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Abstract. Let V be a finitely generated variety of algebras. We show that there
is a finite bound on the size of the 〈R,S〉-irreducible sets of finite algebras in V iff
V is congruence 3-permutable and has a near unanimity term operation of some
arity.

1. Introduction

Tame congruence theory, [8], is a localization theory for polynomial expansions
of finite algebras. The theory exploits the structure and distribution of the 〈α, β〉-
minimal sets for tame congruence intervals [α, β]. These sets are the same as the
〈α, β〉-irreducible sets for arbitrary congruence intervals.

The concepts of tame congruence theory make sense for arbitrary compatible re-
lations in place of congruences. We use letters α, β, . . . for congruences and R, S, . . .
for compatible relations.

In this paper we address a question raised in [10]: which locally finite varieties have
a finite bound on the size of 〈R, S〉-irreducible sets of finite algebras? The locally finite
varieties that have a finite bound on the size of 〈α, β〉-irreducible sets, where [α, β]
is a congruence interval of a finite algebra in the variety, are exactly the congruence
distributive varieties, but not all locally finite congruence distributive varieties have
a finite bound on the size of 〈R, S〉-irreducible sets. It can be derived from the results
in [4] that a variety V generated by a 2-element algebra has a finite bound on the
size of its 〈R, S〉-irreducible sets iff typ{V } = {3} and V has a near unanimity term.
In this paper we show more generally that a finitely generated variety V has a finite
bound on the size of its 〈R, S〉-irreducible sets iff V is congruence 3-permutable and
has a near unanimity term.

In the course of our proof we characterize some other properties concerning the
size and distribution of 〈R, S〉-irreducible sets in a locally finite variety, namely

(1) V is arithmetical iff V has 〈R, S〉-irreducible sets of size ≤ 2.
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(2) V is congruence distributive and congruence 3-permutable iff whenever σ : B→
A is a surjective homomorphism between finite algebras in V , then for any
〈R, S〉-irreducible set U of A there is an irreducible set V of B such that
σ|V : V → U is a bijection.

2. Preliminaries

The goal of this paper is to characterize which finitely generated varieties V have
the property that there is a finite number k such that any 〈R, S〉-irreducible set of
a finite algebra A ∈ V has size at most k. In this section we will introduce all of
the terminology necessary to make sense of this statement. Furthermore, we shall
reformulate our goal in terms of “covers” rather than “irreducible sets”. This material
is taken from [10] and [14]. The details can also be found in [2].

Definition 2.1. Let A be an algebra. A neighborhood of A is a subset U ⊆ A
such that there exists a unary term operation e ∈ Clo(A) that is idempotent (i.e.,
A |= e(e(x)) = e(x)) such that e(A) = U .

We allow neighborhoods to have size 1.

Theorem 2.2. Let A be an algebra and let f, ei ∈ Clo(A), i ∈ I, be idempotent
unary term operations. Let V = f(A) and Ui = ei(A) be the neighborhoods defined
by these idempotents, and let U = {Ui | i ∈ I}. The following are equivalent.

(1) For compatible relations R and S of any arity we have(∧
i∈I

R|Ui
= S|Ui

)
⇒ R|V = S|V .

(1)′ For compatible relations R and S of arity |A| we have(∧
i∈I

R|Ui
= S|Ui

)
⇒ R|V = S|V .

(2) There exist term operations λ ∈ Clo(A) and ρi ∈ Clo1(A) such that

A |= λ(ei1ρ1(x), . . . , eiqρq(x)) = f(x)

with ij ∈ I.

Proof. [(1)⇒ (1)′] This is a tautology.
[(1)′ ⇒ (2)] Let S = {

(
t(a)

)
a∈A | t ∈ Clo1(A)} be the |A|-ary relation consisting

of the graphs of unary term operations. The tuples in S that can be restricted to V
are the graphs of unary term operations with range in V , namely the graphs of term
operations of the form fρ for some unary term operation ρ. Similarly, the tuples in
S that can be restricted to Ui are the graphs of term operations of the form eiρi.

Let R be the relation generated by the tuples in S that are restrictable to some Ui.
Since R ⊆ S and R contains all tuples in S that are restrictable to some Ui, it follows
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that R|Ui
= S|Ui

for all i. Since we are assuming (1)′ we have R|V = S|V . The graph
of f is a tuple in S that is restrictable to V , hence is a tuple which belongs to S|V ,
which equals R|V . But the term operations whose graphs are in R|V have the form
λ(ei1ρ1, . . . , eiqρq) for some q, some λ ∈ Cloq(A), some ρi ∈ Clo1(A) and some eij ,
ij ∈ I. Thus

A |= λ(ei1ρ1(x), . . . , eiqρq(x)) = f(x)

for appropriate term operations.
[(2)⇒ (1)] Assume that

A |= λ(ei1ρ1(x), . . . , eiqρq(x)) = f(x)

for appropriate term operations. Suppose that R and S are compatible relations
of A, that

(∧
i∈I R|Ui

= S|Ui

)
, and that r ∈ R|V . Then ρj(r) ∈ R for each j, so

eijρj(r) ∈ R|Uij
= S|Uij

⊆ S for each j, so

S 3 λ(ei1ρ1(r), . . . , eiqρq(r)) = f(r) = r.

Since r ∈ R|V was arbitrary, we get R|V ⊆ S. A similar argument yields S|V ⊆ R,
so R|V = S|V . �

This theorem inspires the following definition.

Definition 2.3. Let A be an algebra, let U = {Ui | i ∈ I} be a set of neighborhoods
of A, and let V be a single neighborhood of A. U covers V if(∧

i∈I

R|Ui
= S|Ui

)
⇒ R|V = S|V

whenever R and S are compatible relations of A.

The following definitions are inspired by tame congruence theory.

Definition 2.4. Let U = e(A) be a neighborhood of A. The algebra induced on U
by A is

A|U := 〈U ; {et | t ∈ Clo(A)}〉.

Definition 2.5. Let U and V be neighborhoods of A. A morphism from U to V is a
function t : U → V that is the restriction to U of a term operation. An isomorphism
is an invertible morphism.

Write t : U ' V to denote that t is an isomorphism from U to V , and U ' V to
denote that U is isomorphic to V .

Definition 2.6. Let A be an algebra, and let R 6= S be compatible relations of
A. An 〈R, S〉-irreducible set is a subset U ⊆ A that is minimal under inclusion
among neighborhoods for which R|U 6= S|U . A neighborhood is irreducible if it is
〈R, S〉-irreducible for some pair 〈R, S〉.
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To make a technical observation, it is possible for a 1-element set to be an irre-
ducible neighborhood. This happens exactly when it has the form U = {u} ⊆ A
and

(1) u is the image of a constant unary term operation of the algebra A, and
(2) A has no zeroary term operations.

When these conditions are met, U is 〈∅, A〉-irreducible.
We can use the notion of a cover to give an intrinsic characterization of irreducibility

of neighborhoods.

Theorem 2.7. Let V be a neighborhood of A. The following are equivalent.

(1) V is irreducible.
(2) The set of proper subneighborhoods of V fails to cover V .
(3) V is a member of every cover of the induced algebra A|V .

Proof. Item (3) is a slight reformulation of item (2), so we prove only that (1)⇔ (2).
[(1) ⇒ (2)] If V is 〈R, S〉-irreducible, then V is minimal under inclusion among

neighborhoods for R|V 6= S|V . If U = {Ui | i ∈ I} is the set of all proper subneigh-
borhoods of V , then (∧

i∈I

R|Ui
= S|Ui

)
& R|V 6= S|V ,

so V is not covered by the set of all its proper subneighborhoods.
[(2) ⇒ (1)] If the set U of proper subneighborhoods of V is not a cover of V ,

then it follows from the definition of cover that there is a pair 〈R, S〉 of compatible
relations such that R|V 6= S|V while R|Ui

= S|Ui
for all Ui ∈ U. Hence V is 〈R, S〉-

irreducible. �

Next we move from covers of neighborhoods to covers of sets of neighborhoods.

Definition 2.8. Let A be an algebra and let U and V be sets of neighborhoods of
A.

(1) U is isomorphic to V, written U ' V, provided there is a bijection β : U→ V
such that U ' β(U) for every U ∈ U.

(2) U covers V if U covers each neighborhood in V.
(3) U is an irredundant cover of V if U is a cover of V and the deletion of any

member of U results in a set that is no longer a cover of V.
(4) (a) U refines V (or is a refinement of V), written U� V or V� U, provided

U covers V and for every U ∈ U there exists a V ∈ V such that U ⊆ V .
(b) U is a proper refinement of V if U� V and V 6� U.
(c) V is nonrefinable if U � V implies V ⊆ U. (This is stronger than the

property that V has no proper refinement.)

For the next result we introduce a quasiorder on neighborhoods of finite algebras:
U ≺ V if U is isomorphic to a subneighborhood of V . It is easy to see that ≺ is



VARIETIES WITH SMALL IRREDUCIBLE SETS 5

reflexive and transitive, and that the induced equivalence relation is the isomorphism
relation. (This last conclusion depends on the assumption that the algebra is finite.)
A neighborhood V is a maximal irreducible it is maximal in this quasiorder among the
irreducible neighborhoods. Equivalently, V is a maximal irreducible if it is irreducible
and no isomorphic copy is contained in a strictly larger irreducible neighborhood.

Theorem 2.9. Let A be a finite algebra.

(1) A has a cover consisting of irreducible neighborhoods.
(2) Every cover of A can be refined to a cover that is irredundant and nonrefinable.
(3) A has exactly one irreducible, nonrefinable cover up to isomorphism. Such

a cover consists of exactly one isomorphic copy of each maximal irreducible
neighborhood of A.

Proof. Item (1) follows from (3), since the neighborhoods in the cover described in
(3) are irreducible, so we prove the second two items only.

To prove (2), suppose that U is a cover of A. Consider the following two operations
on covers:

(i) (Deleting a redundant neighborhood) Replace U by U−{U} for some U ∈ U,
provided U− {U} still covers A.

(ii) (Proper refinement) Replace U by (U − {U}) ∪ V where U ∈ U and V is the
set of proper subneighborhoods of U , provided (U− {U}) ∪ V is still a cover
of A.

Starting with an arbitrary cover U0 of A and applying operations of types (i) and (ii)
alternately we obtain a refinement sequence U0 � U1 � · · · of covers of A, which
must terminate, since A is finite. The final cover V in this sequence is a refinement
of U0 that is irredundant (by (i)), hence consists of neighborhoods incomparable
under inclusion. None of the neighborhoods in V can be omitted in any further
refinement (by (ii)), so W � V implies V ⊆ W. This shows that V is irredundant
and nonrefinable.

The proof of (3) depends on the next claim.

Claim 2.10. If U is a cover of an irreducible neighborhood V , then V ≺ U for some
U ∈ U.

If V is 〈R, S〉-irreducible and (R ∩ S)|V 6= S|V , then V is 〈R ∩ S, S〉-irreducible.
If S|V = (R ∩ S)|V 6= R|V , then V is 〈R ∩ S,R〉-irreducible. Thus, by replacing one
of R or S by their intersection we may (and do) assume that V is 〈R, S〉-irreducible
where R ( S. Choose a relation S ′ ⊆ S that is minimal for S ′|V 6⊆ R and let
R′ = R ∩ S ′. Then R′|V 6= S ′|V , but for any subneighborhood V ′ ⊆ V we have
R′|V ′ = (R ∩ S ′)|V ′ = R|V ′ ∩ S ′|V ′ = S|V ′ ∩ S ′|V ′ = S ′|V ′ . This proves that V is
also 〈R′, S ′〉-irreducible. The minimality of S ′ guarantees that S ′ is generated by any
tuple in S ′−R′. Since R′|V 6= S ′|V we get that there is a tuple s ∈ S ′|V −R′|V , and,
as just observed, S ′ = 〈s〉.
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The facts that U covers V and R′|V 6= S ′|V jointly imply that R′|U 6= S|U for
some U ∈ U. Hence there is is a tuple s′ ∈ S ′|U − R′|U , and by the observation of
the previous paragraph we have S ′ = 〈s′〉. Since s and s′ both generate the relation
S ′, there are unary term operations g and h such that g(s) = s′ and h(s′) = s.
These unary term operations will be used to produce an isomorphism from V to a
subneighborhood of U

Choose idempotent unary term operations e and f such that e(A) = U and f(A) =
V . The term operation fheg maps A to V and fixes s, so some iterate E = (fheg)k is
an idempotent term operation defining a subneighborhood E(A) = V ′′ ⊆ V contain-
ing s. This means that R′|V ′′ 6= S ′|V ′′ , which contradicts the 〈R′, S ′〉-irreducibility of
V unless V ′′ = V . It follows that E is an idempotent term operation with image V

and hence that eg(V ) ⊆ U is a subset isomorphic to V via V
eg→ eg(V )

(fheg)k−1fh−→ V .
Any set isomorphic to a neighborhood is another neighborhood, so U contains a
subneighborhood isomorphic to V . This proves the claim.

We use the claim to prove (3). We know by (2) that A has an irredundant,
nonrefinable cover U. Suppose that V is a maximal irreducible neighborhood of A.
From the claim we know that some neighborhood U ∈ U contains a subneighborhood
isomorphic to V . But the nonrefinability of U implies that all members of U are
irreducible. By the maximality of V it must be that U itself is isomorphic to V . Two
different neighborhoods in U cannot both be isomorphic to V , since U is irredundant,
so U contains exactly one neighborhood isomorphic to V . This shows that U contains
exactly one copy of each isomorphism type of maximal irreducible neighborhood.

We argue now that any set of neighborhoods containing one copy of each iso-
morphism type of maximal irreducible neighborhood is a cover of A, hence (by ir-
redundance) U contains no neighborhoods other than single copies of the maximal
irreducibles. So, let W be a collection of neighborhoods containing a copy of each
maximal irreducible. If R 6= S are compatible relations, then there is an 〈R, S〉-
irreducible set N . There is a maximal irreducible set W ∈ W such that N ≺ W , and
for such a set W R|N 6= S|N implies R|W 6= S|W . This proves that whenever R 6= S
there is a W ∈ W such that R|W 6= S|W . Hence( ∧

W∈W

R|W = S|W
)
⇒ R|A = S|A,

which establishes that W covers A. �

Corollary 2.11. Let A be a finite algebra. The following are equivalent statements
about a positive integer k.

(1) Every irreducible neighborhood of A has size at most k.
(2) A is covered by its neighborhoods of size at most k.
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Proof. [(1) ⇒ (2)] From Theorem 2.9 (1) it follows that any positive integer that
works as a bound in (1) also works as a bound in (2).

[(2) ⇒ (1)] Theorem 2.9 (2) and (3) together imply that if U is an irreducible
neighborhood of A of maximum size, then some isomorphic copy of U must appear
in every cover of A. Thus any positive integer that works as a bound in (2) also
works as a bound in (1). �

We are interested only in polynomial expansions of finite algebras in this paper, and
we will denote by AA the expansion of A by constants. Hence we will be interested in
neighborhoods of the expansion AA, and in covers consisting of such neighborhoods.
In the case of polynomial expansions, Theorem 2.2 proves that U is a cover of V
iff A satisfies a polynomial identity of the form λ(ei1ρ1(x), . . . , eiqρq(x)) = f(x). In
reference to conditions (1) and (1)′ of Theorem 2.2 it is worth pointing out that the
compatible relations of AA are precisely the compatible reflexive relations of A.

The notion of “induced algebra” defined here agrees exactly with corresponding
the notion given in [8] when applied to polynomial expansions of finite algebras.
Our notion of “〈R, S〉-irreducible set” coincides exactly with the notion of “〈α, β〉-
minimal set” given in [8] provided (i) one is dealing with polynomial expansions of
finite algebras and (ii) 〈R, S〉 = 〈α, β〉 is a tame congruence quotient. The truth of
this last assertion is not obvious, since our definition of irreducible set is formulated
quite differently than the Hobby-McKenzie definition of minimal set, but it is not
very hard to prove the equality of the concepts using the theory developed in [8].

The project of this paper is to identify which finitely generated varieties V have
the property that there is some finite k such that the irreducible neighborhoods of
AA have size at most k for every finite A ∈ V . If we did not deal with polynomially
defined neighborhoods (i.e., neighborhoods of AA), but rather dealt with term defined
neighborhoods (i.e., neighborhoods of A), this project would be trivial. (If V is an
irreducible neighborhood of A, then V r is an irreducible neighborhood of Ar for
every r, so a finite cardinality bound on such sets would imply that every irreducible
neighborhood of A has size 1. This would force |A| = 1 for every A ∈ V .)1

Definition 2.12. Let k be a positive integer. A finite algebra A is k-bounded if
AA is covered by its neighborhoods of size at most k. A locally finite variety V is
k-bounded if each finite A ∈ V is k-bounded.

Our task for the rest of the paper is to characterize finitely generated k-bounded
varieties.

1Incidentally, the argument given here has implications even in the case where we are considering
polynomially defined neighborhoods, provided V is locally nilpotent. When V is such, then it is
shown in [9] that idempotent twin polynomials have isomorphic images. Thus, since any idempotent
polynomial of Ar is a twin of an idempotent of A acting diagonally, it follows that if V is an
irreducible neighborhood of AA, then V r is an irreducible neighborhood of (AA)r for every r. This
already hints at our finding that k-bounded varieties must be highly nonabelian.
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We end this preliminary section with some remarks on notation. Con(A) denotes
the congruence lattice of A and Con(A) denotes the set of congruences of A. The
join and meet of congruences α and β is denoted α+β and αβ respectively. We may
write a α b to indicate that (a, b) ∈ α for α ∈ Con(A).

3. k-bounded varieties, part 1

In this section we will derive some conditions that must be satisfied by any locally
finite k-bounded variety.

Lemma 3.1. If A is finite and AA is k-bounded, then A has k-permuting congru-
ences.

Proof. Assume instead that A has congruences α, β ∈ Con(A) that fail to k-permute.
Let R = α ◦k β = α ◦ β ◦ · · · (k factors), and let S = β ◦k α. Both R and S are
reflexive relations on A, hence are compatible relations of AA. We have R = α◦k β 6=
β ◦k α = S.

Since AA is k-bounded, it is covered by a set U of neighborhoods of size at most
k. Since R and S are distinct compatible relations of AA, there is some U ∈ U such
that R|U 6= S|U . But R|U = α|U ◦k β|U and S|U = β|U ◦k α|U , so α|U and β|U are
equivalence relations on U that fail to k-permute. This is impossible, since any two
equivalence relations on a set of size ≤ k will k-permute. �

Corollary 3.2. A k-bounded locally finite variety is congruence k-permutable.

Proof. By Lemma 3.1, all finite algebras in V have k-permuting congruences, and
therefore all finitely generated free algebras have k-permuting congruences. It follows
from the main result of [7] that all algebras in V have k-permuting congruences. �

Lemma 3.3. If A is finite and AA is k-bounded, then the congruence lattice Con(A)
belongs to the prevariety SP(Πk) generated by the lattice Πk of partitions of a k-
element set.

Proof. Let U be a cover of AA consisting of neighborhoods of size at most k. For
each U ∈ U the restriction map θ 7→ θ|U is a lattice homomorphism from Con(A)
to the lattice of all equivalence relations on U by Lemma 2.3 of [8]. Since |U | ≤ k,
the lattice of equivalence relations on U may be embedded in Πk. Thus, for each
U ∈ U we get a lattice homomorphism from Con(A) to Πk; moreover, the collection
of these homomorphisms separates the points of Con(A), since U is a cover of AA

and the relations we are restricting (the congruences of A) are compatible relations
of AA. Altogether this yields Con(A) ∈ SP(Πk). �

Corollary 3.4. A k-bounded locally finite variety is congruence distributive.

Proof. We prove the result through a sequence of claims.

Claim 3.5. The congruence variety of V is a finitely generated variety of lattices.
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It follows from Lemma 3.3 that the congruence lattice of any finite algebra in V
belongs to the prevariety SP(Πk). It is a general fact that the identities satisfied by
the congruence lattices of the algebras in a variety are the same as those satisfied
by the congruence lattices of the finitely generated members of the variety, hence
the congruence variety of V is contained in the variety HSP(Πk). The claim follows
from the fact that a subvariety of a finitely generated variety of lattices is finitely
generated.

Claim 3.6. V is congruence modular.

It is proved in [5] that any nonmodular congruence variety contains Polin’s con-
gruence variety, hence is not finitely generated. (The finitely generated free algebras
in Polin’s variety have congruence lattices that are splitting lattices, hence are sub-
directly irreducible lattices. This infinite collection of subdirectly irreducible lattices
prevents the congruence variety from being finitely generated.) Thus, V must be
congruence modular.

Claim 3.7. V is congruence distributive.

According to [1] any finitely generated variety of lattices is finitely axiomatizable,
but according to [6] the only finitely axiomatizable modular congruence varieties are
distributive. Thus V is congruence distributive. �

To prove the next consequence of k-boundedness we need more definitions. We
will be considering the case where A is finite, B is a subalgebra of An, and S is an
n-ary relation on B. A typical element of S will be written as an n× n-matrix with
entries in A and columns in B:

M =

 m11
...

mn1

· · ·
m1n

...
mnn

 =

 |
b1

|
· · ·

|
bn
|

 where

 |bj
|

 =

 m1j
...

mnj

 .
By a (row) transversal for M we mean a column vector built by selecting one

element from each row of M . More precisely,

[ t1
...
tn

]
is a transversal for M if ti is an

element ofA taken from from the ith row ofM . (The simplest type of transversal ofM

is a column of M .) The diagonal transversal of M is the transversal

[ m11

...
mnn

]
of diagonal

elements of M . All other transversals of M are called nondiagonal transversals.
A matrix M ∈ Bn satisfies the diagonal transversal restriction if the diagonal

transversal of M lies in B. A relation S ⊆ Bn satisfies diagonal transversal restriction
if all matrices in S satisfy it. A matrix M ∈ Bn satisfies the nondiagonal transversal
restrictions if all nondiagonal transversals of M lie in B. A relation S ⊆ Bn satisfies
the nondiagonal transversal restrictions if all matrices in S satisfy those restrictions.
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A relation S ⊆ Bn is defined by all nondiagonal transversal restrictions if it contains
exactly those matrices M that satisfy the nondiagonal transversal restrictions. Sim-
ilarly, S ⊆ Bn is defined by all transversal restrictions if it contains exactly those
matrices M that satisfy all transversal restrictions. It is easy to see that if B is a
subalgebra of An, then n-ary relations on B defined by transversal restrictions are
compatible.

Lemma 3.8. Assume that A is finite, B is a subalgebra of An, and BB is k-bounded
for some k < n. The n-ary relation on B defined by all nondiagonal transversal
restrictions also satisfies the diagonal transversal restriction.

Proof. Assume instead that S ⊆ Bn is defined by all nondiagonal transversal restric-
tions, but that S does not satisfy the diagonal transversal restriction. This implies
that there is a matrix M ∈ S such that the diagonal of M is not in B, but all
nondiagonal transversals of M lie in B.

Let R ⊆ Bn be the relation defined by all transversal restrictions. Clearly R ⊆ S
and M ∈ S − R, hence R 6= S. Let’s show that both R and S are reflexive n-ary
relations on B. If b ∈ B, then any transversal of the tuple

 |b
|
· · ·
|
b
|

 ∈ Bn

is b itself, which lies in B. Hence these “diagonal tuples” of Bn satisfy all transversal
restrictions. This shows that R and S are both reflexive relations of BB.

Our assumption is that BB is k-bounded for some k < n. This means that the
set U of neighborhoods of B of size ≤ k is a cover of BB. Hence there must exist
U ∈ U such that R|U 6= S|U . If P ∈ S|U − R|U , then P has columns lying in U , P
satisfies the nondiagonal transversal restrictions, but P does not satisfy the diagonal
transversal restriction. We now argue that there can be no such P .

Since P has n columns, all from the set U , and |U | ≤ k < n, it must be that some
columns are duplicates of others. Say

P =

 p11
...
pn1

· · ·
p1n
...
pnn

 =

 |c1

|
· · ·

|
cn
|

 where ci = cj for some i 6= j.



VARIETIES WITH SMALL IRREDUCIBLE SETS 11

In this case, the diagonal transversal of P equals a nondiagonal transversal:

p11
...
pii
...
pjj
...
pnn


=



p11
...
pij
...
pji
...
pnn


.

This cannot happen, since nondiagonal transversals of P lie in B and the diagonal
transversal of P does not lie in B. This contradiction concludes the proof. �

In order to convert Lemma 3.8 into a statement about term operations we need
to introduce cube terms. To this end we view functions in {x, y}n as characteristic
functions of subsets of n. Namely, a subset U ⊆ n corresponds to the characteristic
function

χU(i) =

{
x if i ∈ U ;

y if i /∈ U .

An n-cube term for V is a term t satisfying identities expressing the fact that when
t is applied to the characteristic functions of nonempty subsets of n, in some order,
one obtains the characteristic function of the empty set.

For example, a 2-cube term is one for which the vector identity t(χ{0}, χ{0,1}, χ{1}) =
χ∅ holds in V , which means (writing elements of {x, y}2 as columns):

t

([
x
y

]
,

[
x
x

]
,

[
y
x

])
=

[
y
y

]
holds in V . Row-wise, this says that V satisfies the identities t(x, x, y) = y and
t(y, x, x) = y. Hence a 2-cube term is just a Maltsev term.

Similarly, a 3-cube term is a 7-ary term for which

t(χ{0}, χ{1}, χ{2}, χ{0,1}, χ{0,2}, χ{1,2}, χ{0,1,2}) = χ∅

holds in V . This vector identity is equivalent to the three row identities

t(x, y, y, x, x, y, x) = y
t(y, x, y, x, y, x, x) = y
t(y, y, x, y, x, x, x) = y.

Cube terms were first introduced in [3].

Corollary 3.9. A k-bounded locally finite variety has a (k + 1)-cube term.
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Proof. We apply Lemma 3.8 to a specific situation. Let n = k + 1, let A = FV (x, y)
be the (finite) V -free algebra generated by the set {x, y}, and let B be the subalgebra
of An generated by the set {x, y}n − {y}n of characteristic functions of nonempty
subsets of n. All the hypotheses of Lemma 3.8 are met, so the n-ary relation S
of B defined by all nondiagonal transversal restrictions also satisfies the diagonal
transversal restriction.

But the matrix

Z =


y x x · · · x
x y x x
x x y x
...

. . .
...

x x x · · · y


satisfies all nondiagonal transversal restrictions (since the nondiagonal transversals
are exactly the generators of B). Therefore Z satisfies the diagonal transversal re-
striction. This is the statement that the tuple {y}n (= the characteristic function
of the empty set) belongs to B. The term which when applied to the generators
{x, y}n − {y}n of B produces {y}n is an n-cube term for V . (Recall n = k + 1.) �

Corollary 3.10. A k-bounded locally finite variety has a (k+ 1)-ary near unanimity
term.

Proof. If V is k-bounded, then it is congruence distributive and has a cube term by
Corollaries 3.4 and 3.9. But it is proved in each of [3, 13] and [16] that a variety
has an n-ary near unanimity term iff it is congruence distributive and has an n-cube
term, provided n ≥ 3. In our case, we may assume that V is nontrivial, so k ≥ 2, so
n = k + 1 ≥ 3. �

If A ∈ V is finite, then we will say that A is totally bounded (with respect to V ) if
there is an integer N depending only on A such that, whenever B ∈ V is finite and
σ : B → A is surjective, then B has a neighborhood V of size at most N such that
σ(V ) = A.

Lemma 3.11. If V is a k-bounded locally finite variety, then every finite algebra in
V is totally bounded.

Proof. Suppose that A and B are finite algebras in a k-bounded variety V and
σ : B→ A is a surjective homomorphism. We will argue that B has a neighborhood
V of size at most N = kk

|A|
such that σ(V ) = A.

Let V be a cover of BB whose members have size at most k. For each Vi ∈ V let fi
be an idempotent unary polynomial of B such that fi(A) = Vi. Since V is a cover of
BB, Theorem 2.2 guarantees that there are polynomials λ and ρi such that

λ(f1ρ1(x), . . . , fqρq(x)) = x
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holds in B. Define an equivalence relation on the subscript set {1, . . . , q} by i ∼ j iff
σ(fiρi) and σ(fjρj) are equal polynomials of A. The number of ∼-classes is at most
k|A|, since there are at most this many functions defined on the set A = σ(B) that
have range of size at most k, and each σ(fiρi) is such a function.

Let λ′(x1, . . . , xp) be the polynomial of B derived from λ(x1, . . . , xq) by identifying
the variables belonging to the same ∼-class. Also, select one polynomial fuρu(x) with
subscript from each ∼-class. In this way one obtains polynomials λ′ and fuρu such
that for

g(x) := λ′(fi1ρi1(x), . . . , fipρip(x))

we have σ(g)(x) = x on A. The subscript p can be no larger than the number of
∼-classes, so p ≤ k|A|. Some power h = gr of g is idempotent, so we can modify the
previous displayed line by applying gr−1 to both sides to obtain

h(x) := λ′′(fi1ρi1(x), . . . , fipρip(x))

which is an idempotent unary polynomial of B for which σ(h)(x) = x on A. Because
h is idempotent, its range V = h(B) is a neighborhood of BB. The previous displayed
line implies that σ(V ) = σ(h(B)) = σ(h)(B) = A. Finally, the size of V may be
estimated as follows:

|V | = |h(B)| = |λ′′(fi1ρi1(B), . . . , fipρip(B))|
≤ |fi1ρi1(B)| × · · · × |fipρip(B)|
≤ kp ≤ kk

|A|
.

This completes the proof. �

Theorem 3.12. (Summary) If V is a k-bounded locally finite variety, then the fol-
lowing conditions hold.

(1) V is k-permutable.
(2) V has a (k + 1)-ary near unanimity term operation.
(3) Finite algebras in V are totally bounded.

This result is not yet in final form. To improve it we need to investigate what it
means for the algebras in V to be totally bounded, a task for the next section.

4. Totally bounded neighborhoods, algebras and varieties

Suppose that A and B are finite algebras, σ : B→ A is a surjective homomorphism.
If U is a neighborhood of AA that is the image of the idempotent polynomial e(x) =
tA(x, ā), then there is a neighborhood V ⊆ B such that σ(V ) = U . One sees
this by choosing a tuple b̄ from B that is a preimage of ā under σ and considering
the polynomial tB(x, b̄). This polynomial may not be idempotent, but it has an
idempotent iterate, f , and f(B) =: V is a neighborhood of BB that σ maps onto U .

Given a neighborhood U of AA, there may be many neighborhoods of BB that are
preimages of U under σ. We begin by establishing some basic properties of minimal
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preimages. Henceforth a minimal preimage of a neighborhood U of AA under a
surjective homomorphism σ : B → A will always be a neighborhood V of BB such
that σ(V ) = U , and which is minimal under inclusion among neighborhoods of B
that σ maps onto U .

Lemma 4.1. Let V be a locally finite variety, let A,B and C be finite algebras in
V , and let C

τ→ B and B
σ→ A be surjective homomorphisms. The following are

true.

(1) If U is a neighborhood of AA, V is a neighborhood of BB and σ(V ) ⊇ U , then
there is a minimal preimage V ′ of U contained in V .

(2) If V and V ′ are neighborhoods of BB that are minimal preimages of the neigh-
borhood U of AA, then V is polynomially isomorphic to V ′.

(3) Suppose that U is a neighborhood of AA, V is a neighborhood of BB, W is a
neighborhood of CC, and τ(W ) = V and σ(V ) ⊆ U . Then W is a minimal
preimage of U iff both W is a minimal preimage of V and V is a minimal
preimage of U .

(4) If U is a neighborhood of AA that is covered by a set U of (sub)neighborhoods,
then any minimal preimage V of U is covered by a set V of (sub)neighborhoods
consisting of minimal preimages of members of U. In fact, the equation de-
composing U into members of U can be lifted to an equation decomposing V
into minimal preimages of members of U.

(5) A minimal preimage of an irreducible neighborhood of AA is irreducible.

Proof. Item (1). Suppose that U is the image of the idempotent polynomial e(x) =
tA(x, ā) ∈ Pol1(A) and that V is the image of the idempotent f ∈ Pol1(B). Choosing
a tuple b̄ from B that is a preimage of ā under σ and consider the polynomial ftB(x, b̄).
This polynomial may not be idempotent, but it has an idempotent iterate g, and
g(B) =: V ′ is a neighborhood of BB contained in the image V of f that σ maps onto
U .

Item (2). Let σ : B → A be a surjective homomorphism, and suppose that V =
f(B) and V ′ = f ′(B) are minimal preimages of U = e(A), where f, f ′ ∈ Pol1(B)
and e ∈ Pol1(A) are idempotent. Since σ(f)(x) = e(x) = σ(f ′)(x) in A, we have
that σ(ff ′)(x) = ee(x) = e(x) in A. The polynomial g = ff ′ has an idempotent
iterate gn whose image is a subneighborhood of f(B) = V that σ maps onto U . The
minimality of V implies that this image gn(B) equals V . Hence V = gn(B) ⊆ g(B) =
ff ′(B) = f(V ′) ⊆ V , forcing V = f(V ′). A similar argument shows that V ′ = f ′(V ),
so f and f ′ are polynomial bijections between V and V ′. In fact, f and f ′(gn−1) are
inverse polynomial bijections between V and V ′.

Item (3). If σ(V ) = U , then στ(W ) = σ(V ) = U , showing that if V is a preimage
of U and W is a preimage of V (part of the assumption of (3)), then W is a preimage
of U . Conversely, if στ(W ) = U , then σ(W ) = V (by assumption) and σ(V ) =
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στ(W ) = U , showing that if W is a preimage of U , then W is a preimage of V and
V is a preimage of U .

Now we discuss the minimality of the preimages. Suppose that W is a minimal
preimage of V and that V is a minimal preimage of U . Then W is a preimage of U ,
by the previous paragraph. If W ′ ( W is a proper subneighborhood, then τ(W ′) ( V
is a proper subneighborhood, hence στ(W ′) ( U is a proper subneighborhood. Thus
W is indeed a minimal preimage of U . Conversely, assume that W is a minimal
preimage of U . Then V is a preimage of U and W is a preimage of V by the previous
paragraph. If V is not a minimal preimage of U , then there is a minimal preimage
V ′ ( V of U by part (1) of this lemma. By another application of part (1) there is
a neighborhood W ′ ⊆ W that is a minimal preimage of V ′. By what we established
in the previous paragraph, W ′ is a minimal preimage of U . But so was W ⊇ W ′, so
W ′ = W . This contradicts the facts that τ(W ) = V , τ(W ′) = V ′ and V 6= V ′. Thus
V is indeed a minimal preimage of U . Now, to show that W is a minimal preimage of
V , assume otherwise that W ′ (( W ) is a preimage of V . Then στ(W ′) = σ(V ) = U ,
so W ′ is a preimage of U . This contradicts the minimality of W as a preimage of U .

Item (4). The statement makes two slightly different assertions, depending on
whether U consists of subneighborhoods of U or just consists of neighborhoods. We
give the argument only in the case where U consists of subneighborhoods of U .

Suppose that U is a neighborhood of AA that is covered by a set U of subneighbor-
hoods and that V is a neighborhood of BB that is a minimal preimage of U along the
map σ : B → A. The fact that U is covered by U means that a polynomial identity
of the form

e(x) = λ(e1ρ1(x), . . . , eqρq(x))

holds in A, where e, ei ∈ Pol1(A) are idempotent, e(A) = U , and ei(A) = Ui ∈ U for
all i. The fact that Ui ⊆ U means that we may assume that eei = ei.

We choose preimages of the polynomials e, ei, λ, ρi in B in the following way. First,
we choose f so that f(B) = V . Next, using item (1), we find a minimal preimage Vi
of Ui contained in V . Then we select an arbitrary idempotent fi such that fi(B) =
Vi. Finally we select preimages Λ, Ri of λ, ρi arbitrarily. The polynomial g(x) =
fΛ(f1R1(x), . . . , fqRq(x)) is a unary polynomial of B with range in V such that
σ(g)(x) = e(x) in A. The polynomial g can be iterated to an idempotent gn whose
range is contained in V and is a preimage of U . Since V is a minimal preimage of U ,
gn(B) = V . Adjust Λ to Λ′ = gn−1fΛ. We now have that the polynomial

f ′(x) := gn(x) = Λ′(f1R1(x), . . . , fqRq(x))

is an idempotent polynomial of B with range V , and that the previous displayed
line is a decomposition equation witnessing that V is covered by the sets fi(B) = Vi,
which are minimal preimages of members of U.



16 KEITH A. KEARNES AND YINGWEI LI

Item (5). The previous item established that minimal preimages of reducible neigh-
borhoods are reducible, and now we establish that minimal preimages of irreducible
neighborhoods are irreducible.

Suppose that σ : B→ A is surjective, U is an irreducible neighborhood of AA and
V is a neighborhood of BB that is a minimal preimage of U . If V were reducible,
then B would satisfy a decomposition equation

f(x) = λ(f1ρ1(x), . . . , fqρq(x))

where f, fi ∈ Pol1(B) are idempotent, f(B) = V and each fi(B) =: Vi is a proper
subneighborhood of V . If you apply σ to all of the polynomials and sets that appear,
you get a decomposition of σ(f)(A) = σ(V ) = U into proper subneighborhoods
Ui := σ(fi)(A) = σ(Vi). (The fact that Ui ( U for all i follows from the facts that
Vi ( V for all i and that V is a minimal preimage of U .) �

We call a neighborhood U of AA, A ∈ V , totally bounded (with respect to V )
if there is an integer N such that, whenever B ∈ V is finite and σ : B → A is
surjective, then any minimal preimage of U in B has size at most N . The smallest
possible value for such a N is, of course, |U |. We call U sharply bounded if the total
boundedness of U can be established using N = |U |; namely, if whenever B ∈ V is
finite and σ : B→ A is surjective, then any minimal preimage of U under σ has size
|U | (equivalently, σ maps any minimal preimage of U bijectively onto U). We call an
algebra A totally or sharply bounded if it is so when considered as a neighborhood
of itself, and we call a variety V totally or sharply bounded if all neighborhoods of
all of its finite algebras are. The definition given here agrees with our definition of a
totally bounded algebra preceding Lemma 3.11. The next lemma will be used in the
following one, where we establish some basic properties of total boundedness.

Lemma 4.2. Let X ⊆ B be a subset, let f : B → B be an idempotent function, and
θ be an equivalence relation on B compatible with f . If V := f(B) is a transversal
for θ|X , then ker(f)|X = θ|X .

Proof. If (u, v) ∈ θ|X , then (f(u), f(v)) ∈ θ|f(B) = θ|V . But V is a θ-transversal, so
θ|V is equality. This implies that f(u) = f(v), or equivalently that (u, v) ∈ ker(f)|X .

Now suppose that (u, v) ∈ ker(f)|X , so in particular u, v ∈ X. Since V is a θ|X-
transversal there exist u′, v′ ∈ V with (u, u′), (v, v′) ∈ θ. Then (f(u), f(u′)) ∈ θ|V ,
which is the equality relation, so f(u) = f(u′) = u′. Using this, f(v) = f(v′) = v′,
(u, v) ∈ ker(f)|X , and that V = f(B) is a θ|X-transversal containing u′ and v′ we
derive that

u′ = f(u′) = f(u) = f(v) = f(v′) = v′.

Since u θ u′ = v′ θ v, we get (u, v) ∈ θ|X . �

The following lemma establishes some of the basic properties of total boundedness.

Lemma 4.3. Let V be a locally finite variety and A a finite algebra in V .
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(1) If U is a 2-element neighborhood of AA, and the induced algebra AA|U is poly-
nomially equivalent to a lattice or Boolean algebra, then U is totally bounded.

(2) Any subneighborhood of a totally bounded neighborhood is totally bounded.
(3) Any quotient of a totally bounded neighborhood is totally bounded.
(4) If a neighborhood U of AA is covered by a set U of totally bounded subneigh-

borhoods, then U itself is totally bounded.
(5) A neighborhood U of AA is totally bounded iff it is sharply bounded.
(6) If V is totally bounded, then for any finite B ∈ V and congruences α, β, γ ∈

Con(B) it is the case that

α ∩ (β ◦ γ ◦ β) ⊆ α ∩ (γ ◦ (αβ) ◦ γ).

(7) If V is totally bounded, then V is congruence distributive and congruence
3-permutable.

Proof. Item (1). Assume that U = e(A) = {0, 1}. The fact that U is a 2-element
neighborhood implies that the congruence θ generated by the pair (0, 1) is join ir-
reducible in Con(A) (since the congruence of AA|U generated by (0, 1) is join irre-
ducible in Con(AA|U)). Let δ be the lower cover of θ. The polynomial e satisfies
e(θ) 6⊆ δ, so its image e(A) = U contains a 〈δ, θ〉-minimal set. This minimal set can
only be U itself. We have assumed that AA|U is a lattice or Boolean algebra, so
typ(δ, θ) ∈ {3,4}.

Now suppose that B ∈ V is finite and σ : B→ A is surjective. If θ̂ = σ−1(θ) and

δ̂ = σ−1(δ), then δ̂ ≺ θ̂ and typ(δ̂, θ̂) = typ(δ, θ). If V is a 〈δ̂, θ̂〉-minimal set, then

σ(V ) = U . The fact that U2 ⊆ θ implies that V 2 ⊆ θ̂, so V is a minimal set of type
3 or 4 consisting of a single trace. From the known structure of such sets, |V | = 2.
This implies that, for any surjective σ : B→ A there is a minimal preimage of U in B
of size 2. Since all minimal preimages in a give algebra are polynomially isomorphic
(Lemma 4.1 (2)) this shows that minimal preimages of U throughout V have size at
most N = 2.

Item (2). Suppose that U ⊆ U ′ are neighborhoods of AA and that every minimal
preimage of U ′ in V has size at most N . Given any finite B ∈ V and surjective
σ : B → A choose a minimal preimage V ′ of U ′. We have σ(V ′) = U ′ ⊇ U , so
by Lemma 4.1 (1) there is a minimal preimage V of U contained in V ′. Since all
minimal preimages of U in B are polynomially isomorphic (Lemma 4.1 (2)), any
minimal preimage of U in B has size at most |V ′| ≤ N . B was arbitrary, so U is
totally bounded.

Item (3). What is claimed here is that if U is a totally bounded neighborhood
of AA and θ is a congruence on A, then U/θ is a totally bounded neighborhood of
AA/θ. To see that this is so assume that any minimal preimage of U in a finite
algebra B ∈ V has size at most N . We argue N also bounds the size of any minimal
preimage of U/θ. Let σ : B → A/θ be a surjective homomorphism and let V be a
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neighborhood of BB that is a minimal preimage of U/θ. In the pullback diagram

P
ν−−−→ B

σ

y σ

y
A

ν−−−→ A/θ

the pullback maps ν and σ are surjective. If W is a minimal preimage of U in P, then
|W | ≤ N by our assumption about U . Since ν ◦ σ(W ) = ν(U) = U/θ we get that W
is a preimage of U/θ, and so W contains a minimal preimage W ′ of U/θ. Now V ⊆ B
is a minimal preimage of U/θ in B; if W ′′ is a minimal preimage of V in P, then W ′′

is a minimal preimage of U/θ in P by Lemma 4.1 (3). In this case W ′′ is polynomially
isomorphic to W ′ by Lemma 4.1 (2). Now |V | ≤ |W ′′| = |W ′| ≤ |W | ≤ N , since W ′′

is a preimage of V , W ′′ and W ′ are polynomially isomorphic, W ′ ⊆ W , and W is a
minimal preimage of U .

Item (4). Suppose that U is covered by U, which consists of totally bounded
subneighborhoods. There exist polynomials λ, e, ei, ρi such that e(A) = U , ei(A) =
Ui ∈ U and the polynomial identity

e(x) = λ(e1ρ1(x), . . . , eqρq(x))

holds on A. If V is a minimal preimage of U under some σ : B→ A, then, as shown
in the proof of Lemma 4.1 (4), this polynomial equation can be lifted to B:

f(x) = Λ(f1R1(x), . . . , fqRq(x)),

where f(B) = V and each Vi := fi(B) is a minimal preimage of Ui. Suppose that
Ni bounds the sizes of minimal preimages of Ui for each i so that, for example,
|fi(B)| = |Vi| ≤ Ni. Then

|V | = |f(B)| ≤ |Λ(f1R1(B), . . . , fqRq(B))| ≤
∏
|fi(B)| ≤

∏
Ni.

Thus, any minimal preimage of U has size at most N :=
∏
Ni.

Item (5). We need only prove that if U satisfies the apparently weaker notion, total
boundedness, then it satisfies the stronger notion, sharp boundedness. Equivalently,
we need to show that there is no U that is totally bounded but not sharply bounded.
Assume instead that U is a totally bounded neighborhood of AA and that some
integer N > |U | is the least integer that witnesses its total boundedness. Then there
is a finite algebra B ∈ V a surjective homomorphism σ : B → A and a minimal
preimage V of BB such that |V | = N . These conditions on V imply that σ(V ) = U ,
that if V ′ is a proper subneighborhood of V , then σ(V ′) ( U , and that there exist
distinct p, q ∈ V such that σ(p) = σ(q). Let e ∈ Pol1(B) be an idempotent polynomial
for which e(B) = V .

Choose an integer n so that 2n > N , and let C be the subalgebra of Bn whose
universe consists of all n-tuples (b1, . . . , bn) ∈ Bn such that (bi, bi) ∈ ker(σ) for all
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i and j. Let ê ∈ Pol1(C) be the polynomial that is e acting coordinatewise on C,

and let V̂ = ê(C). For any i between 1 and n let πi : C → B be the ith coordinate
projection and let ηi = ker(πi). Observe that πi : C→ B is surjective for each i and

that V̂ is a preimage of V under this map, hence V̂ is a preimage of U under σπi.

By the choices of p, q, n, the set {p, q}n (⊆ V̂ ) is larger than the bound N witnessing

the total boundedness of U . It follows that V̂ is not a minimal preimage of U , hence

V̂ is not a minimal preimage of V . Let V ′ ( V̂ be a minimal preimage of V under
πi (hence, by Lemma 4.1 (3) V ′ is a minimal preimage of U under σπi).

The fact that V ′ is a preimage of U under σπi implies that V ′ intersects each class
of ker(σπi)|(σπi)−1(U). The congruence ker(σπi) relates all pairs

(a,b) =
(
(a1, . . . , an), (b1, . . . , bn)

)
∈ C2

such that (ai, bi) ∈ ker(σ). But by the construction of C, (ai, bi) ∈ ker(σ) iff (aj, bj) ∈
ker(σ) for any i and j. Thus the fact that V ′ intersects every class of ker(σπi)|(σπi)−1(U)

implies that V ′ intersects every class of ker(σπj)|(σπj)−1(U) for every j. Hence V ′ is a

preimage of U under σπj : C→ A for each j, and therefore πj(V
′) (⊆ πj(V̂ ) = V ) is

a preimage of U under σ for each j. But V is a minimal preimage of U under σ. so
πj(V

′) = V for each j. This yields

πj(V
′) = V = πj(V̂ )

for any j, so for any p ∈ V̂ there exists pj ∈ V ′ such that πj(pj) = πj(p). This
implies that (pj, p) ∈ ηj = ker(πj). Now V ′ is a neighborhood of CC , so there is some
idempotent f ∈ Pol1(C) such that f(C) = V ′. Let q = f(p). We have p ηj pj, so
q = f(p) ηj f(pj) = pj

ηj p, and therefore q ηj p holds for every ηj. This implies

that (p, q) ∈
∧
ηj = 0, or that p = q = f(p) ∈ V ′. Since p ∈ V̂ was arbitrary we get

V̂ ⊆ V ′. This is a contradiction to the fact that |V̂ | ≥ 2n > N ≥ |V ′|.
Item (6). Given α, β, γ ∈ Con(B), choose a pair (r, s) ∈ α ∩ (β ◦ γ ◦ β). Let

A = B/γ and let σ : B → B/γ = A be the natural map. Since V is totally
bounded it is sharply bounded, according to part (4) of this lemma. Hence there is
an idempotent polynomial f ∈ Pol1(B) such that V := f(B) is mapped bijectively
onto the neighborhood A by σ. Equivalently V is a transversal for ker(σ) = γ.
Applying Lemma 4.2 in the case where X = B and θ = γ we obtain that ker(f) = γ.
Since f is idempotent, this implies that b γ f(b) for every b ∈ B.

The fact that (r, s) ∈ α ∩ (β ◦ γ ◦ β) implies that (r, s) ∈ α and that there exist p
and q such that

r β p γ q β s.

Applying f (and recalling that ker(f) = γ) we get

f(r) β f(p) = f(q) β f(s),
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hence (f(r), f(s)) ∈ β. We also have (f(r), f(s)) ∈ α, so

r γ f(r) αβ f(s) γ s.

This proves that (r, s) ∈ α ∩ (γ ◦ (αβ) ◦ γ), as required.
Item (7). It is enough to prove that the finite algebras in V have distributive,

3-permuting congruences, since V is locally finite.
If B is a finite algebra in V , then applying part (6) of this lemma in the case α = 1

we get β ◦ γ ◦ β ⊆ γ ◦ β ◦ γ for an arbitrary pair of congruences β, γ ∈ Con(B). This
establishes 3-permutability. Next, applying item (6) twice to an arbitrary triple of
congruences we obtain

α(β + γ) = α ∩ (β ◦ γ ◦ β)
⊆ α ∩ (γ ◦ (αβ) ◦ γ)
⊆ α ∩ ((αβ) ◦ (αγ) ◦ (αβ))
= α ∩ (αβ + αγ) = αβ + αγ.

This proves that Con(B) is distributive. �

Our next goal is to prove that the condition in Lemma 4.3 (7) characterizes totally
bounded locally finite varieties. For this we need a method for constructing small
preimages of neighborhoods in finite algebras that are contained in congruence dis-
tributive and congruence 3-permutable varieties. Our arguments will need the terms
guaranteed by the next theorem.

Theorem 4.4. ([15], Proposition 5) A variety is both congruence distributive and
congruence n-permutable iff there exist ternary terms `0, . . . , `n such that the following
identities hold in V :

(1) `i(x, y, x) = x for all i,
(2) `i(x, x, z) = `i+1(x, z, z) for all i,
(3) `0(x, y, z) = x and `n(x, y, z) = z.

In the case n = 2 this theorem is due to Pixley (cf. [17]). The fact that terms
satisfying the identities in (2) and (3) characterize congruence n-permutability is due
to Hagemann and Mitschke (cf. [7]). We will call terms satisfying the identities in
Theorem 4.4 Lipparini terms. We will need them only in the case n = 3.

Theorem 4.5. The following conditions are equivalent for a locally finite variety V .

(1) V is totally bounded.
(2) V is sharply bounded.
(3) V is congruence distributive and congruence 3-permutable.

Proof. We proved in Lemma 4.3 that (1) and (2) are equivalent and that they imply
(3). Here we prove that (3) implies that every finite algebra in V is sharply bounded.
Then Lemma 4.3 implies that V is sharply bounded. (We refer to Lemma 4.3 because
we defined the total or sharp boundedness of a variety in terms of the total or sharp
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boundedness of the subneighborhoods of its members, not in terms of the total or sharp
boundedness of its members. Lemma 4.3 shows that the distinction is unimportant.)

The property that every finite algebra in V is sharply bounded is equivalent to the
property that for any finite B ∈ V and any congruence θ on B there is a neighborhood
of BB that is a transversal for θ. (One sees this by applying the definition to the
natural map σ : B → B/θ.) Assume that this property fails for some variety V
that is both congruence distributive and congruence 3-permutable. We shall derive
a contradiction from this assumption.

So let B be a finite algebra in V with a congruence θ such that there is no neigh-
borhood that is a transversal for θ. Let V be a neighborhood of BB that is minimal
under inclusion for the property that V intersects every θ-class, and let f ∈ Pol1(B)
be an idempotent whose image is V . Since V is not a transversal for θ there exist
distinct θ-related elements of V .

If x, `1(x, y, z), `2(x, y, z), z is a sequence of Lipparini terms for n = 3 for V , then
f(x), f`B1 (x, y, z), f`B2 (x, y, z), f(z) is a sequence of polynomials of B that satisfy the
Lipparini identities on V . Let H(x, y, z) = f`B1 (x, y, z) and K(x, y, z) = f`B2 (x, y, z).
The Lipparini identities assert that on V we have x = H(x, y, y) = H(x, y, x),
H(x, x, y) = K(x, y, y), and K(z, y, z) = K(y, y, z) = z.

Case 1. For some (a, b) ∈ θ|V the function H(x, a, b) is not a permutation of V .

In this case H(x, a, b) maps V into itself, is not a permutation of V , but is the
identity modulo θ; i.e., H(x, a, b) ≡ H(x, a, a) = x (mod θ). The polynomial h(x) =
H(x, a, b) can be iterated to an idempotent hn(x) whose range is a neighborhood
V ′ ( V which intersects each θ-class (since hn(x) is the identity modulo θ). This
contradicts the minimality of V .

Case 2. For all (a, b) ∈ θ|V the function H(x, a, b) is a permutation of V .

Consider the ternary polynomial H(x, y, z) = Hy,z(x) to be a function of x with
y and z as parameters. This function can be iterated to a function Hn

y,z(x) that is

idempotent in x for every choice of y, z ∈ V . Let L(x, y, z) = Hn−1
y,z (x). Then, if

a, b ∈ V are such that H(x, a, b) is a permutation of V , then Hn
a,b(x) is an idempotent

iterate of this permutation, hence Hn
a,b(x) = x on V . In this case L(x, a, b) is the

inverse of the permutation H(x, a, b) on V .
Choose distinct a, b ∈ V such that (a, b) ∈ θ, and define the unary polynomial

p(x) = L(K(H(x, a, b), x,K(a, b, x)), H(x, a, b), K(a, b, x)).
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Modulo θ we have

p(x) = L(K(H(x, a, b), x,K(a, b, x)), H(x, a, b), K(a, b, x))
≡θ L(K(H(x, a, a), x,K(a, a, x)), H(x, a, a), K(a, a, x))
= L(K(H(x, a, a), x,K(a, a, x)), H(x, a, a), K(a, a, x))

= L(K(x, x, x), x, x)
= x,

since the Lipparini identities hold and all polynomials in questions are idempotent
on V . This shows that p(x) is the identity modulo θ. In the calculation above and
in those below we underline the part that we intend to change and double underline
the result of the change.

Now we prove that p(a) = p(b).

(†)

p(a) = L(K(H(a, a, b), a,K(a, b, a)), H(a, a, b), K(a, b, a))

= L(K(H(a, a, b), a, a), H(a, a, b), a)
= L(K(H(a, a, b), a, a), H(a, a, b), a)

= L(H(H(a, a, b), H(a, a, b), a), H(a, a, b), a)

= Hn
H(a,a,b),a(H(a, a, b)) = H(a, a, b).

We move from the third line to the fourth using the Lipparini identity H(x, x, y) =
K(x, y, y). The last step follows from the fact that L(H(x, y, z), y, z) = Hn

y,z(x) = x
when (y, z) ∈ θ. Next,

(‡)

p(b) = L(K(H(b, a, b), b,K(a, b, b)), H(b, a, b), K(a, b, b))

= L(K(b, b,K(a, b, b)), b,K(a, b, b))
= L(K(b, b,K(a, b, b)), b,K(a, b, b))

= L(K(a, b, b), b,K(a, b, b))

= L(K(a, b, b), b,K(a, b, b)) = K(a, b, b).

The last step uses the identity L(x, y, x) = x, which follows from the facts that
H(x, y, x) = x and that L is a first variable iterate of H(x, y, z). Finally we have

p(a)
(†)
= H(a, a, b) = K(a, b, b)

(‡)
= p(b),

where the middle equality follows from the Lipparini identity H(x, x, y) = K(x, y, y).
We have shown that p(x) is a polynomial that maps V into itself noninjectively,

but which is the identity modulo θ. An idempotent iterate of p will have range that
is a proper subneighborhood of V that intersects each θ-class. As in Case 1 this is a
contradiction. The contradictions obtained were to our early assumption that V is
a minimal for intersecting every θ-class, but there exist distinct a, b ∈ V such that
(a, b) ∈ θ. We conclude, therefore, that any neighborhood minimal for intersecting
every θ-class is a θ-transversal. �
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5. k-bounded varieties, part 2

The first result of this section provides a list of conditions sufficient to imply k-
boundedness for single algebras. It is the basis for our characterization of k-bounded
locally finite varieties.

Lemma 5.1. Let B be a finite algebra. Assume that

(i) BB generates a congruence 3-permutable variety,
(ii) B has an (n+ 1)-ary near unanimity polynomial operation, and

(iii) every quotient of B that is a subdirect product of n subdirectly irreducible
algebras is k-bounded.

Then B is k-bounded.

Proof. let V be the set of neighborhoods of BB of size ≤ k. Let B ≤
∏

i∈I Si be a
representation of B as a subdirect product of finite subdirectly irreducible quotient
algebras. If W ⊆ I, let πW : B→

∏
i∈W Si be the projection onto the coordinates in

W , let BW = im(πW ) and let ηW = ker(πW ). (When W = {i} write ηi instead of
η{i}.)

Claim 5.2. For every nonempty W ⊆ I there is an idempotent eW ∈ Pol1(B) whose
image V W is a neighborhood of BB that is a transversal for ηW , and for which there
is a polynomial identity

eW (x) = λW (eW1 ρ
W
1 (x), . . . , eWqW ρ

W
qW (x)),

satisfied in B, such that eWi is idempotent and eWi (B) ∈ V for all i.

Establishing this claim will complete the proof, since when W = I the claim yields
a decomposition of the neighborhood V I = B into neighborhoods from V.

First consider the case |W | ≤ n. Then πW : B → BW is surjective and πW (V) =
{πW (V ) | V ∈ V} is a collection of neighborhoods of BW

BW that have size at most k.
In fact, it is the collection of all such neighborhoods, since (by the sharp boundedness
of V) any neighborhood of BW

BW is the image of a neighborhood of BB of the same
size, and V contains all neighborhoods of BB of size at most k.

The algebra BW is a subdirect product of at most n finite subdirectly factors of B.
In fact, we may assume that it is a subdirect product of exactly n factors by adding
repeated factors, so by (2)(iii) the algebra BW is covered by πW (V). Any decompo-
sition equation expressing this fact can be lifted to B along the map πW : B→ BW .
By Lemma 4.1 (4) this yields a decomposition of some minimal preimage of BW into
minimal preimages of neighborhoods of BW

BW . The sizes of the neighborhoods will be
preserved by sharp boundedness, yielding the statement of the claim.

We continue by induction on |W |. Suppose that |W | > n, {i1, . . . , in+1} ⊆ W ,
Wj = W − {ij} for j = 1, . . . , n + 1, and that the claim has been established for all
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Wj in place of W . Let M(x1, . . . , xn+1) be a near unanimity polynomial operation of
B. Define a polynomial

gW (x) = MB(eW1(x), . . . , eWn+1(x)).

Since eWi(x) is the identity function modulo ηWi , it is the identity function mod-
ulo ηj for each j ∈ Wi. Now an arbitrary j ∈ W belongs to at least n of the
sets W1, . . . ,Wn+1, so the near unanimity identities for M guarantee that gW (x) =
MB(eW1(x), . . . , eWn+1(x)) is the identity function modulo ηj for all j ∈ W , hence
is the identity function modulo ηW . Some iterate (gW )r is idempotent and still the
identity function modulo ηW for every j ∈ W ; let N = (gW )r(B) be the neighborhood
it defines. We must have πW (N) = BW , so there is a minimal preimage V W ⊆ N of
BW along the map πW . This neighborhood is a transversal for ηW . If f ∈ Pol1(B) is
an idempotent whose range is V W , then so is the composite eW := f(gW )r. Moreover,
the identity

eW (x) = f(gW )r(x) = f(gW )r−1(MB(eW1(x), . . . , eWn+1(x)))

can be expanded on the right so that it is a decomposition equation for V W in terms

of the neighborhoods e
Wj

` (B) ∈ V. �

Corollary 5.3. Let V be a locally finite variety. The following conditions are equiv-
alent.

(1) V is k-bounded.
(2) (i) V is congruence 3-permutable

(ii) V has a (k + 1)-ary near unanimity term operation, and
(iii) any subdirect product of k finite subdirectly irreducible algebras in V is

k-bounded.

Proof. The implications (1)⇒(2)(i) and (1)⇒(2)(ii) have been established in Theo-
rems 3.12 and 4.5. The implication (1)⇒(2)(iii) is trivial. Lemma 5.1 in the case
n = k applied to each finite A ∈ V proves that (2)⇒(1). �

Next we formulate a version of this corollary that characterizes finitely generated
k-bounded varieties in ways that do not refer to the k-boundedness of a subclass.

Corollary 5.4. Let V be a finitely generated variety. The following conditions are
equivalent.

(1) V is k-bounded for some k.
(2) V is congruence 3-permutable and has a near unanimity term operation of

some arity.
(3) There is some ` such that any irreducible neighborhood in any finite algebra

in V has size at most `.

Proof. [(1)⇒ (2)] This follows from Corollary 5.3.
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[(2) ⇒ (1)] If (2) holds, then V is a finitely generated congruence distributive
variety, hence by Jónsson’s Lemma there is a finite number s bounding the size of
the subdirectly irreducible algebras in V . If n is the arity of near unanimity term
for V , then every subdirect product of n subdirectly irreducible algebras in V is
sn-bounded. (Reason: if S is such a subdirect product, then the set S itself is a
neighborhood of SS that covers SS, and its size is ≤ sn.) By Corollary 5.3 V is
k-bounded for k = sn.

[(1) ⇒ (3)] According to Corollary 2.11, Condition (1) for a given k is equivalent
to Condition (3) with ` = k. �

6. Refinements involving the number 2

We have shown that if V is a locally finite k-bounded variety for some k, then V
is congruence 3-permutable and has a near unanimity term operation of some arity.
We proved the converse for finitely generated varieties. In this section we prove the
converse for arbitrary locally finite varieties provided k = 2.

A second refinement of our results concerns our characterization of locally finite va-
rieties that are both congruence distributive and congruence 3-permutable as exactly
the sharply bounded varieties. Here we will characterize the locally finite varieties
that are both congruence distributive and congruence 2-permutable by a strengthened
notion of sharp boundedness.

We start with a proof that a locally finite variety is 2-bounded if and only if it is
congruence permutable and has a 3-ary near unanimity term. The key to the proof
is the following unpublished result of K. A. Kearnes, E. W. Kiss and M. A. Valeriote.

Theorem 6.1. If A is a finite algebra with a Maltsev polynomial, then the set of
α, β-minimal sets for α ≺ β in Con(A) form a cover of AA.

Proof. It is enough to show that AA decomposes into its minimal sets for congruence
coverings. Assume the contrary and let N ( A be a neighborhood of AA that
is maximal for the property that AA|N is decomposable into its minimal sets for
congruence coverings. It is a basic fact of tame congruence theory (a consequence
of Theorem 2.8 of [8]) that every finite algebra is the connected union of the traces
of its minimal sets for congruences, hence there must exist an 〈α, β〉-minimal set U
for some α ≺ β in Con(A) that has a trace T ⊆ U that properly overlaps N . (I.e.,
T ∩ N 6= ∅, but T 6⊆ N .) Choose 0 ∈ T ∩ N . Thus U properly overlaps N and
U ∩ N contains an element 0 from the body of U . Let m(x, y, z) denote a Maltsev
polynomial of A.

Claim 6.2. A has an idempotent unary polynomials e and f such that

(1) e(A) = U and e(N) = {0}, and
(2) f(A) = N and f(U) = {0}.
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Since U and N are neighborhoods there exist idempotent unary polynomials e0
and f0 such that e0(A) = U and f0(A) = N . We show that these can be modified to
have the extra properties in the claim.

Our first step is to construct e. As a first case, assume that e0f0 ∈ Pol1(A)|U
is not a permutation of U . The polynomial g(x) = e0m(0, e0f0(x), e0(x)) has the
property that g(A) ⊆ U and g(N) = {0}. If u ∈ T − {0}, then (u, 0) ∈ β − α,
so (e0f0(u), 0) ∈ α, and we get (g(u), u) ∈ α. Since (0, u) ∈ β − α, g(0) = 0, and
g(u) ≡ u (mod α) it follows that g(β) 6⊆ α and so g is not collapsing on U . Therefore
an appropriate power e = gk is an idempotent unary polynomial with range U that
collapses N to {0}.

Now assume that e0f0 is a permutation of U . Then U ' f0(U), so V := f0(U) ⊆ N
is an 〈α, β〉-minimal set contained inN and containing 0. Let S = f0(T ) be the 〈α, β〉-
trace of V containing 0. Corollary 4.8 of [12] guarantees that there is an idempotent
unary polynomial e1 of A such that in the quotient A/α we have e1(A/α) = U/α and
e1(S/α) = {0/α}. Replacing e1 by e0e1 if necessary we may assume that e0e1 = e1,
so e1(A) ⊆ U . Since e1 maps A into U and is is the identity modulo α on U , it follows
from the 〈α, β〉-minimality of U that e1(A) = U . Now e1f0 is collapsing on T , so e1f0
is not a permutation of U . Thus we can repeat the argument of the first case using
e1 in place of e0 to construct an idempotent unary polynomial e such that e(A) = U
and e(N) = {0}.

Now, given e and f0 as above let f(x) = f0m(f0(x),m(e(x), x, f0(x)), 0). One
calculates that f(A) ⊆ N , f is the identity on N (so f is idempotent with range N),
and f(U) = {0}. This completes the proof of the claim.

Now we complete the proof of the theorem. The polynomial h(x) = m(e(x), 0, f(x))
is the identity on N ∪ U , so some iterate h`(x) is idempotent with range M ) N .
The equation m(e(h`−1(x)), 0, f(h`−1(x))) = h`(x) is a decomposition equation for
M into neighborhoods N and U , so we have contradicted the assumption that N is
maximal among neighborhoods decomposable into minimal sets. �

Now we are in a position to prove the desired result.

Theorem 6.3. Let V be a locally finite variety. The following are equivalent.

(1) V is 2-bounded.
(2) V has a Maltsev term and a 3-ary near unanimity term.
(3) V is arithmetical (= congruence permutable and congruence distributive).

Proof. The equivalence of (2) and (3) is due to Pixley, [17]. Theorem 3.12 proves
(1)⇒(2), so we need only prove that (3)⇒(1).

If V has a Maltsev term, then it follows from Theorem 6.1 that every finite A in
V is covered by its minimal sets for congruences. But these have size 2, since V is
congruence distributive (Theorem 8.6 of [8]). Hence V is 2-bounded. �
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We turn next to our second refinement of earlier results. Recall that a neighborhood
U of AA is sharply bounded in V if whenever B ∈ V is finite and σ : B → A is
surjective, then there is a minimal preimage V of U in B such that |V | = |U |. In
general we expect B to contain many minimal preimages of U . Let us say that a
preimage V is anchored at b ∈ B if b ∈ V . Of course, for a preimage to be anchored
at b ∈ B it is necessary to have b ∈ σ−1(U). If this is the only restriction on an anchor
of a minimal preimage of U we will say that minimal preimages of neighborhoods are
freely anchored. That is, minimal preimages of neighborhoods are freely anchored
in V if whenever U is a neighborhood of AA, B ∈ V is finite and σ : B → A is
surjective, then for any b ∈ σ−1(U) there is a minimal preimage V of U anchored at
b.

Theorem 6.4. A locally finite variety is arithmetical iff it is sharply bounded and
minimal preimages are freely anchored.

Proof. [⇒] Let U be a neighborhood of AA, let B ∈ V be finite and let σ : B → A
be surjective. Let m(x, y, z) be a Pixley term for V , so that m(x, y, y) = m(x, y, x) =
m(y, y, x) = x throughout V . Now let V = e(B) be an arbitrary minimal preimage
of U . V is sharply bounded, so V is a transversal for ker(σ)|σ−1(U).

Choose b ∈ σ−1(U) arbitrarily. Since V is a transversal for ker(σ)|σ−1(U) there is a
unique element c ∈ V such that (b, c) ∈ ker(σ).

Claim 6.5. The polynomial g(x) = mB(e(x), c, b) is an idempotent unary polynomial
whose image V ′ is a minimal preimage of U anchored at b.

Note that V ′ := g(B) = mB(e(B), c, b) = mB(V, c, b) is an image of V under
the polynomial mB(x, c, b), hence |V ′| ≤ |V | = |U |. On the other hand, σ(g)(x) =
σ(mB(e(x), c, b)) = mA(σ(e)(x), σ(c), σ(b)) = σ(e)(x), so σ maps g(B) = V ′ onto
σ(e)(A) = U . Hence σ is a bijection from V ′ onto U . Since σ(g)(x) = σ(e)(x), it fol-
lows that σ|M is an isomorphism from the unary algebra 〈V ′; g(x)〉 onto 〈U ;σ(e)(x)〉,
which forces g to be the identity on V ′ = g(B). We conclude that g is an idempotent
whose image V ′ is a minimal preimage of U . To see that V ′ is anchored at b, observe
that b = g(c) ∈ g(B) = V ′. This completes the proof of the claim and also the proof
of direction [⇒].

[⇐] Now assume V is sharply bounded and minimal preimages are freely anchored.
Let A = FV (u, v), B = FV (u, v, w), and let σ : B → A be the map defined on
generators by u 7→ u, v 7→ v and w 7→ v. Let U = A and let b = w be the chosen
anchor. There must be some neighborhood V ⊆ B that is a ker(σ)|σ−1(N)-transversal
containing b = w. Since ker(σ) = Cg(v, w) and σ−1(U) = σ−1(A) = B, this means
that V is a Cg(v, w)-transversal in B that contains w.

Claim 6.6. Let α = CgB(u,w), β = CgB(u, v) and γ = CgB(v, w). If e is an

idempotent such that e(B) = V , then u αγ e(u) αβ w.
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We have u β v, so e(u) β e(v). Similarly u α w, so e(u) α e(w). According
to Lemma 4.2, ker(e) = ker(σ) = γ = Cg(v, w), so e(v) = e(w) = w. Adding this to

our earlier conclusions, we have e(u) αβ e(v) = e(w) = w.

Since e(u) = e(e(u)) we have (u, e(u)) ∈ ker(e) = ker(σ) = γ. Now u α w αβ e(u),
so u α e(u). These two conclusions imply that (u, e(u)) ∈ αγ. With the conclusion

of the previous paragraph we have u αγ e(u) αβ w.

Let m(x, y, z) be a ternary term such that mB(u, v, w) = e(u). The fact that
m(u, v, w) αγ u implies that the identities m(x, y, y) = x = m(x, y, x) hold in V ,

while the fact that m(u, v, w) αβ w implies that the identities m(y, y, x) = x =
m(x, y, x) hold in V . These identities imply that m is a Pixley term for V . �
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