subterm condition. Let Z, = {f 2gn+1 fgvy:

n € w} — the set shown in Example 2.8 to satisfy the subterm condition.
Finally, let Z = iny Z,. By Theorem 2.23 Z satisfies the subterm condi-
tion. Since in,, is one-to-one and Z, is infinite Z must also be infinite.
Now suppose A U m(0) absorbs 6 for I'. By (h) above A U {4, ¥}
absorbs {{g, ¥, } forI" so A U Z must absorb T for I', by the definition
of ZandT |- {y = gy: ¥€ Z}. This completes the proof of the theorem.

Now suppose @ = Qy, ... ¢,_, where Q is an operation symbol of
rank r > 1. The next immediate goal is to establish the analog of Theorem
2.26 for terms of this type. In order to accomplish this the following defi-
nition and lemmas prove useful. When 0 is a term 6101 =y, and g[¥+1] =
61kl {9,0,0,...] forke w.

Definition 2.27. Let 6 = Qy; ... ¢,_; be a term so that Q ’s an operaticn
symbol of rank r and ¢y, ..., ¢, are terms. { is the associate of 0 of
type n if and only if n € "w and Y = Q8I"0l[g,, gy, ...] ... 81711 [, _,,
Gr_ys ).

Lemma 2.28. If 8 is a non-variable term and y is an associate of 0 and
is a non-variable subterm of Y and vy # y then v is a substitution instance
of some non-variable subterm of 6.

Proof. Suppose 6 = Qy, ... ¢,_, for an operation symbol Q and terms
¥0s - ¥y and that § =001 gy, 0y, .1 Oty g ]
where 0 € "¢>. Then & a subterm of 617! (y;, ¢, ...], where j € r. Either
7 is a non-variable subterm of y; or there is a non-variable subterm, , of
017 and y = #ly;, ¥ -], in the first case v is a non-variable subterm of
0 since y; is. In the second case it is easy to establish by induction on n;
that = is a substitution instance of some non-variable subterm of 9. 1In this
way the lemma is proved.

By Lemma 2.28, it is possible to ignore all proper subterms of asso-
ciates of a term, 0, unless they are already subterms of 0 itself, when
checking for the subterm condition on a set of associates of 8. On the
other hand, there are infinitely many associates of any non-variable, non-
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constant term and most of them will be quite complex. As is shown be-
low, many sets of associates will turn out to satisfy the subterm condition,
provided the original term begins with an operation symbol of rank at
least two. Evidently, the associates of a term have the absorption proper-
ties required in Theorem 2.26. If n is a sequence of natural numbers and j
is in the domain of n then 7 : j denotes the sequence with the same do-
main so that

n ifj#k,
0w+l if j=k,

% = for k in the domain of 1.

Lemma 2.29. Let 0 = Qy, ... ,_; where Q is an operation symbol of

rankr> land , ..., 9,_, are terms and x is the on'y variable occurring

in 0. There is qn € " w such that N’j Vi is ihe associa e of 6 oftype n:j
\/ ‘and j € r} sa. isfies the subterm. condition.

Proof. In order to establish the subterm condition it is necessary to
examine substitution instances of subterms (of associates) of 0. Let

1 € "w and Y be the associate of § of type 5. Let 4 be any non-variable
subtern» of ¥ and let w, a be terms such that

izl =la]. | &

Since @ 1. the first symbol of § and v is not a variable, @ must be the
first symbol of y. Let vy = Q¥ ... §,_, for the terms §;, ..., §,_,. From &
it follows for each i € r that VO"'i'[.p,[u]) V¢;la] and CG"’:l [qp,[w]] =
C&;{a]. Consequently foreachi€ r

VO] « Vg + |Val = |VE] « |Val )
and
ICOM ;)1 +1VOMil[g, ]| « ICml = ICE;l +IVEL+ ICal . (2)

In order to establish the lemma a sequence, 1 € "w, must be found so that
 fails unless Y = 9. Thefe are two cases depending on whether C9 is
empty or not.

Case I. C6 = 0. By Lemma 2.28 v can be limited to y and the non-
variable subterms of @ in any consideration of whether # holds for some
terms 7 and a. Furthermore, if % holds for some terms x and « then it
holds for terms in which no constants occur. So for any v which is anon-
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variable subterm of 6 and for which # holds it follows from (1) that
(velnely Vg 1Vl ' A3)
Vel IVE I IVl

As v ranges through the non-variable subterms of @, the right side of (3)
takes on only finitely many values. So let n; =0 and pick n, so large
that

Vil IV
[Vlno)| > Vo] - [:—‘—li—‘l‘-: . TV_:;.:] @)

n is arbitrary otherwise. Let j € r and v be a non-variable subterm of 6.
Let ¢ be the associate of @ of type 5 : j. ¥ holds for no ‘erms 7 and a.
(Otherwise (4) would fail.) Suppose j,k € r and let ; be the associate
of 6 of type n : j and ; be the associate of type 5 : k. Let # and  be
terms such that (7] = Yy [a]. Then 61%*1 [gi(x]] = 81}y, [a]] and
61%* 1 { g, [a]] = 617k ! [, []). By consideration of the lengths of these
terms it follows thatj = k. Consequently {{; : y; is the associate of 8
of type n : j and j € r} satisfies the subterm condition.

Case 11. CO # 0. Note |CO!"i)[g;]1 is an increasing function of n;. For
each i € r pick 7 so large that |CO!"i} [y, ]| > |C8|. Now suppose v is a
non-varizble subterm of @ and % holds for some terms 7 and a. Then (2)
must hold and consequently |CO!7il[y, )i +1VO!il[p; 11 - ICnl =
ICxl = |CE;l + I VE;l « 1Cal. Therefore | VE;| # O for each i € 7. fo by alge-
braic manipulations

\ Vv
ICE | - :-\—%{ + 1CE! = 1o ) ":Vgi': - 1cotelig, 1]
IVE, |
+ [lvglmlwl I - I-\_'g‘)-l . |Volnol[¢° p] . |Cn| .

As v ranges through the appropriate subterms of  th: left-hand side of
this equation takes on only finitely many values. Witl.out loss of gener-
ality, assume Vi, | # 0. Pick n, so large that

|V£1| + |V£l‘
10817 Y, )1 > Vel |COIne* ] [ )1 + (ICEII ~ Vg |Cfo') .
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and

|volml[ l]|>| il

IVotno* g
for each appropriate v, non-variable subtcrm of 0. By arguing as in case |
from this point on the proof is complete.

Theorem 2.30. Let 6 = Qy, ... ¢, . where Q is an operation symbol of
rank r> 1and ¢y, ..., 9, _ are terms and VO # 0. There is a set T of
terms in the same operation symbols as 0 such that
(i) 2 is infinite,
(ii) T satisfies the subterm condition,
(iii) If A Y m(8) absorbs 6 for T then AU X for T and T ({ = 8(v,,
Vo> Yp» o WE 2}.

Proof. Let 6’ = 9[vy, vy, vy, ...} . Each term that absorbs @ for I" absorbs
0’ for I'. By Len.ma 2.29 there is a set £’ of associates of ' such that Z'
has at least two elements and I’ satisfies the subterm condition. All asso-
ciates of @' are absorbed by all sets A, for any I such that A U m(0)
absorbs & for I'. By Theorem 2.23 and Example 2.8 there is an infinite
set, Z, of terms obtained from Z’ by an interpretation operator in such
a way tha. Z has all the desired properties.

It woul! be desirable to extend Theorem 2.30 to any non-trivial term
6 in which a variable occurs. Unfortunately, this turns out to be impos-
sible as shown in the next example. This example also serves to demon-
strate a set of terms which is jointly w universal but fails to satisfy the
subterm condition.

Example 2.31. Let f be a unary operation symbol and B be a binary
operation symbol and 6 = fBv, fu,. For every term, y, such that 8 = v, |-
¥ *= yg, the set {p} fails to satisfy the subterm condition. {0} is jointly
universal in every cardinal.

Proof. To see that {fBv, fv,} is jointly k universal let g: k -+ x and note

that (x, g, pjo I' k), where pj, is the Oth projection function, insures joint
K universality.

Let % =(w, J. B) where
n-1 ifn>0
fn = 0 otherwise
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Bnm=n+1 forall nme€ w.

Let B = (Z, f, B) where Z is the set of integers and

fn=—n forall neZ,
m ifm=-n

Bnm= ]
0 otherwise.

Evidently % and ¥ are models of 0 = vy and therefore they are both
models of v = yg. Since 0 is not in the range of B but o is onto w, it
follows that ¢ cannot begin with B and so must begin with f (unless

¥ = v, in which case {p} cannot satisfy the subterm condition by dcini-
tion). Notice that {0} is the range of (Bvyvy)Band Bn0=B0n =0 for
n € Z. Hence fyy must be a subterm of ¢. Since 0 = vy It fyy = vy, it
follows that {¢} cannot satisfy the subterm condition.

Example 2.31 indicates only some condition weaker than the subterm
condition is useful and even necessary for the proofs of the main theo-
rems of this paper. In order to get the mos. information from the next
theorem consider the following definition.

Definition 2.32. For any term 0, 8* is defined by recursion:
(i) v} isy;, fori€ w. '
(i) (fg)* is @', for any term ¢ and unary operation symbol, f.
(iii) (Q¢g .- v,_1 )" is @y} ... ¥} 1 » for any operation symbol, Q, of
rank 7 # 1 and any terms g, ..., ¢, _; -
So 6* is the term obtained from ¢ by deleting ali unary operation
symbols. Whenever Z isasetof terms Z* = {6*: 0 € Z}.

Theorem 2.33. Let 0 be any non-trivial term in which a variable occurs.
There is a set T of terms in the operation symbols of 8 such that
(i) Z is infinite, '

(ii) Z is jointly x universal for every infinite cardinal «,

(iii) For any set T of equations and any set A of terms if A Y m(6)
absorbs 0 for T then AU Z absorbs T forT'and T - {Y= ¢: Y,9E X},

(iv) If an operation symbol of rank different from one occurs in 6
then T* satisfies the subterm condition.

Proof. By virtue of Theorem 2.26 and Corollary 2.6 this theorem is
established unless an operation symbol of rank at least two occurs in 0.
So suppose § = HQy, ... v,_; , where H is a string (possibly empty) of
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unary operation symbols, Q is an operation symbol of rank r > 1, and
¥0> ---» ¥y are terms. Without any loss of generality assume v; is the
only variable occurring in 6. By Lemma 2.29 there is n € “w such that
{Y;: j € r and y; is the associate of 0* of type n : j} satisfies the sub-
term condition. For JE U, let

"’; =HQO'"°'[¢0] ... i+l [¢I] .. 01 l[.p’._l]

Claim. {{}: j € r} is jointly « universal for every infinite cardinal k.

Proof. Observe that w** is ¥, — the associate of 6* of type 7 : j, for
each j € r. Since {;: j e r and !P is the associate of 6* of typen :j}
is jointly « umversal by Corollary 2.6 the task is simple. Any assignment
of functions over «. {0 {w* J € r} which agrees according to rank is
already an assigr.ment to w’i JE€ rand !l' is the associate of 8% of type
n :j} that agre s according to rank. Any algebra realizing the assignment
for the latter sex can be expanded to an algebra realizing the assighment
for the former se. by setting all unary operations to the identity.

Let

= {Yg Ry [YglyT1l]:ne w) .

By the cla m, Theorem 2.19 and Example 2.3 X is jointly x universal for
every infin.te cardinal, k. Clearly ¥ is infinite and furthermore, Z* is just
the set sho vn to satisfy the subterm condition in Theorem 2.30. Now sup-
pose A U m(0) absorbs 6 for I'. Recall m(6) = {0, 99> ---» ¥y -1 }. Hence

TH{yg=0,¥7=~0,y5(¥;)1 =0, Y (Y31 =0
Yolvgl =0, YTlY1 =0} .

Consequently '~ {(r=0;7€ Z} U (nfy]=0: 1, y€ L) andso AV I
absorbs X for I'. The proof is complete.

Theorem 2.34. Let 0 be any term in which at least two distinct variables
occur. There is a set Z of terms in the operation symbols of 0 such thai
DIZn{p:pisatermand Vo=n+1}| = w forevery n € w,
(ii) Z is jointly x universal for every infini:2 cardinal x,
(iii) For any set T of equations and any set A of terms if A U m(6)
absorbs 0 for I then AU Z absorbs T forTand ' {y = p: o,y € T},
(iv) Z* satisfies the subterm condition.
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Theorem 2.34 is an extended version of Theorer 2.33 which will not
be used in this paper. It is stated here oniy ior completeness. Theorem
2.34 can be obtained from 2.33 by means of a relatively simple construc-
tion, the existence theorem and the reduction theorem. The details are
omitted in the interest of brevity.

Remarks on the history of rediiction

This section has been devoted to notions - :onnected with reduction.
The reduction method has been used frequently in the past. Also many
arguments are known from the literature which do not require the meth-
od in its full extension but in which various notions like the subterm
condition play a decisive role. It seems that the underlying idea has oc-
curred to many people. The crux of the concept is relfected in
“F*Z |- Feonly if Z |- €” as explained following Remark 2.1. This
notion admits the possibility of application in many systems or formal-
isms that embody ideas like consequence or production. It is therefore
not surprising that the reduction method finds its sources in sentential
logic on the one hand and on the other, in the various combinatorial
systems, like Post normal systems and Thue systems, that were intro-
duced in the study of algorithms.

In sentential logic arguments using the crucial idea behind reducticn
can be traced to the decade 1920-30. I have in mind Theorems 11, 12,
13, and 28 in [15]. For example, Theorem 28 asserts that there are 2%
complete systems of sentential logic. In sentential logic there are formulas
but no terms. Consequently, there can be no subterm condition. But
Tarski proved these theorems with help of a “subformula condition™
which shares the following property with the subterm condition:

If A satisfies the subformula condition and ¢ is consequence of A,
then g is a substitution instance of a formula in A.

At a later date the subterm condition was tacitly introduced into
equational logic to obtain a result entirely analogous to Theorem 28 of
[15]. [13] establishes the existence of 2% equationally complete theories
in one binary operation and in the process constructs an infinite set of
terms which happens to satisfy the subterm condition. More recently the
subterm condition is implicit in [5], [11], [12] and [2], where various
extensions of Kalicki’s result are proved.

In combinatorial systems related to the theory of algorithms the idea
appears in [31] (see p.268 where Post refers to an earlier paper. In {31]
it is established that the correspondence problem for Post normal systems
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on three letters is not recursively solvable. Post then nbserves that this
result is also trus for Post normal systems on two letiers and shows how
this reduction works by offering appropriate definitions of three letters

in terms of two letters and proceeding much as in the ptresent paper. Later
in [31], where he shows that the word problem for a specified Thue sys-
tem on many letters is not recursively solvable, Post remarks that the same
reduction techniques apply. This application was actually carried out in
{81 where it is essentially shown that even over semigroups countably
many constants may be reduced to two constants. This contrasts with
Theorem 2.14 and is probably the historical source of Example 2.9. Hall
proves a case of the reduction theorem limited to equations without
variables. In [17] Hall’s result is translated into a similarity type with two
unary operations. Also about 1966 Tarski used the reduc-ion method to
obtain an essenticlly undecidable equational theory in one binary opera-
tion. ICf. Thec em 3.6 below.] [29] includes in the proof of one of its
last theorems a ersion of Theorem 2.9 and with it what amounts to
another special c.:se of the reduction thecorem. V.L. Murskii [26]) sketches
a proof of a part of Theorem 3.12 below with the help of a condition
slightly stronger than the subterm condition. D. Pigozzi has been able to
show that if & is a one-to-one system of definitions for o in 7 such that ¢
and 7 are .ecursive and the range of 8 satisfies the subterm condition and
is recursivc then ©[Z], has the same Turing degree as Ghn:E],, for every
T € Eq,. Finally, it should be noted that Corollary 2.6 is a very natural
extension of a theorem of Isbell [10] which concerns only single terms

in unary operation symbols.

Open problems raised by Section 2

(1) [After Jan Mycielski] Let o be a -ecursive similarity type. Is {I":
IM < wand " € Te, and I is jointly w universal } a recursive set?
It is not difficult to show that {I": II'} < w and I" € Te, and I' satisfies
the subterm condition} is recursive.

(2) Let k be an infinite cardinal and A be a set of terms such that
every finite subset of A is jointly k universal. Is A necessarily jointly
universal?

(3) Can the following converse to the reduction theorem be established?
“Let o and 7 be similarity types and let § be a system of definitions for ¢
in 7. If in; is a reduction of ¢ to 7 then the range of § is jointly lol + w
universal™,
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(4) Let k and X be cardinals, let ¢ be a similarity type and let k » A
denote that every jointly x universal set of terms of type o is jointly A uni-
versal. Describe », as a relation between cardinals for different similarity
types, e.g. 0 = {(Q.2)}.

(5) Let Z be a set of terms. Define OZ = {n: n € w and I is jointly n
universal }. For what sets $ € w is there a sct £ of terms so that O = §?

3. Base undecidable equational theories

A finitely bused equational theory T is base undecidable if the collec-
tion of finite bases of T is not recursive. This notion has a sound intuitive
base if the similarity type of T is recursive. This section is devoted to the
presentation of a quite general condition sufficient to insure that most
common finitely based equational theories are base undecidable. Evidently
any finitely based equational theory that is undecidable must also be base
undecidable. In his doctoral thesis, P. Perkins showed that the equational
theory of a one-element groupoid is base undecidable. This result may be
found in [29]. In [36] the question is raised as to which finite algebras
turn out to be base undecidavle. In particular, Tarski suggests there that the
equational theory of Boolean algebra may be base undecidable. As conse-
quences of theorems in this section many equational theories of finite ulge-
bras turn out to be base undecidable, including the equational theory of
Boolean algebras. Some base decidable equational theories of finite alge-
bras will be presented in section 4. A theorem announced in {26] is only
slightly weaker than Theorem 3.12(ii) below. The resuits presented in this
paper and those announced by V.L. Murskii were obtained independently
and essentially simultaneously.

Definition 3.0.

(i) T is a base decidable equational theory if and only if T is an equa-
tional theor: in a recursive similarity type and {I': IIN< wandT"isa
base for T} is recursive.

(ii) T is a base undecidable equational theory if and only if T is a
finitely based equational theory and T is not base decidable.

(iii) 7 is an essentially base undecidable equational theory if and nnly
if T is base undecidable and every finitely based theory extending T (per-
haps in a similarity type differing from that of T) is base undecidable.
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Definition 3.1.

(i) T is a decidable equational theory if and only if T is an equational
theory and T is recursive.

(i) T is an undecidable equational theory if and only if T is an equa-
tional theory and T is not recursive.

(iii) T is an essentially undecidable equational theory ifandonly if T
is an undecidable equational theory and every consistent extension of T
(perhaps in a similarity type differing from that of T) is also undecidable.

Theorem 3.2. If T is a finitely based undecidable equational theory then
T is base undecidable.

Proof. Let I" be ary finite base for T and notice that for any equation,
€, in the similari.y type of T, ' U {e} is a base for T if and only ife € T.
Consequently, decision procedure for {I": I[I'| < w and T is a base for
T} would yield . procedure for T.

The well-know. word problems for Thue systems provide early exam-
ples of finitely based undecidable equational theories. In this connection,
Post [31 presents a Thue system whose word problem has a negative
solution. A Thue system on n letters ca1 be construed as equational by
interpretirg the letters as constant symbols, juxtaposition as a binary
operation :.ymbol, the Thue equivalence symbol as the equality symbol,
and by inc1ding the associative law in the set of productions of the Thue
system under this interpretation. The equations without variables deriv-
able from a Thue system construed in this way will coincide with the
productions of the Thue syster.

Tarski announced that a certain finitely based equational theory con-
nected with relation algebras is essentially undecidable in {34]. A finitely
based undecidable equational theory in two unary operation symbols, as
well as various finitely based undecidable theorics of loops and quasi-
groups, was presented in [17]. The work of Mal’cev proves most useful
for this paper.

Theorem 3.3. (Mal’cev [17)) There is a finitely based equational theory
T in two unary operation symbols such that

() If o= Y € T then Vo =V and ¢ is a variable just in case ¥ is a
variable,

(ii) T is undecidable.
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Mal’cev’s theorem is not difficult to prove on the basis of the version
of the Post—Markov result about the unsolvability of the word problem
for some finitely preseited semigroup on two generators described by
M. Hall [8]. Since every semigroup is isomorphic to a semigroup of func-
tions over some set Mal’cev’s theorem follows. Throughout this section f
and g are used to denote the two unary operations involved here an'' ¥
is a fixed, though otherwise arbitrary finite irredundant base of 7.

The next theorem is a restatement of a theorem due independently to
McKenzie and to Tarski and announced in [36].

Theorem 3.4. (cf. Tarski [36]). There is a finite consistent set A of equa-
tions in a recursive similarity type and there is a recursive function F whose
range is included in the class of all equations such that for any finite set T
of equations in a recursive similarity type A\ Z - FX and FZ |- Z U A.

In fact, A turns out to be a certain set of equations closely rzlated to
the equational theory of rings. The next theorem seems to be well known
but I have been unable to find it mentioned in the litzrature. Here it may
be easily established.

Theorem 3.5. Let o be any non-trivial similarity type. There is a finitely
based undecidable equational theory of similarity type o.

Proof. Combine Theorem 3.3 with the existence theorem and the reduc-
tion theorem.

This result can be sharpened if o has an operation of rank more than
one.

Theorem 3.6.2 Let o de a similarity type with an operation symbol of

*ank more than one. There is a one-based equational theory of type o .
which is essentially undecidable. Moreover, if o has a binary operation

symbol then tkere is a one-based equational theory of type o which in-
cludes the commutative law and is essentially undecidable.

The major effort of this section is devoted 1o decidable equational
theories that are, however, base undecidable. Because of the reduction

2 As remarked at the cnd of Section 2, the first part of this theorem is due to A. Tarski. Tarski
found this part in 1966.
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theorem it is profitable to first examine theories of a very convenient
similarity type g, whose only operation symbols are f, g, h, and k and
each of these is unary. g is to be a recursive similarity type. M, the
fixed base for Mal’cev’s theory satisfying Theorem 3.3, is a set of equa-
tions of type 0. First consider whether {I': IT! < w and I’ ¢ Eqq, and
T is a base for Eqq,} is recursive — i.e. whether Eq,, could be base
decidable. In order to see that Eqq,, is base undecidable consider the
following definition of a potential base for Eq,,, .

Definition 3.7.
B(p= ¥)=MU {holkyy] = holkv, ], hy[kvg] =vy ]}

for every, equation ¢ = ¥ in the operation symbols f and g.

In order to shuw that {B(¢ = ¢): ¢, { are terms in f and g and
B(p=~ ) is a b: e for Eqq, } is not recursive the followirg lemma is
useful.

Lemma 3.8. Let o be a similarity type. For any algebra % of sxmtlanty
type o there is an algebra B of type o such that
(i) 1Bl = 1Al +iol + w;

(ii) If p,b € Te, and Vo =Vy and U= p=  then B 9= V;

(iii) If o, ¥ € Te and Vo =V and U ¢ = { then there are
a€ '8(V¢8) and b,c € 'B'B such that a, b, and c are one-to-one, the
range of b is disjoint from the range of ¢, and for each i € \B|, wlf a; =
and dl%ta‘- =¢;.

Proof. Let » ¢ A and define %’ so that A" = 4 U {eo} and for each Q in
the domain of o and a € °@4 let Q¥ '« = Q%a and for a € 724’ ~ °24
let Q% a = . Let k = |A| + o] + w and finally let ¥ be the subalgebra * %’
generated by (and even with universe) B = {a: a« € *4’ and at most one
element of the range of a is different from «}. So |B| = k and 9B satisfies
conclusion (ii) of the theorem. Now suppose ¢,§ € Te,, Vo =V, and
Uy~ Y. There ared € Y94 and ¢, €' € A such thah}‘ d=eand yN°d =
e ande#e'. Letae"("*’B)suchthata,-(«° ®, ...,d;, %, ...) where d;
occurs at the ith place, for all i € k and j € V. Sxmllarly b.e e “B are
defined so that b; = (e, o, ..., €,,..) and ¢; = (e, o0, ..., €', o, ...) where
e and ¢ occur at the ith place, for cach i € k. Then ;ol*' a; = b; and

= ¢; for all i € k and (iii) holds.
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Theorem 3.9.

(i) Forall p,Y € Te,, if M- 9= Y then Blp= Y) - ¢ = y.

(ii) For all terms ¢, @', ¥ and {' in the operation symbols fand g
such that Vo=Vyand Vo' =V if Mt o= Y then Blo= Y) - o' = '
justin case M- ¢' = {'.

(iii) Eqo, is essentially base undecidable.

Proof. (i) is immediate since M € B(p = ¢). (iii) follows easily from (ii)
by means of Theoren 3.3. So suppose ¢ and ¥ are terms in f and g such
that Vo =Vy and M ¥ ¢ = . Then there is an algebra ¥ of cardinality
w such that ©{M] = Th¥. By the Lemma there is an algebra 8 of cardi-
nality w such that 8B = M and there are g, b, c € “B such thata, b, and ¢
are one-to—one the range of b is disjoint from the range of ¢ and w‘B q; =
b; and !ll a; = c; for every i € w. Consequently® B ¢ =~ . Bis to be
expanded to a model of B(p = V). To this end let k be a one-to-one map
from B onto the range of a and let h be defined in any way such that
hb; =ay and hc; = k~'a;, for every i € w. Then (8, h, k) is a model of
B(¢ = ) and the theorem is established.

Of course the base undecidability of Eq,, seems a very special resuit.
Nevertheless, it is the foundation that will be used to establish the base
undecidability of a much wider class of theories. It is first necessary tc
extend the definition of B(p = ).

Definition 3.10. Let o be a similarity type, § be a system of definitions
for oo ino, [ € Eq, and ¢, Y be terms in fand g. B(p = Y, 6, ") is the
set ing M U {(in; holkyy 1) 7,1 = (ing holkv, l) [v):y€T}u
((inghylkvy ) [v] ~ y: y€ T},

Theurem 3.11. Let o be a similarity type, 8 a system of definitions for
0 in o such that ing is a reduction. Let I © Eq, such that for any ¢, §
in the range of 8, T" together with the range of 8 absorbs ¢ for T" and
' o= V. Let yand € be equations in f and g such that Vv, = Vv, and
Ve, = Ve, and ¢, is a variabie just in case €, is also, then

(1) M |- e if and only if ©[B(¢, 5,1, =6[TI'},;

(ii) If M \t € then M ~ « just in case B(e, 8, T') |- ingy.

Proof. Since in; is a redu..c.n M |- € if and only if iny M |- inj € and
B(€) - v if and only if inf B(€) - inyy. Now I' - B(e, 5, T) VU {ing €} by
the absorption hypothesis of the theorem and the properties of M des-
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cribed by Theorem 3.3. Furthermore, ing B(e) I~ B(e, 8, I') since each
member of B(e, 8, ") is a substitution instance of ing B(¢). Obviously
B(e, 8, T) U {ing e} - I, so B(e, 8, T') I~ ing € if and only if

O[B(e, §,TM)], = O[T'],. Moreover, i B(e, §, T') |- inj € then ing B(e) -
ing € and so B(e) I- €, since ing is a reduction. Consequently, if

B(e, 8, ) I~ ing e then M |- € by Theorem 3.9. Conversely, if M - € then
ing M - ing € and so B(e, 8, I") - in; e. Therefore M |- € if and only if
B[I'], =©[B(e, §,T)], and (i) is established. Now suppose M i €, then
if B(e, 8, T) - ing v then inf B(€) - ing v and hence B(e) + v. By Theo-
rem 3.9, if B(e, 8, T') |- ing; y then M |- 4. On the other hand if M |- ¥
then iny M I~ in;y and hence B(e, 8, T) |- in, . In this way (ii) is demon-
strated and the theorem is proved.

The next thecrem can be regarded as the main resu t of this paper. It
provides general conditions sufficient to establish th». many familiar
finitely based :quational theories are base undecidable.

Theorem 3.12. ( The base undecidability theorem). Let o be a similarity
type.

() I'T € Eqg, ITI < w, and there is a non-trivial term 0 such that
6 € Te,, VO # 0, and tT' U m(0) absorbs 8 for I" then O[T}, is base
undecidahle. ’

(ii) If ¥V is a finitely based equational theory and there is a non-trivial
term @ such that @ =~ vy € T then T is essentially base undecidable.

Proof. (ii) is an immediate corollary of (i). By Theorem 2.33 there is a
system & of definitions for g¢ in o suc! that 8 is one-to-one, the range
of & is jointly w universal, /T together with the range of § absorbs the
range of 6 forT" and I" - ¢ = ¢ for any ¢, ¥ in the range of 8. By Theo-
rem 2.3, the reduction theorem, in, is a reduction. By Theorem 3.11
B(e, 8, T') is a base for O[T'], if and only if M |- €, for every equation €
in f and g such that Ve, = Ve, and ¢ is a variable just in case ¢, is also. It
follows from Theorem 3.3 that {B(e, §, T"): B(e, 8, ") is a base for e[rj,
and Ve; = Ve, and ¢; € Va if and only if ¢, € Va} is not recursive. Con-
sequently, ©[T'], is base undecidable and the theorem is established.

The next few theorems illustrate the extensive range of applications of
Theorem 3.12. A theory 4 is said to be a theory of groups (rings, lattices,
Boolean algebras, ...) if 9 is definitionally equivalent to the equational
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theory of a group (ring, lattice, Boolean algeb.a, ...) in one of the standard
formulations.

Theorem 3.13. Let T be a finitely based consistent equational theory. T is
essentially base undecidable if any of the following hold:
(i) T is a theory of groups;
(ii) T is a theory of semilattices;
(iii) T is a theory of lattices;
(iv) T is a theory of rings;
(v) T is a theory of rings with unit,
(vi) T is a theory of Boolean algebras;
(vii) T is a theory of relation algebras.

Proof. The proofs of the different cases above vary only in details from
one another. The basic idea is to discover, in each, a non-trivial term 6

in some standard formulation of the theory so that 8 = Vg is true and in
any definitionally equivalent theory, 8 corresponds to a non-trivial term.
In particular, if (i) and (ii) are established in this way then the other cases
will follow easily.

1. Take the formulation of group theory in which groups are algebras
with two operations: composition and the formation of inverses. Let -
and ~! be the corresponding operation symbols. Let 8 be a definition of
vp * v; and let v be a definition of vz!, both in the wider sense, for the
similarity type of 7. Then 2 € V3 since T is consistent (otherwise vy * yp =
vp * v, would hold in the standard formulatton of T). Let 0 be the term
corresponding by & and y to vy - (vg * v5'). So 6 = vy € T and @ is non-
trivial. By Theorem 3.12, T is essentially base undecidable.

11. Take the formulation of semilattices as algebras with the operation
meet A. Let 8 be a definition in the wider sense for vy A v; for the simi-
larity type of T. At least the variables vy and v, occur in 8 since T is con-
sistent (otherwise vy A Yy = vy A v; would hold in the standard formula-
tion of 7). Let 6 be 8{vgy, vy]. Then @ = vy € T and 0 is non-trivial so by
Theorem 3.12 T is essentially base undecidable.

The remaining cases now follow easily.

Perhaps it should be remarked that what was actually shown in the proof
above was that if T is finitely based and T is definitionally equivalent to
a theory T’ such that 7’ is an extension of either a theory of groups or
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a theory of semilattices then T is essentially base undecidable. This should
be contrasted with the following result.

Theorem 3.14. Every finitely based theory is definitionally equivalent with
an essentially base undecidable theory.

Proof. Let T be finitely based and suppose f and g are two unary operation
symbols not occurzing in T. Then T is definitionally equivalent with
O[T U {fyy =~ vy, gYp = vg}] but by Theorem 3.12 this last theory is
essentially base undecidable.

Theorem 3.15. Let 0 be a non-trivial similarity type. Eq, is essentially
base undecidable.

Proof. Let 8 be a non-trivial term in type 0. Eq, is finitely based and
0 = vy € Eq sc Theorem 3.12 applies.

In the case taat o has an operation symbol of rank at least two Theo-
rem 3.15 is essei tially contained in {29].

Theorem 3.16. If T is a finitely based essentially undecidable equational
theory then T is essentially base undecidable.

Proof. Sir. :e no finitely based theory in a recursive trivial similarity type
can be undecidable, the theorem follows from Theorem 3.2 and Theorem
3.15.

Definition 3.17. Let o be a similarity type. T is the constant theory of
type o if and only if T is an equational theory of type o and forall X = T
and all, j in the domain of o, Op¥; has the same range as Op ¥ and the
range of Op¥; has exactly one element.

T is the constant theory of type o if and only if T={p= {: o,y €Te, ~
Va} U {y;: i€ w}. For any similarity type o the constant theory of type o
is equationally complete. For non-trivial finite similarity types the con-
stant theories are base undecidable.

‘Theorem 3.18. Let o be a finite non-trivial similarity type. The constant
theory of type o Is base undecidable.

Proof. Let @ be any noh-trivial term of similarity type 0. 0 is absorbed by
every subset of Te, ~ Va for T. Since o is finite 7 must be finitely based.
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Let I be any finite base for 7' such that tI' N Va = 0. By Theorem 3.12
T is base undecidable.

Theorem 3.19. Let o be a similarity type with some operation symbol
of rank at least two or at least three unary operation symbols. Every con-
sistent finitely based equational theory of tvpe o has a consistent be..e
undecidable extension of type o. )

Proof. LetI"' € Eq, and IT"| < w. For the moment assume that there is

a non-variable term 6 such that I" - 0 = v,. If 0 is non-trivial then ©[T"],
is base undecidable. Suppose 0 is trivial. There is a unary operation sym-
bol, say £, and a natural number n > 0 so that 6 = f"vy. If m € ¢ and
7€ Te, suchthat " - fMyy = w then T |- fm™" 1~V fM1y, 5o

I fm@-Dg x y,. So either O[], is base undecidable or else no opera-
ticn symbol different from f occurs in # whenever I' |- 7 = f™y,. Assume
that ©[I'], is not itself base undecidable. Let ¢’ be a simiiarity type which
is the restriction of g to a finite set of operation symbols different from f
which include all the opegation symbols different from f occurring in I’
and such that ¢’ is non-trivial. Let 7' be the constant theory of type ¢'.
‘T’ is base undecidable by Theorem 3.18. Let T=O[T’' U {fyy= vy} 1,.
Evidently, T 2 ©[TI'],, T is finitely based, and every model of T’ can be
expanded to a model of F. Hence T is consistent. Let A€ Eq,. Aisa
base for T if and only if A U { fu, = v,} is a base for T. (Suppose

AU {fuy = vy} isabase for T. Let ¥ = T’ and expand AtoB k= T.
Then B |= A and hence Y= A. Thismeans 7' | A. Let % = A and ex-
pand % toB = T. ThenB I T' and hence A= T'. Thismeans A - T'))
Since T’ is base undecidable it follows that T is base undecidable. Now
suppose there is no non-variable term 6 such that I" - 6 = v,. In this case
let o' be the restriction of ¢ to any finite non-trivial set of operation sym-
bols including all those occurring in I'. Let T” be the constant theory for
type o'. Let T=©O[T'],. Again T is base undecidable and the proof is
com'plete.

Corollary 3.20. Let 0 be a similarity type with some operation symbol of
rank at least two or at least three unary operation symbols. Every finitely
based equationally complete theory of type o is base undecidable.

In Section 4 an example of a finitely based equationally complete base
decidable equational theory in two unary operation symbols will be pro-
vided.
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Theorem 3.21. Let o be a similarity type. If T € Eq, and there is a non-
trivial term 0 such that VO + 0 and m(0) U tI" absorbs 0 for ™ then there
is an infinite family 3 ¢ finitely based undecidable subtheories of ©[T"],,.
If, in addition ¥ is finitc and T |~ 6 =~ vy, then J car: be.chosen so that
every member of has ‘he same finite models as T.

Proof. By Theorem 2.3} there is a set £ of terms such that
(1) Z is infinite.

(ii) 2 is jointly universal in every infinite cardinal.

(iii) (U X absorbs T forTand ' {Y = ¢: Y,pE T}.

(iv) There are terms Yo, ¥, such that Z = {y{21 [y{"* 1 [y [y, ]1]:
n€ w}.

Let § € “Z such that § is one-to-one. For every k € w let 7, be the
system of definitions for the similarity type of M in ¢ such that fv, is
defined by 8,; ,, and gy is defined by 8,,-. Now suppose that T is
finite and that T' |- @ = v,. (The other case can easily be seen by “.impli-
fying the argument below). Let A = {§y[v,] = &y[v,): ye MY U {8, =yy}.
Define T, for k € w as the theory based on A U in§, M U {845.4 = 84245}

- Claim 1. T is undecidable for each k € w.
Proof. Let ¥ be an algebra such that Th §( = Glin,‘,kM],, and lAl= w. Let

3B be an a.gebra so that 63 has a gne—element rarge, 8?' is the identity
function on 4 S?k...z = 84*,2 s 84k+3 = 84(k+3 N 5‘4*...4 = 8;‘8‘:4,5 , and other-
wise so that 8?,“ #* 8?,-+5 . Then ¥ = T}, and for every equation € in f
and g, B = in, x€ if and only if %= in, e if and only if M |- €. Since
in:kM € T this means that T} is undecidable by Theorem 3.3.

Claim 2. T |~ Ty, for all k € w.
Proof. This is a consequence of (iii).

Claim 3. If ¥ is a finite model of T}, then % = T, for all k € w.

Proof. A F §, = yyso is one-to-one and onto. By (iv) .nd the finite
ness of A both y¥* and UH * must be one-to-one and onto. But this means
that 8%“ is one-to-one and onto and hence invertible. Since % = { Solv )=
8o[7,): Y€ I'}, this means that Y = T".

The claims complete the proof of the last sentence of the theorem. The
alteration needed to prove the first sentence is the \eletion of A from the
definition of 7. Then claims 1 and 2 still hold and s» the theorem follows.

It should be remarked that, in any finite similarity ivpe, the set of finitc
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bases of any finitely based equational theory is recursively enumerable.
For every recursively enumerable Turing degree e there is a finitely pre-
sented semigroup on two generators which has a word problem of degree
e. Such semigroups are provided in [4]. It is therefore possible to obtain
a finite set, M, , of equations in fand g such that @[M, ] has Turing degree
¢. It follows that for all equational theories 7 in recursive similarity ' pes
which fulfill the hypotheses of the base undecidability theorem, the set
of finite bases of T has the largest possible recursively enumerable degree:
0.

Problems raised by Section 3

(1) Let o be a finite non-trivial similarity type. Is the constant theory
of similarity type o essentially base undecidable?

(2) If T is a one-based base undecidable theory, is {€: ©[e] =T} ever
recursive?

(3) Is the set {A: A € w and ¥ is a finitely based groupoid } recursive?

(4) Is there a finitely based undecidable theory of groups? Murskii {25]
provides a finitely based undecidable theory of semigroups and Mal’cev
[17]) provides various finitely based undecidable the~ries of quasigroups
and loops. The Boone—Novikov construction (cf. [{3], [27]) yields a
finitely based undecidable theory of groups with several additional con-
stants.

(5) The behavior of base undecidability with respect to definitional
cquivalence is largely unexplored. Is there a reasonable condition, inde-
pendent of Theorem 3.12, on theories T such that if T is base undeci-
dable then so is every theory definitionally equivalent with 7°?

Problem 3 is perhaps the most challenging. It was raised in [36], though
it has received consideration earlier (cf. P. Perkins’ doctoral thesis, Ber-
keley, 1966).

4. Base decidable theories

The purpose of this Section is to investigate base decidable theories.
Considering the base undecidability theorem, it is to be :xpected that
base decidable theories occur infrequently amongst the .nore familiar
finitely based theories. Though many of the examples of base decidable
theories presented here are rooted in semigroups, several are simply
artificial. Part of the energy that generated these examples stemmed
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from an investigation of the connection between the base decidability of
a theory and whether it could have arbitrarily large finite irredundant
bases. The reason for suspecting such a connection is contained in the
following theorem.

Theorem 4.0. Let ¢ be a similarity type. If T' € Eq,, T is finite, and there
is a non-trivial term 0 such that V0 # 3 and m(6) U I" absorbs 0 for T’
then ©[T'), has irredundant bases of arbitrarily large finite cardlnahty
(i.e.v O[T'), is infinite).

Proof. By Theorem 2.33 there is a set T of terms so that Z is infinite and
jointly |0l + w universal and £ U (T absorbs X forT"and "' {¢ = ¢:
V,9€ Z1}. Let § € “Z such that § is one-to-one.

Forn € wiet

A ={§lyl=vy:y€landi€n}
U {6y[8,1... 5, _[7]... 1= §,[8,[... 5, _;lv,]..}: ¥y&T}.

Then A, +- T for each n € w and, since (T absorbs the range of § for I’
ti follcws thatT" - A, . Hence O(T'], = ©[A, ],. For each n € w, let A,
be an i;redundant subset of A, such that [T}, =6[A,],.

Claim For each n € w~ 2 and i € n there is ¥ € (T such that 8,-[7] =
YEA,.
Proof. Suppose otherwise and. without loss of generality that

A,SA ~ {6, (7)== y:ye T}

Since {§;: &? n} is jointly |0l + w universal let ¥ bte an algebra of type
o so that §;* is the identity functlon ondif;<n-1and 69‘ "y isacon-
stantfunctlon Then¥U k= A, ~ :6,_1[y}=v:y€M'}. So 9(|=A and
therefore ¥ = T'. But % 8,, s 80 and thus " +# §,_; = §, but this
iscontrary toI' - {{ = ¢: Y,p € Z ). So the claim is finished.

It follows from the claim that |A, | > n for each n € w ~ 2. So the
theorem is established.

In [36], it was announced that if T is a finitely based equational theory
and there is a term 6 in which vy occurs at least twice, such that =~ VWET
then VT is infinite. Theorem 4.0 extends this result. Theorems 3.12, 3.21
and 4.0 have essentially the same hypotheses, though different conclusions.
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Below, a finitely based theory T of commutative semigroups is presented
such that T is base decidable, VT is infinite, and T has infinitely many
finitely based undecidable subtheories. Another finitely based theory T
of commutative semigroups is provided that is base decidable so that V7T
is finite, T is the theory of a finite algebra, but 7 has infinitely many es-
sentially different irredundant bases. It is not known whether « very finii<-
ly based theory T in a recursive similarity type such that v T is finite is
base decidable.

Because semigroups play such a role in this section, - is introduced as
a binary operation symbol and terms are constructed so that (p - ) is the
term resulting from applying - to ¢ and ¢. “(’’ and “)’’ must be added to
the fundamental symbols of equational logic. The similarity type having
« as its only operation symbol is taken to be recursive. Whenever ¢ is a
term in - then ¢! isp and ¢"*! isp » " for each n € w ~ 1. This should
give rise to no confusion with the notation of previous sections in what
follows.

Definition 4.1.% Let ¢ be any similarity type.

(i) Foreach i€ w and 8 € Te,, let i(#) be the number of times v; oc-
cursiné.

(ii) For each Q in the dcmain of o and 8 € Te,, let Q[0] be the num-
ber of times Q occurs in 0. +{0] is the number of times ¢ occurs in 0.

(iii) For T € Eq,, let R’ = {y,[0]) = v,{0]: eitheryET ory, = v, €T
and 0 € “Te, and V@, = {0} for eachi€ w}. '

(iv) Let e € Eq,. € is balanced if and only if i(¢;) = i(e,) and Q¢ ] =
Qle, 1, for each { € w and each Q in the domain of o such that 0Q < 1.

As a matter of convenience the greatest common divisor of the empty
set is taken to be 0 and min0 = 0. n | m means n divides m for every
mne w.

Lemma 4.2. Let T be a set of equations in the operation symbol «. Let
m=min({-{0]+ |: there is a term «w such that either x = 0 €T or
O=g€land -[0)+ +[m]} U {-[0) +i(0)+1: i€ wand there is a term

3 An carlier definition of balanced equation appearing in {21] is incorrect in that operation
symbols are ignored. I would like to thank Don Pigozzi for pointing out this mistake. Also the
condition that ¢ involves s variable must be added to the hypothesis of the theorem anaounced
in {21}.
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x such that either 1~ 0 € T or 8 ~ 7 € T and i(0) # i(x)}). Let r be the
greatest common divispr of {i(y)) —i(y,): i€ wand yET ). Then

(i) B[ {(vy - v) v, =y, (v, - v,)} URT} = -
=0[{(vy * v))* vy = vy« (V) * v,), V) = Vp*"}]
() {(g:v) vy=ups (v, v UT U ="
ifandonly if m' > mandri\r, forevery m',r € w~ 1.

The proof of this lemma is elaborate but uninteresting, essentially
some easy number-theoretical manipulations combined with rules of
inference for eguational logic. For brevity the proo” is not given. In any
case, some o' the principles used in the proof of thi; lemma arise again
in the proof >f the next theorem.

Theorem 4.3. Let mE€ w~ 2andr € w. Let T be the theory based on

(g vy) * vy = vy = (V) * ), Vg vy vy vy UG =VF )
T is base decidable and v T is infinite if r > 0.

Proof. 1"y € T then Vy, = Vy,.

Claim 1. y€ T if and only if r| i(y,) — i(7,) and either i(y;) = i(y,)
or min(i(y,), i(y,))  m, for each i € w.

Proof. Suppose v satisfies the conditions on the right side. Let
r; = i(y) — i(y,)! and m; = min(i(y,), i(v,)). By Lemma 4.2, v"i =

;"i*’i € T. Since the commutative law, as well as the assocnatwe law, is

inTthenye T.

Conversely, suppose 7y € T. Let k € w such that V'y, Cc k and let
X=vg v .. V. Forij€ wlet

v, if i=j,

o 9
i vy if i#j,

and 6; =‘,(0,_,:i€ w). Letr; =li(y)) — i(y, ) fori€ w. Let g € w.

X0, 76,1~ xi6,1- 10, 1€ T,
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so there are p, € w~ m and d, € w such that
OPq*"q’"q ~ qu eT
0 (]
or else
+d, r

+r
vg" ‘lzvg‘l " eT

Then by Lemma 4.2 ¥4 =~ vf9*"@ € T and by Lemma 4.2 again r | ry-
Now suppose g(7;) > q(,). Since both the commutative law and the
associative law are balanced and since T |- v, by the definition of deri-
vation there must be a term ¢ such that either g™ or ¢™*' is a subterm
of v, and furthermore v, occurs in ¢. Therefore q(~,) » m. The claim is
proven.

In particular, T is decidable.

Claim 2. Let A be a set of equations. A is a base for T if and only if

(DT A;

(2) The commutative law is in A;

(3) One of the sixteen commutations of the associative law is in A;

(4) r is the greatest common divisor of {i(y,) —i(y,): Y€ A andi € w};

(5) m =min({-[0]+ 1: there is a term # such that eitherr~ 0 € A or
6=~w€Aand-[0}+# -{7x]} U {-[0]+i(@)+]:i€ wand thereisaterm w
such thateither@ =~ r€ Aornr= 0 € A and i(6) # i(7) }).

Proof. Suppose (1) —(5) hold. Then T I A and both the commutative and
associative laws are derivable from A. Lemma 4.2 together with (4) and
(5) insures that A is a base for 7.

To demonstrate the converse, suppose A is a base for 7. (1) is immedi-
ate and (2) and (3) follow from the definition of derivation considering
m 3> 2. By Lemma 4.2(i)

Ol {yy - vy) v, =y, * (v, * vy)} U RAL=
=0[{(vy * v,)* v, vy (v« vy), V05 = 1] .

By Lemma 4.2(ii), (4) and (5) are fulfilled. The claim is established.
Claims 1 and 2 provide a decision procedure that determines which
finite sets of equations are bases for T and so T is base decidable.
Now suppose 7> 0. For eachn € w ~ | there iss, € "(w ~ 1) such
that s, is one-to-one and r is the greatest common divisor of the range
of s, but not of any proper non-empty subset of the range of s,,. Let
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{(Vg*vy) vy =vg * (V) * V), 0g° Uy =V * vy} U VP = v *ni: jE n).
By Lemma 4.2 A, is a base for T and A, is irredundant by construction.
So V T is infinite and the theorem is established.

Example 4.4. Let T be the theory based on {(vg « vy} * (g * Yg) = vy - Vg }
T is base undecidable but T is not essentially base ur decidable. In addition,
T has infinitely many finitely based undecidable subiheories but 7 is it-
self decidable.

Proof. Let 8 be (vg - vg) * (Vg * yg). Then 8 is non-trivial and m(0) =
{0, vy * vy }. Observe that m(0) absorbs @ for {(vy - vy) * (Vg * V) =

Vg * Vg }. So that by heorems 3.12 and 3.21 the undecidability results
mentioned follow. By Theorem 4.3 the extension of T by the addition
of the commuta‘ive and associative laws is base decidable. Therefore T
is not essentialiy base undecidable. The decidability of T can either be
seen by an ex. .austive analysis or by employing thc result of Pigozzi
mentioned in the remarks at the end of Section 3. Let § be the system
of definitions for f in - such that fy, is defined as v * vy. By P:gozzx s
theorem T Las the same Turing degree as the theory based on r? vy =
fug. This last theory is easily seen to be decidable; in fact it is

{fMty, s fmly:nmic w}u {y=vy:ic w}.

Example ".5. Let f and g be two unary operation symbols. The theory
based on { fuy = vy, gUy = gv, } is equationally complete and base deci-
dable. In fact, this theory is the only equationally complete based deci- -
dable finitely based equational theory in a non-trivial similarity type, up
to renaming the operation symbols and including constant symbols.

Proof. Let T be the theory based on {fyy = vy, gvp =~ gvy}. 9= YET
if and only if g occurs in both ¢ and  or else Vp = V¢ and g occurs in
neither ¢ nor Y. T is therefore decidable and equationally complete.

Claim. A is a base for T if and only if

(HT+ A

(2) For some i€ wand n € w ~ 1, eithery; = f"v, € & or f"y; = y; € A.

(3) 1 is the greatest common divisor of {In—mj: f"v; = f™v; € A and
iin,me w).

(4) For some y € A, Vy; # Vv,.
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(5) For some 4 € A, g occurs exactly once on one side of v and either
V7, # V4, or else g occur at least twice on some side of 1.

Proof. Suppose Ais a base for T. Then A |- Sy = v,. (2) and (3) follow
by easy induction on derivations. (1) is immediate. (4) holds since
A I guy = gu,. (5) holds because otherwise (3, A, k) = A where A is the
identity functionon 3 and k( )= 1, k(1) =0, k(0) = 0.

Conversely, suppose A satisfies (1)—(5). By (2) and (3) A I fy, = vy.
Then by (4) and (5) A - gu, = gn,. So by (1) A is a base for T.

The claim is enough to insure that T is base decidable. Let T’ be any
other equationally complete finitely based theory in fand g. If T’ is the
constant theory then T’ is base undecidable by Theorem 3.18. Otherwise
there must be a non-trivial term. 0 so that @ = v, € T’ and by Theorem
3.12 T is essentially base undecidable. By Corollary 3.20 all other cases
follow.

Definition 4.6. Let A and I' be sets of equations. A and T" are essentially
the same if and only if for every e € A ~ Ta and y € I" ~ Ta there are
permutations n and « of Va such that

v lin; i€ w)l =9 niewll €A

or else
v Kyt i€ w)) = ylin,:iew)] €A '
and :
glim;ciew ~elimy:i€w)] €T
or else

€l(my;:i€ w)] = glimy,:i€c )] €T.

Two sets of equations are essentially the same if, aside from tauto-
logies, the renaming of variables, and changing the symmetry of their
members, they are identical. I" and A are essentially different if they
are not essentially the same. If T is a finitely based, decidable theory
such that any maxima! set of pairwise essentially different irredundant
bases is recursive, ther: T must be base decidabie. It should also be noted
that if T is a set of balanced equations, then ©[I'] is also a set of balanced
equations, as is easily established by induction on derivations.

Theorem 4.7. If T is a finitely based theory in a finite recursive similarity
type and T is a set of balanced equations then T is decidable, V T is finite,
every set of pairwise essentially different irredundant bases of T is finite,
and T is base decidable.
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Proof. It is sufficient to establish that T is decidable and that every set of
pairwise essentially different irredundant bases of 7 is finite. Let 8 be any
term. Then there are only finitely many terms ¢ such that § = ¢ is balanced,
since the similarity type is finite. Hence, there are only finitely many one-to-
one sequences of such terms. Since T is balauced, # = ¢ must have a deriva-
tion appearing as one of these sequences if 7| 0 = ¢. Because T is finitely
based, there is a recursive procedure which determines if any given finite
sequence of terms is a derivation from T. Hence T is decidable.

Let k be the total number of occurrences of variables, constants, and
unary_operation symbols in some fixed though arbitrary finite base of T.
Let A be the set of all balanced equations € such that Ve, U Ve, & k and
such that no variable, constant, or unary operation symbol occurs in €
more than 2k times. For any term 0 let 0* be term obtained from 6 by
renaming the variaties from left to right so that if n distir ct variables
occur in 8 then V( * = n. Evidently * can be defined in svch a way as to
be recursive. If T i a set of equations Z* = {p* = Y*: p= J € T}. Notice
that T and Z* are e. sentially the same.

Claim, If Z is a base for T then * N A is a base for 7.

Proof. LetT be a base for T such that ' € A. Letpa ¢ € I. Then
ZF ¢~ Yanrdso Z* | ¢ = Y. From the definition of derivation and
I'C At follc ws that Z* N A - g = . Consequently T* N A |- I and
so Z* N A is 2 base for T.

Let Z be any irredundant set of equations, then Z* is irredundant. By
the claim if Z is an irredundant base for T then £* € A. But A is finite
so t1ere are only finitely many essentially different irredundant bases of
T. :his proves the theorem.

Observe that the limitations imposed on the occurrence of constants
and unary operation symbols by the definition of balanced equations are
essential in this theorem. By considering Mal'cev’s undecidable theory in
Theorem 3.3 or a finitely presented semigroup with an unsolvable word
problem it is easy to see that the decidability of T can fail if these limita-
tions are relaxed. On the basis of Theorem 3.12, the base undecidability
theorem, it would also be easy to construct examples violating the base
decidability of T but which would still be decidable.

The next theorem is based on a suggestion of Ralph McKenzie and
serves to show that the connection between v T and the base decidability
of T is at least noc entirely simple.



G.F. McNulty | The decision problem for equational bases of algebras 247

Theorem 4.8. If T is a theory of commutative s¢ nigroups and
T =] and TH (vyovy - v,y = o), voUf~2 = 3013 ) for
somen € w~ 4 then
(i) VT is finite,
(ii) T is finitely based and base decidable,
(iii) T has infinitely many essentially different irredundant bases.

Proof. The proof is presented as a sequence of 12 claims. ¢ and | range
over terms. The notion of length is modified so that Ly denotes the num-
ber of occurrence of variables in .

(DIfTH 9=y and Ly < n then Ly =Ly.

Proof Observe that 7' |- o = v}’ whenever m > n. Recall that T H -1
v’,’ .Now T~ v"" =~ v(';“’ by substntutmg vy for all variables ingp = .
Since Ly < n it follows Ly < n and furthermore

Le+n~(Le+l) o , Ly +n—-(Ly+l)
T v, = Yy .

Consequently
T+ vn -1 o vn+(Lw -Lo)-1
So Ly > L{. By the symmetry of the argument Ly =Ly.

QU TH = yand Ly < n then Vo= Vy.
Proof. This is immediate from (1).

) IfLy>nthen T ¢= Y justincase Ly > n.
Proof. This follows from (1) since T t- v, ... - v,_, = Uj;. Let E be the
set of all equations € such that Lg;, Le, < n.

@A IfPisabaseforTthenTNEF-TNE,
Proof. From (1) and (2) by a simple induction on derivations.

(5) If I' is a base for T then there are equations €,y € T such that, up
to symmetry and renam’ng of variables, €, = vy - ... * v,_; and either
Le, > n or Vg, # Ve,, and Vy; # Vv,.

Prooﬁ 'y ... - v,_; = v}. Therefore the existence of such a v is
assured by the definition of derivation. By (1) and (2), if 6 € I and
L3, < n and there is 8 € “Te such that §,{0] is a subterm of vy * ... * v, _;
then vy « v} = vy * Yy I~ & and i(§;) < 1 for each i € w. Consequently
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TN E vy + ... * Up_y = V. The existence of the specified e now follows
by the definition of derivation.

(6) T is finitely based.

Proof. Due to a theorem in [ 28] every commutative semigroup is finitely
based. However, observe that (TN E)U {vy* ... * v,_; = V] } is a base
for T by (1), (2), and (3). Let T be the set of equations € such that
€€ TN E~ Taand Ve; U Ve, S n—1. Then Z is finite and Z is a base
for @[T N Z] by (1) and (2). Hence T U {vg * ... * v,_; = Vj } is a finite
base for T.

(DIfTH Tand T is finite then {p= Y: Lp<nandT ¢ = P} is
recursive.

Proof. Let y be a term. There are only finitely many terms ¢ so that
Vy{ = Vyp and Ly = Ly. Consequently, there are only finitely many
sequences £ which are one-to-one and such that L§; = Ly and V§; =
for each i in thc domainof ¢&. If Lo< n,by (1) and (2) ' - ¢ = ¢ just
in case one of th *se finitely many sequences is a deriva.ion. Since I' is
finite and the sequence can be recursively constructud from , it follows
that {p= y: Ly<nand ' |- ¢~ v} is recursive.

. (8) T is decidable.
Proof. "This follows from (7) and (3) by means of (6).

(9) I'is 1+ base forTxffTI— P,'NEF TN E,and there are e,yET
as specified by (5).

Proof. The necessity of these conditions tollows from (4) and (5). To
prove the converse two cases will be considered. Assume I'" fulfills the
conditions on the nght side of (9). In particular, T - {yg * v; = v; * vy,
v Vi 23 v 03, (ugr vy) vy = yy e (v 0 vy)).

Case 1. Ve, # Ve, and Le; = Le,. Since " - vy * v; = v, - vy, it follows
that there is n € "w such that E,e("~l)n, =nand

| N R VR R r *)

Assume without loss of generality that n; > 2. Suppose i€ n~ 2 and
n; > 0. Then for some 6 and 6’ such that L8 =i -1,

nl' . nn-l . . . . !
Py cwcv Y mvc0, 00,0
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by the commutative (and associative law). So t y (*)

. L 3 n'l . e n;.-l
Fhuye vy, =y .. v

where ' € "~1w such that Z,g(,~1)n) = n and 07 > 0, . By repeating the
process no more than n times, one obtainsI"' -~ yg + ... * v,_; = v]. By
the commutative and associative laws " - vy * ... * v,_; = vff. Conse-
quently, F'F vy * ... * v,_; = v and I" is a base for T..

Case 11. Ve; = Ve, or Le; # Le,. So Le, > n. By means of the associa-
tive and commutative laws and a suitable substitution instance of e, it
follows that there is n € "(w ~ 1) such that Z,c, #; > n and

Fhvy ot b,_, =0 vt **

By means of the associative and commutative laws and (**), after re-
peated application, it follows that, forM =n¢n, ...n,_;,

r+ ”o' IR "":'-1 :
Note thatM>ﬁ> 2.Soforanyj€ w
PhHuvy Uy =y« .” n_l)/"i. (***)
Assume, without loss of generality that Vy, ~ Vy, # 0. Then

Tt vg = vfvf ,

wherep+q=Ly,andr=Ly,. Let N=1rq.
Hence

d pPq P
I'F vy = vf vl"
and thus
N P4 ,,Pq
l"l--vl = vg v

by the commutative law. Finally

N N
l‘l—-vo =y .
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Pick j so large that M/ > N + n. From (***)
PhEvys s by @ e 0y M Ny, - .. v,_ .

Therefore from " - v =~ v it follows that

va

- Mi-y
Ployery, =@ .y, _ ) A

n-—-

Recall that I' - vf =2 - yy = 073 . 2 and so

M-Nv1 | N1
PRy vy, =@y .y, ) v, .

Repeat this process N—2 times to obtain
i
Thvy s v, =Wy, -1y . (****)

Moreover T |- uff = vg‘”’ =1 . y, by substituting v, for vy, v, ..., and
VU, in (****). Consequently

P, -0 Wy « vt v, Y1y,

by substitution. But also

Fhvgeoov, =@y ... v"_i)”j" “Upa
by substitution in (****). So at last

Py oy, =0

and thus I' ic a base for 7.

(10) T is base decidable.
Proof. From (9) by means of (8) and (7) and (6).

(11)V T is finite.
Proof. Observe that ©[T N E] has only finitely many essentially different

irredundant bases. Let m be a bound on their cardinalities. Thenm+2is
a bound on v T by (9).

(12) T has infinitely many essentially different irredundant bases.
Proof. Let A be an irredundant base for ©[7n E).Foreachm € w,
AU {yg * ...+ v,_; = ¥I*™} is an irredundant base for T and no two of

these are essentially the same.
The theorem is established by (11), (6), (10), and (12).
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Example 4.9. For n € w ~ 4 there is a commutative semigroup ¥ such
that
(i) ¥ has cardinality n,
(ii) ThY is finitely based and base decidable,
(iii) v Th¥U is {inite,
(iv) Th¥ has infinitely many essentially different irredundant bases.

Proof. Let ¥ = (n, ) where

‘m+k if m+k<n and m+# 0 and k # 0,

mok=
° 0 otherwise,

for every m, k € n. Then ¥ is clearly a commutative semigroup and
AE vy * V) * ..t Uy =V sincemgomyo..om,_ ; =0forme€"n.
Let a € "~1n and observe that

n-1 if ai=l forall ien—-1,
ao oal o ...Oan_z -

0 otherwise.

So Uk vy - vf "2 = v}- vf~3 and U # V! =~ v, So ThY satisfies
the hypotheses of Theorem 4.8 and the conclusion follows. .

Remark 4.10. In the course of proving Theorem 7 of [36], J. Ng and
A. Tarski observed that each of the following theories is base decidable:
the theory of all semigroups, the theory of all commutative groupoids,
and the theory of all commutative semigroups. Since each of thes:
theories is evidently finitely based and balanced their base decidability
follows from Theorem 4.7.

Instead of considering whether or not arbitrary finite sets may be
bases for some equational theory it is reasonable to consider only those
sets already containing some specified equations. For example, let T be
the theory of semi-lattices. It turns out that the family of all bases for
T which contain the associative law is recursive, while the family of all
bases for T which contain the commutative law is not recursive. The
final portion of this section will deal with such relativized notions of
base decidability.

®

Definition 4.11. T is base decidable modulo A if and only if T is an equa-

tional theory in a recursive similarity type, A is a set of equations in the

same type and {I": T is finite and I’ U A is a base for T} is a recursive set.
The notions of T being base undecidable modulo A and being essen-
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tially base undecidable modulo A can be introduced in the same way the
analogous concepts were introduced in Section 3.

Theorem 4.12. Let T be the theory based on {(vy * vy) * vy = vy * (V) * ¥y),
Vo * Uy % Uy * Vg, Vg * Vg = Vo). (T is the theory of semilattices). T is base

decidable modulo the associative law.

Proof. T = {p = ¥: p and ¥ are terms and Vp = V¢ }. Therefore T is deci-
dable. The theorem is an immediate consequence of

Claim. T U {(vg* v;) * V3 = vy * (v; * vp)} is a base for T if and only if

()THT,

(2) {i(v)) — i(v,): i € w and y € T'} is relatively prime,

(3) 1 =min{Ly: y€ (T ~ Ta)},

(4) There are €, € T such that forsome i,j, k,l1€ w,i#j, k+ 1 v; is
the left most symbol in ¢, v; is the left most symbol in €,, y; is the right
most symbol in 1, and v is the right most symbol in 1,.

Proof. Supposc (1) —(4) hold. By Lemma 4.2

TU{(Uyc V) v~y - (v ° )} v} =y
So it is enough to show

{Wy V) v, =y, - ) ° vy), VR = Vg, €, 7} - vy * v S U, ¢y
Let

T={(y° v,) V%, (vl“- V), V2 = vy, 6,7} .

Evidently Z ¢ - 7= €,* 7, and foreveryn€ w~ 1,Z - vj = v,.
So for some strings (possibly empty) 8 and 8’ of the variables v, and
V1, 2t v 0 v = 0 ¢ yy. By means of T - vg = v, any string
of identical variables may be replaced by a single occurrence of that
variable. ’
So
Z k(g * vy)P = (v) * vy)?

for some p,q > 0. Therefore

Zhuy v =v 0,
and so

is a base for T.
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Conversely, suppose
PU{(vo' vl)' vz =0, (vl ° uz)}

is a base for T.

(1) is immediate. (2) and (3) follow from Lemma 4.2. Let ¥ =(2,8)
and 8=(2,0)whereaeb=banda®b =a, foralla, b €2. Then
AUk vy vy = v) * Yy and likewise Y vy * v; = v, * yy. But one of A
and B is a model of any set of equations for which (4) fails. Hence I" has
to satisfy (4) and the claim is established and with it the theorem.

Theorem 4.13. The theory of semilattices (in the operation symbol *) is
essentially base undecidable modulo the commutative law.

Proof. The proof will only be sketched since it is very much like the proof
of the base undecidability theorem. In fact, that theorem could be estab-
lished for these relativized notions provided the relativized notion of
jointly universal is used rather than the absolute notion. Of course, the
conditions on the non-trivial term will not be so nicely stated once this
adaptation is instituted. This is largely due to the need to enhance Theo-
rem 2.33.

By Theorem 3.15 there are four distinct terms 8y, 8;, 8,, and 83 in
the variable vy such that {8y, 8,, 85, 83} satisfies the subterm condition
modulo the commutative law. Let ¢, ¥ be any non-variable terms in f, g,
and v, . & is construed as a system of definitions for f, g, #, and k in -.
Let T be a base for T.,

Claim. M - ¢ = { if and only if
inf MV {vy* v, = v, v}
U {8, ling I8, [v,]1] = 8, lin, ¥[83(7,]]): YyET}
U {8, [in, ¥[8;]] = v, }

is a base for T.

Proof. If M I~ ¢ = { then the set on the right, B(¢ =~ ¢,5, NV
{vg* vy = vy * Yy}, is certainly a base for T. (Observe that T+ B(p = ¢,5,T).)
The converse is established just as in the proof of Theorem 3.12. Suppose
Miro= . Theninf MU {yy- vy = v, - Yy} £ ingp = ing P by the
relativized version of the reduction theorem. Let ¥ be a denumerably



254 G.F. McNulty | The decision problem for equational bases of algebras

infinite algebra such that Th¥ = ©[in;M]. By Lemma 3.8 there is another
denumerably infinite algebra 8 so that 8 k= iny M and 9 invalidates
in; ¢ = in, Y infinitely often (see Lemma 3.8 for precision). Finally, since
{8g,8,, 85, 83} is jointly w universal modulo the ~ommutative law, there
is an algebra @ with universe B such that €= B(p =~ ¢, §,T) U {v, v, =
v; ° vg} and 8? = 8’? # 6? = 6% Consequently, C# Tand B(p = ¢,8,) U
{vg * vy = v; * Yy} is not a base for 7. In this way the claim is proven.

Evidently, by the clam, T is base urdecidable modulo the commutative
law. To see that it is essentially undecidable modulo the commutative law
let T' 2 T and T’ be a finitely based equational theory. It is easy to see
that the claim is going to hold for 7’ as well as T. So the theorem is estab-
lished.

1t should be noted that the proof sketched above used almost no explicit
information about 7. In fact, most of the theorems of Section 3 have ana-
logs modulo the commutative law. For example, the theory of abelian
groups is also es 2ntially base undecidable modulo the commutative law.
In consequence, ‘his also applies to all finitely based theories of commu-
tative groups and .ings, to theories of lattices, and to theories of Boolean
algebras.

Theorem 4.14. Let T be any finitely based undecidable equational theory
and A € T. T is a base undecidable modulo A.

A finitel;’ based undecidable theory of semigroups is presented in [25].
By Theoren 4.14 this theory must be base undecidable modulo the asso-
ciative law.

The notion of compatibility decidable set of equations is closely con-
nected with base decidability modulo a set of equations.

Definition 4.15. Let o be a recursive similarity type. A set A € Eq, is
called compatibility decidable if and only if Eq, is base decidable modulo
A.
P. Perkins, in his doctoral thesis, showed that the theory of semigroups
is compatibility decidable. It turns out that, by various simple construc-
tions, this also holds true for the theory of groups, the theory of abelian
groups, the theory of rings, the theory of lattices, and some other com-
mon equational theories. This means it is possible, at least in principle
to determine in each particular case whether a finite set of equations is
irue in some non-trivial group, abelian group, ring, lattice, etc.
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Lemma 4.16. If T is a compatibility decidable ¢ quational theory: of simi-
larity type o then every finitely based extension of T in similarity type o
is compatibility decidable.

Lemma 4.17. Let 0 and 1 be finite recursive similarity types. Let T be an
equational theory of type o and T' be an equational theory of type T
such that T and T are definitionally equivalent. T is compatibility deci-
dable if and only if T' is compatibility decidable.

Theorem 4.18. Each of the following theories is compatibility decidable
provided it is formulated in a finite recursive similarity type:

(1) (P. Perkins [28)) The theory of semigroups;

(2) The theory of groups;

(3) The theory of rings;

(4) The theory of lattic=s;

(5) The theory of Boolean algebras.

Proof. The general idea of the proof is the same in all cases. First it is
shown that each equationally complete theory, in every case, is the theory
of some finite algebra. It is then established, in every case, that for any
finite set of equations a number k can be effectively found so that if the
set of equations is true in any non-trivial model then it is true in a model
of one of the compiete theories of cardinality less than k.

(1) Semigroups. Equationaily complete semigroups were classified in
[14]. They are: the theories of (i) the constant semigroup, (ii) semi-
lattices, (iii) left multiplication, i.e. x + y = y, and right multiplication
seinigroups, and (iv) cyclic groups of order p, for every prime p.

Let T" be a finite set of equations. Since (i)—(i%i) are all theories of two
element algebras it is simple to check if I is true in one of them.

, Now

{(yg- ) vy =vy (v, - v,)}UTH Rl‘
Pick m and r as in Lemma 4.2. Then

{(vg - v)) - vy =y (vy - V) UL U =" .
If T fails to hold in the two element constant semigroup tl.en
o = vy) - v, = v - (V) * 1y), vy =05}

must be consistent if I' is compatible with the associative law. Now if
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p> rand p is prime then v, = v fails to hold in the cyclic group of
order p. So T is true in some semigroup if and only if I' is true in one
of the algebras in (i)—(iii) or in some cyclic form of prime order no
greater than r. Hence the theory of semigroups is compatibility deci-
dable.

(2) Groups. The equationally complete theories of groups are easily
seen to be the theories of cyclic groups of prime order. LetI" be a
finite set of equations in - and ~1. I is compatible with group theory
if and only if it is compatible with the theory of Abelian groups. With
the help of the group axioms and the commutative law I' is equivalent
to a set IV of equations in just -. Now use case (1) to decide whether I
ho!ds in a cyclic grotp of prime order. Hence the theory of groups is
compatibility decidable.

(3) Rings. Equa ionally complete rings were classified in {35). They
are just the theories of p-rings for each prime p (the ring of integers
modulo p) and the theories of p-zero rings (i.e. rings whose multiplica-
tion is con:tantly zero and whose additive group is the cyclic group of
order p).

Let I' be any finite set of equations in ¢, +, and the unary operation —.
I is compatiole with ring theory if and only if it is compatible with the
theory of cor imutative rings. With the help of the axioms of commuta-
tive ring theory I' is equivalent to a set I in which each equation is in
only the operation symbols « and +. If I is a set of tautologies then I is
true in every commutative ring. Otherwise I’ fails in the ring of integers
and in fact in the semiring of natural numbers. Hence, there is an assign-
ment of natural numbers to the variables in I’ so that some equation in
I fails. This assignment can, moreover, be effectively found since I’ is
finite. Pick n so large that the values of all polynomials used to evaluate
I from this assignment are less than . If p > n and p is prime then I
fails in the ring of integers modulo p. If I holds in the ring of integers
modulo g, for some prime ¢ < n, then I is compatible with ring theory.
Otherwise I and, hence I, holds in no p-ring. Thus if I" is compatible
with the theory of rings then I" holds in some p-zero ring. Hence I may
be reduced yet again to I'” by eliminating all occurrences of . In this
way I'" ‘becomes a set of semigroup equations that can be handled as in
(1). Therefore the theory of rings is compatibility decidable.’
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(#) and (5) Lattices and Boolean algebras. The nnly equatlonally com-
plete theories in these cases are the theories of the two element algebias.
Consequently, these cases are immediate.

Problem:s raised by Section 4

1. If T is a finitely based equational theory in a recursive similarity type
and T is finite, is T base decidable?

2. Is there a finitely based decidable theory of semlgroups which is oase
undecidable modulo the associative law?
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