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KEITH A. KEARNES AND J. B. NATION

Abstract. If V is a variety of algebras, let L(V) denote the prevariety of all
lattices embeddable in congruence lattices of algebras in V . We give some criteria
for the first-order axiomatizability or nonaxiomatizability of such prevarieties. One
corollary to our main results is a nonconstructive proof that every congruence n-
permutable variety satisfies a nontrivial congruence identity.

1. Introduction

For a variety V, let L(V) denote the class of lattices embeddable in congruence
lattices of algebras in V. It is evident that L(V) is closed under the formation of
isomorphic lattices and sublattices. The map

∏

i∈I

Con(Ai) → Con

(

∏

i∈I

Ai

)

: (γi)i∈I 7→ Γ,

where a Γ b if ai γi bi for all i and aj = bj for all but finitely many j, is an embedding,
so L(V) is closed under the formation of products. This makes L(V) a prevariety,
which we call the congruence prevariety of V. In this note we discuss the first-
order axiomatizability of L(V). Theorem 1.1 describes some conditions sufficient
to guarantee the first-order axiomatizability of L(V), and Theorem 1.4 describes a
condition necessary for axiomatizability. The combination of these two theorems
yields an unexpected new proof that every congruence n-permutable variety satisfies
a nontrivial congruence identity.

We use the symbol + for lattice join and juxtaposition or · for lattice meet. Meet
takes precedence over join in expressions that are not fully parenthesized.

Theorem 1.1. If V satisfies any one of the following conditions, then L(V) is ax-

iomatizable.

(1) V is congruence distributive.

(2) V is congruence n-permutable for some n.
(3) V contains a nontrivial finite strongly solvable algebra.

Proof. For item (1), any prevariety of distributive lattices is a variety, hence is ax-
iomatizable.

For item (3), if V contains a nontrivial finite strongly solvable algebra, then V
contains a locally finite, locally solvable, minimal subvariety M. According to the
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results of [7] or [13], M is term equivalent to the variety of sets or pointed sets.
In either case, the congruence lattices of members of M are exactly the partition
lattices. Since every lattice is embeddable in a partition lattice, L(M) (and therefore
also L(V)) is the variety of all lattices.

Item (2) is proved in both [1] and [4]. We include a proof here, too. To show
that the prevariety L(V) is axiomatizable, it suffices to show that it is closed under
ultraproducts. That this is so is a consequence of the following claim.

Claim 1.2. If Ai, i ∈ I, are similar algebras with n-permuting congruences and U is

an ultrafilter on I, then the ultraproduct
∏

U Con(Ai) is embeddable in Con (
∏

U Ai).

Let L be the common language of the Ai’s. Expand L to a language L+ containing
extra predicate symbols, as follows. For each sequence Θ := (θi)i∈I ∈

∏

I Con(Ai)
introduce a binary predicate symbol Θ(x, y). Interpret Θ(x, y) in Ai so that ΘAi(a, b)
is true iff (a, b) ∈ θi. Each Ai is an L+-structure, so the ultraproduct A :=

∏

U Ai

is also an L+-structure. The fact that ΘAi(x, y) defines a congruence on Ai is first-
order expressible, so ΘA(x, y) defines a congruence on A. Consider the assignment
∏

U Con(Ai) → Con(A) defined by

(1.1) (θi)i∈I/U ( = Θ/U) 7→ the congruence defined by ΘA(x, y).

This is a well defined mapping, since if Θ = (θi)i∈I equals Ψ = (ψi)i∈I almost every-
where modulo U , then Ai satisfies the sentence ∀x, y(Θ(x, y) ↔ Ψ(x, y)) for almost
all i, so A also satisfies this sentence. In this situation ΘA(x, y) and ΨA(x, y) define
the same relation on A. If (Θ ·Ψ)(x, y) is the predicate associated to the lattice meet
(θi)i∈I · (ψ)i∈I = (θi · ψi)i∈I , then

Ai |= (Θ · Ψ)(x, y) ↔ Θ(x, y) & Ψ(x, y)

for every i ∈ I. Therefore (Θ · Ψ)A(a, b) holds iff ΘA(a, b) and ΨA(a, b) both
hold, proving that the assignment (1.1) preserves the lattice meet. If all Ai have
n-permuting congruences, then (θi)i∈I + (ψi)i∈I = (θi + ψi)i∈I =: Θ + Ψ, and

(1.2)
Ai |= (Θ + Ψ)(x, y) ↔ ∃z0, . . . , zn(x = z0 & y = zn &

Θ(zi, zi+1), i even, and Ψ(zi, zi+1), i odd)

for all i. Thus A satisfies the formula in (1.2). It follows that the congruence defined
by (Θ + Ψ)A(x, y) is the n-fold composition (hence the join) of the congruences
defined by ΘA(x, y) and ΨA(x, y). This fact implies that (1.1) preserves the lattice
join, completing the proof of the claim and the theorem. �

To express our necessary condition for axiomatizability we need some notation.
First, we define a sequence of lattice words. Let β0(x, y, z) = y, γ0(x, y, z) = z,
βk+1(x, y, z) = y + x · γk(x, y, z), and γk+1(x, y, z) = z + x · βk(x, y, z). Second, the
lattice depicted next will be called D1.



AXIOMATIZABLE CONGRUENCE PREVARIETIES 3

r

r

r

r

r

r

r

Q
Q

Q
QQ

Q
Q

Q
QQ

�
�

�
��

�
�

�
��

Q
Q

Q
QQ

�
�

�
��

y z
x

Figure 1: The lattice D1

We will need a presentation of D1. The following lemma is easy to prove, and in
any case can be derived from Lemma 5.27 of [6] (which is precisely the dual of the
Lemma 1.3).

Lemma 1.3. A presentation of D1 relative to the variety of all lattices is 〈G | R〉
where G = {x, y, z} and R consists of the relations:

(I) x ≤ y + z,
(II) z(x + y) ≤ y,

(III) y(x+ z) ≤ z, and

(IV) (x+ y)(x+ z) ≤ x.

Moreover any lattice generated by G and satisfying the relations in R and also satis-

fying x 6≤ z is isomorphic to D1.

Theorem 1.4. If L(V) is axiomatizable, then either

(1) D1 ∈ L(V), or

(2) L(V) |= βm (x, y, z) ≈ βm+1 (x, y, z) for some m, where x := (x+y)(x+z)(y+
z).

Proof. Let F be free over {a, b, c} in L(V). Let a = (a+b)(a+c)(b+c), bk = βk(a, b, c),
ck = γk(a, b, c), ak = a·bk if k is even and ak = a·ck if k is odd. Let L be the sublattice
of F that is generated by {a, b, c}. The elements a, ak, bk and ck all belong to L, and
some of them are ordered as follows.
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Figure 2: Some elements of L

From the way the elements a, bk, and ck are defined in terms of a, b and c, and the
fact that a ≤ b+ c, it is easy to see that L satisfies the following relations.

(i) b = b0 ≤ b2 ≤ b4 ≤ · · · ≤ a+ b ≤ b + c,
(ii) c = c0 ≤ c1 ≤ c3 ≤ · · · ≤ a+ c ≤ b+ c,
(iii) a0 ≤ a1 ≤ a2 ≤ · · · ≤ a,
(iv) b+ a2k+1 = b+ a2k+2 = b2k+2,
(v) c+ a2k = c+ a2k+1 = c2k+1,
(vi) b2k · a = a2k, and
(vii) c2k+1 · a = a2k+1.

Less obvious is the fact that

(viii) a = (a+ b)(a + c).

To see that this is so, observe that a ≤ a+b ≤ (a+b)(b+c) and a ≤ a+c ≤ (a+c)(b+c)
in F, so meeting corresponding elements in these inequalities yields

a = a · a ≤ (a + b)(a+ c) ≤ (a+ b)(a + c)(b+ c) = a.

This shows that (viii) holds.
Using these relations it can be seen that the order among the elements is as is

depicted in Figure 2, and also that if any two of the elements that appear in the
figure are equal in L, then bk = bk+1 for all sufficiently large k. If this happens,
then since L ≤ F and F is freely generated by {a, b, c} we get that L(V) satisfies
βk(x, y, z) ≈ βk+1(x, y, z) for any sufficiently large k. In this situation item (2) of the
theorem holds.

Assume henceforth that item (2) of the theorem does not hold, so all elements
depicted in Figure 2 are distinct elements of L. Let U be a nonprincipal ultrafilter
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on ω, and let L∗ be the sublattice of the ultrapower
∏

U
L that is generated by the

diagonal elements A := (a, a, a, . . .)/U , B := (b, b, b, . . .)/U , C := (c, c, c, . . .)/U , and
the nondiagonal element D := (a0, a1, a2, . . .)/U . As before, define Bk = βk(A,B,C),
Ck = γk(A,B,C), Ak = A · Bk if k is even and Ak = A · Ck if k is odd. The
fact that each coordinate of (a0, a1, a2, · · · ) is strictly less than the corresponding
coordinate of (a, a, a, · · · ) implies that D < A in L∗. The fact that all but finitely
many of the coordinates of the diagonal tuple (ak, ak, ak, · · · ) are strictly less than
the corresponding coordinate of (a0, a1, a2, · · · ) implies that Ak < D in L∗. Thus,
L∗ looks very much like L with an extra element D inserted in the spot indicated in
Figure 3.
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Figure 3: Some elements of L∗

If L(V) is axiomatizable, then L∗ belongs to L(V), which means that L∗ is embed-
dable in Con(A) for some A ∈ V. Fix such an embedding and label the image with
the same labels as those used in Figure 3. Let E ∈ Con(A) denote the join of the
elements Ak, k < ω. Observe that E ≤ D < A. The proof of the theorem may be
completed by proving the following claim.

Claim 1.5. The elements {A,A + B,A + C,B + C,B + E,C + E,E} consitute a

sublattice of Con(A) that is isomorphic to D1:
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Hence D1 ∈ L(V).

This claim will be proved by applying Lemma 1.3 to the congruences x := A,
y := B + E, and z := C + E. Using the fact that A ≥ E, the statements (I)–(IV)
from Lemma 1.3 that must be established may be written as:

(I) A ≤ (E +B) + (E + C),
(II) (C + E)(A+B) ≤ (B + E),

(III) (B + E)(A+ C) ≤ (C + E), and
(IV) (A+B)(A+ C) ≤ A.

Item (I) is true since B + C ≥ A. Item (IV) is true because a = (a + b)(a+ c) in L.
Items (II) and (III) are dual, so we prove only (II). For this we have

(C + E)(A+B) = [(C + E)(C + A)](A +B)
= (C + E)[(C + A)(A +B)]
= (C + E)A = A(C +

∑

k even
Ak)

= A(
∑

k even
(C + Ak))

= A(
∑

k odd
Ck)

=
∑

k odd
ACk (by the upper continuity of Con(A))

=
∑

k odd
Ak = E ≤ B + E.

To show that the sublattice generated by x, y and z is isomorphic to D1 we must
show that x 6≤ y, i.e. A 6≤ C + E. If instead A ≤ C + E, then from the middle lines
of the previous calculation we would have A = A ·A ≤ A(C +E) = E, contradicting
our earlier conclusion that E ≤ D < A. �

Corollary 1.6. The congruence prevariety of the variety of semilattices is not ax-

iomatizable.

Proof. The variety of semilattices is congruence meet semidistributive and D1 is not
meet semidistributive, so Theorem 1.4 (1) does not hold. On the other hand, the
variety of semilattices satisfies no nontrivial congruence identity according to [2], so
Theorem 1.4 (2) does not hold, either. �

This corollary can be substantially strengthened. In is proved in Chapter 4 of [6]
that the following conditions are equivalent for any variety V:

(1) D1 ∈ L(V).
(2) V satisfies no nontrivial idempotent Maltsev condition.
(3) L(V) contains every finitely presented lattice satisfying Whitman’s condition.1

Using this fact we get

1Whitman’s condition is the sentence

∀w, x, y, z((x · y ≤ w + z) ↔ (x ≤ w + z) or (y ≤ w + z) or (x · y ≤ w) or (x · y ≤ z).

It is satisfied by D1.
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Corollary 1.7. If V satisfies a nontrivial idempotent Maltsev condition and L(V)
is axiomatizable, then L(V) |= βm (x, y, z) ≈ βm+1 (x, y, z) for some m, where x :=
(x + y)(x+ z)(y + z).

From this we derive

Theorem 1.8. (cf. [5, 6, 9, 10, 11, 12]) Any congruence n-permutable variety satisfies

a nontrivial congruence identity.

Proof. Any congruence n-permutable variety V satisfies a nontrivial idempotent Malt-
sev condition, e.g. the one in [3]. By Theorem 1.1 (2), L(V) is axiomatizable.
It follows from Corollary 1.7 that V satisfies a congruence identity of the form
βm (x, y, z) ≈ βm+1 (x, y, z) for some m, where x := (x + y)(x+ z)(y + z). �
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[13] Á. Szendrei, Strongly abelian minimal varieties, Acta Sci. Math. (Szeged) 59 (1994), no. 1-2,
25–42.

(Keith Kearnes) Department of Mathematics, University of Colorado, Boulder CO

80309, USA

E-mail address : kearnes@euclid.colorado.edu

(J. B. Nation) Department of Mathematics, University of Hawaii, Honolulu HI

96822, USA

E-mail address : jb@math.hawaii.edu


