CONGRUENCE LATTICES OF LOCALLY FINITE ALGEBRAS
KEITH A. KEARNES

ABSTRACT. It is shown that there exist algebraic lattices that cannot be repre-
sented as the congruence lattice of a locally finite algebra.

1. INTRODUCTION

Recently, James Schmerl asked me if every finite lattice is isomorphic to the congru-
ence lattice of a locally finite algebra. Noting that it is still unknown whether every
finite lattice is isomorphic to the congruence lattice of a finite algebra, he reformu-
lated the question as: Are there any finite lattices which are known to be isomorphic
to the congruence lattice of an infinite locally finite algebra but not yet known to be
isomorphic to the congruence lattice of a finite algebra?

I don’t know the answer to either form of Schmerl’s question, but have found a
result of the opposite type: there exist finite lattices that are representable as the
congruence lattice of a finite algebra, but not representable as the congruence lattice
of an infinite locally finite algebra. Moreover, there exist algebraic lattices that are
not the congruence lattice of any locally finite algebra at all.

To represent an algebraic lattice as the congruence lattice of an algebra, there is
a lower bound on the cardinality of the representing algebra that must be satisfied.
Namely, if L = Con(A), then A must be large enough so that the lattice of all equiv-
alence relations on A contains a complete 0,1-sublattice isomorphic to L. Conversely,
if A is at least this large, and is infinite, then the known representation theorems
prove that L = Con(A) for some algebra with universe A. (Although it is not rele-
vant to this paper, the results in [1] and [6] show that lower bounds on the number
of fundamental operations must also be satisfied.) In this paper, it is shown how to
establish upper bounds on the cardinality of the representing algebra in some cases
where the algebra is assumed to be locally finite. When the upper bound on car-
dinality is incompatible with the aforementioned lower bound, a nonrepresentability
result is obtained.

2. NONREPRESENTABLE LATTICES
A congruence « on an algebra A is abelian if

(2.1) s(a,c) = s(a,d) <:1) s(b,c) = s(b,d)
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whenever s(x,y) is an (m + n)-ary term operation of A, a, b are m-tuples satisfying
(a;,b;) € a for all 7, and c,d are n-tuples satistying (c;,d;) € « for all j. This may
be reformulated in the following way. Call n-ary polynomials s,(y) := s(a,y) and
sp(y) := s(b,y) a-twins if they are obtained from the same term operation s(x,y) by
substituting a-related tuples a and b for x respectively. Now let N; = ¢;/a = d;/a
be the a-class of ¢; for each j. The bi-implication (2.1) merely asserts that the two
functions

Sa,Sp: N1 X -+ x N, — A

have the same kernel. Thus, « is abelian if any pair of a-twins have the same kernel
when restricted to a product of a-classes. At first, this sounds like a strange way to
define abelianness, but this definition agrees with the abelianness concept from group
theory and generalizes it in a useful way. (Confer [2, 3].)

Theorem 2.1 of [4] proves that if A is a finite algebra, p is a minimal abelian
congruence on A, and B is a maximal proper subalgebra of A, then B is either a
union of p-classes or is contained in a p-transversal (which is a set containing exactly
one element from every p-class). Equivalently, if a subset X C A properly contains a
p-transversal, then X generates A. Theorem 2.1 below partially extends this result
to locally finite algebras. Namely, it proves that if A is a locally finite algebra and p
is a minimal abelian congruence of finite index, then any subset X C A that properly
contains a p-transversal generates A. Of course, if p has finite index, then there is a
finite subset Xy C A that properly contains a p-transversal. If A is generated by this
finite subset, then by local finiteness A is finite. Conversely, if A is finite, then the
desired result is just Theorem 2.1 of [4]. Thus, the extension to locally finite algebras
should be worded as:

Theorem 2.1. Let A be a locally finite algebra. If A has a minimal abelian congru-
ence of finite index, then A is finite.

Note that this result implies the nontrivial and new fact that any locally finite,
abelian, simple algebra is finite. See Corollary 2.3 for a generalization. For the
necessity of assuming abelianness, see Example 2.11.

Proof. Suppose that T is a p-transversal, that X, is a finite subset of A properly
containing 7', and B is the subalgebra of A that is generated by X. It will be shown
that B = A. Since A is locally finite and B is finitely generated, this forces A to be
finite.

Since T' is a pu-transversal, each element a € A is p-related to a unigely de-
termined element @ € T. Equivalently, there is a uniquely determined function
A — T:a — a for which (a,a) € p. If s(x,y) is a term operation of A and
p(y) = s(a,y) = s(ay,...,an,y) is a polynomial, then write p for the polynomial
s(@,y) ;= s(ai,...,am,y). Note that p is a pu-twin of p whose parameters lie in B.
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Suppose that Ny x --- x N, is a product of p-classes of A. Then
(2.2) Vi=B"N(Ny x---xN,)=(BNNy) x---x(BNN,y)

is a product of p|g-classes of B. Let P be the collection of subsets of A of the form
p(V) where V' is as in (2.2), p(y) is an n-ary polynomial of A, and n is arbitrary.
Order P by inclusion.

Suppose that W = p(V) € P where V is of the form described in (2.2) and
p(y) = s(a,y) for some term operation s(x,y). The polynomial p is a u-twin of p
whose parameters lie in B. Since p is abelian, p and p have the same kernel when
restricted to any (subset of a) product of u-classes of A, hence p and p have the same
kernel when restricted to V. This shows that |p(V)| = |[p(V)|. But V' C B™ and the
sequence of parameters of p lie in T'C B. Thus p(V) C s(B™, B") C B, since s is a
term operation and B is a subalgebra. It follows that [W| = [p(V)| = [p(V)| < |B|.
Since W € P was arbitrary, no chain in P can be longer than |B|. In particular, any
W € P is contained in set M € P that is maximal under inclusion.

The purpose of this paragraph is to show that the maximal elements of P are
subsets of B. The idea to do this comes from [5]. Let M € P be a maximal element.
By the definition of P, M = p(V') for some set V' of the form described in (2.2) and
some polynomial p(y) = s(a,y) = s(ay, ..., an,y) of A. Since B properly contains a
p-transversal, there is a pair (u,v) € u|g with u # v. Let N denote the p-class of u,
and let U = BN N denote the j|p-class of u. Since (ap,,@m) € p = Cg™(u,v) there is
a sequence a,, = wy, Wy, ..., Wkr1 = G, Where for each ¢ there is a unary polynomial
r; of A such that {w;, w11} = {ri(u),r;(v)}. The sets M; := s(ay,...,am—1,w;, V)
all belong to P since they are polynomial images of V. The sets M; all have the same
size, since for any ¢ and j the p-twins s(ay, ..., @p_1,w;,y) and s(ay, ..., Gp_1,w;,y)
have the same kernel when restricted to V. My = s(aq,...,apn_1,w,V)=p(V) =M
is maximal in P. Moreover, for each i the set M; U M;, is contained in a set in P,
namely the set s(ai,...,am-1,7:(U),V). That this belongs to P follows from the
facts that s(ai,...,am_1,7(v0),y) is a polynomial of A and U x V is of the form
described in (2.2). That it contains both M; and M, follows from the fact that
{wi, w1} = {ri(u),ri(v)} C r;(U). Altogether, it has been shown that M, ..., My
are sets in P of the same size, that M; = M is maximal under inclusion in P, and that
M;UM; .4 is contained in a subset of P for each i. By induction, My = My = --- = Mj.
Thus, if M = s(ay,...,a, V) is maximal in P, then changing a; to @; one by one
does not change M. But then M = s(ay,...,ax, V) C B, since a; € B for each i,
V C B", s is a term operation, and B is a subalgebra.

It was shown in the previous paragraph that the maximal elements of P are subsets
of B. But then all elements of P are subsets of B, since P is ordered by inclusion.
In particular, the minimal elements of P, which are the sets of the form {a}, a € A,
are subsets of B. This proves that A C B, so A = B. O
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It will be necessary to apply Theorem 2.1 in the situation where p is known to be
locally solvable rather than abelian, so recall from Chapter 7 of [3] the meaning of
this concept. A congruence « on an algebra A is solvable if there is a finite chain
of congruences 0 = ag < --- < «,, = « such that a;41/«; is an abelian congruence
of A/a;. A congruence o on A is locally solvable if its restriction to any finitely
generated subalgebra is solvable.

Lemma 2.2. If u s a minimal congruence on A, then u is abelian if and only if it
18 locally solvable.

Proof. 1t follows easily from the definitions that any abelian congruence is locally
solvable.

Arguing the contrapositive of the converse implication, suppose that p is a minimal
nonabelian congruence on A. There exist a term s(x,y) and elements such that

(2.3) s(a,c) = s(a,d) and  u=s(b,c) # s(b,d) =v,

where (a;,b;) € p and (¢j,d;) € p for all ¢ and j. Let B be a finitely generated
subalgebra of A containing the finite set

Y = {ai, bi}1<icm U {c), dj}1<j<n U {u, v},

and enough other elements so that any two distinct u-related elements of Y generate
the same congruence v of B. This is possible since p is a minimal congruence of A.
Using the commutator defined in Chapter 3 of [3], the implication in (2.3) implies that
(u,v) € [v,v]. But [v,v] <v = Cg®(u,v), so [v,v] = v. Since O < v = [v,v] C uls,
it follows that p restricts to a nonsolvable congruence on B, so p is not a locally
solvable congruence of A. O

An algebra is locally solvable if its largest congruence is. Congruences a and (3
are locally solvably related, writen o < 3, if (o V 3)/(a A 3) is a locally solvable
congruence on A/(a A ). It is shown in Theorem 7.7 of [3] that when A is locally
finite the relation < is a complete congruence on Con(A), and Con(A)/ < is meet
semidistributive. It follows from Exercise 7.14 (2) of [3] that when A is locally finite
and § < aAS the relation a ~ 8 in Con(A) is equivalent to a/§ ~ 3/ in Con(A/d).

Corollary 2.3. If A is a locally finite and locally solvable algebra, and Con(A) has
a finite maximal chain, then A is finite.

Proof. Suppose that 0 = oy < -+ < «, = 1 is a finite maximal chain in Con(A).
Since A is locally solvable, the relation ~ is the largest congruence on Con(A). Hence
a; a;41 for each i, forcing o1 1/c; to be a minimal locally solvable congruence of
A/a;. By Lemma 2.2, this congruence is abelian. It follows from Theorem 2.1 that
if a; 11 has finite index, then «; also has finite index. By descending the chain, the
least congruence 0 is of finite index, hence A is finite. O
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Definition 2.4. Let L be an algebraic lattice with largest element 1. Let €2 be the
smallest complete congruence on L such that L/ is meet semidistributive. The
cf-filter of L is the lattice filter generated by all elements x € L such that

(i) z =1 (mod ), and

(ii) the interval |x,1] has a finite maximal chain.
An element in the cf-filter of L is called a cf-element.

“Ct” stands for “cofinite”.

Theorem 2.5. If A is a locally finite algebra, then every cf-element of Con(A) is
a congruence of finite index.

Proof. As noted above, < is a complete congruence on L := Con(A) for which the
quotient L/ < is meet semidistributive. If  is the smallest congruence with these
properties, then  Q y = 2 ~ y. Therefore, the cf-filter is generated by elements
x € L for which £ 1 and [z, 1] has a finite maximal chain. For each such element,
A /x is a locally solvable algebra whose congruence lattice has a finite maximal chain.
According to Corollary 2.3, A/x is finite, hence x has finite index. Since the cf-filter
is generated by elements of finite index, it consists of elements of finite index. O

For certain lattices L, this theorem can be used to establish an upper bound on
the size of a locally finite algebra A for which L = Con(A).

Corollary 2.6. Let A be a locally finite algebra. If the least element of L := Con(A)
is a cf-element, then |A| < w. If the least element of L is the meet of < k cf-elements
of L, for some infinite r, then |A| < 2.

Proof. The first claim is a direct consequence of Theorem 2.5. For the second claim,
if the least element of Con(A) is the intersection of < k cf-elements, then from
Theorem 2.5 the algebra A is a subdirect product of < k finite algebras. If k is
infinite, this forces |A| < w" = 2%, O

In particular, this shows that if the least element of L is the meet of < k cf-
elements, and |L| > 22", then L is not representable as the congruence lattice of a
locally finite algebra (since a set of size < 2" supports < 22" equivalence relations).
More generally, if = € L is obove the meet of k cf-elements, and the interval [z, 1] has
cardinality greater than 22", then L is not representable as the congruence lattice of
a locally finite algebra.

Next is a nonrepresentability result whose statement does not refer explicitly to
cf-elements.

Corollary 2.7. Let L be an algebraic lattice. Suppose that

(i) L has a finite mazimal chain, and
(i) there is no complete homomorphism from L onto a 2-element chain.
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IfL = Con(A) for some locally finite algebra A, then A is finite. In particular, if L
is an infinite algebraic lattice satisfying (i) and (i1), then L is not isomorphic to the
congruence lattice of a locally finite algebra.

Proof. The proof of the corollary is accomplished by showing that if (i) and (ii) hold,
then the least element of L is a cf-element. Then the conclusion follows from the first
part of Corollary 2.6.

Let €2 be the least complete congruence on L such that L/ is meet semidistribu-
tive. If  is not the total binary relation on L, then L/ is a nontrivial, complete,
meet semidistributive lattice. Since L is algebraic, it is meet continuous. The natu-
ral map v: L — L/ is complete, so L/Q is also meet continuous. Since L/ has a
finite maximal chain, it has an atom «. The map ¢: L/Q — [0,a]: 2 — 2z A is a
complete lattice homomorphism onto a 2-element chain. (That ¢ preserves complete
joins uses the meet semidistributivity and meet continuity of L/€2.) But then pouv is
a complete homomorphism of L onto a 2-element chain, contrary to (ii). Therefore
(2 is the total binary relation on L.

If 0 and 1 are the least and largest elements of L, then 0 = 1 (mod ) by the
conclusion of the previous paragraph. Since [0, 1] = L has a finite maximal chain, 0
is a cf-element. O

Example 2.8. Let X be an infinite set of cardinality s, and let L = Eq(X) be the
lattice of all equivalence relations on X. If X = (X;0), then L = Con(X), so L
is representable as the congruence lattice of a locally finite algebra of size k. From
the known representations theorems, if L is representable in cardinality s, then it is
representable in all larger cardinalities. However, the known representation theorems
do not produce locally finite algebras. Here it will be shown that L has infinitely
many different representations as the congruence lattice of a locally finite algebra
of cardinality x, but no representation as the congruence lattice of a locally finite
algebra of any other cardinality.

The observation that L has infinitely many different representations in cardinality
Kk is based on the fact that, if L = Con(X), then there is a canonical isomorphism
from L to Con(X*)) for each k& where X is the k-th matrix power of X. The
cardinality of this algebra is | X*| = | X| = k. Such representations are “different” for
different values of k because maximal congruences on X have index 2*, and this
changes as k does.

Since the lattice of equivalence relations on a k-element set has k compact elements
when k > w, it is clear that L cannot be represented as a congruence lattice of any
algebra of cardinality less than . In this paragraph it will be shown that L cannot be
represented as a congruence lattice of a locally finite algebra in cardinalities greater k.
Indeed, suppose that ¢: L — Con(A) is an isomorphism, where A is a locally finite
algebra. It is easy to see that the elements § € L = Eq(X) that are of finite index are
cf-elements, and that the compact elements of L are the equivalence relations on X
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with finitely many nonsingleton classes, each one finite. Therefore, L has x compact
elements, and if o € L is compact, then « has a lattice theoretic complement that is
a cf-element. Using the isomorphism ¢, we obtain that Con(A) has k-many compact
elements, and each one has a lattice-theoretic complement that is a cf-element. Since
A is locally finite, the cf-elements have finite index. If a congruence a on A has a
cf-element 6 as a complement, and the index of # is m, then the classes of a have
size < m. Therefore, if a € A is fixed and Y := {a/a | @ € Con(A) compact}, then
Y consists of at most k-many finite subsets of A, so ||JY| < k. But if b € A, then
b€ a/Cg(a,b) and a/ Cg(a,b) € Y. Therefore A =JY has size at most .

Example 2.9. Let V be a vector space of dimension greater than 1. Every subspace
of finite codimension is a cf-element in the lattice Sub(V') of subspaces of V. If
Sub(V') = Con(A) for some locally finite algebra A, then it follows from Theorem 2.5
that V/U is finite when U has finite codimension. This forces V' to be a vector
space over a finite field, implying that V itself is locally finite. In other words, if
the congruence lattice of a vector space of dimension > 1 is representable as the
congruence lattice of a locally finite algebra, then the vector space itself must be
locally finite. Moreover, by arguments mirroring those of Example 2.8, the vector
space and the representing algebra must have the same size.

Example 2.10. Let G be a group, and let L = Sub(G) be the lattice of subgroups
of G. Then L is isomorphic to the congruence lattice of G' considered as a G-set over
itself. Such an algebra is never simultaneously locally finite and infinite, and it seems
to happen frequently that the lattice L is not representable as the congruence lattice
of any algebra that is simultaneously locally finite and infinite.

For example, if H is a nontrivial finite group and G = H x H, then Sub(G) contains
elements H x {1}, {1} x H, and the diagonal subgroup D = {(h,h) | h € H}. These
three subgroups pairwise join to G and pairwise meet to {1}. This is enough to show
that Sub(G) has no homomorphism onto the 2-element chain. By Corollary 2.7,
Sub(G) is not isomorphic to the congruence lattice of an infinite locally finite algebra.

For another example, it can be argued that if G is any nontrivial finite group
satisfying [G, G| = G, then Sub(G) has no homomorphism onto a 2-element chain.
(For if ¢: Sub(G) — 2, then the largest subgroup ¢ maps to zero can be shown to
be normal in G of prime power index. Thus, if [G,G] = G, then there is no such
normal subgroup, so there can be no such homomorphism.) By Corollary 2.7, in this
situation Sub(G) is not the congruence lattice of an infinite locally finite algebra.

Some subgroup lattices are not the congruence lattice of any locally finite algebra
at all. For example, let G = SO(3,R) be the special orthogonal group, viewed as the
rotation group of the unit sphere in R®. For a on the unit sphere, the stabilizer G,
consists of the rotations around the axis whose direction vector is a. If G, # Gy, then
GaNGp = {1} and G,V Gy, = G in L. This is enough to prove that the least complete
congruence €2 such that L/ is meet semidistributive is the total relation. Hence the
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cf-filter of L is generated by those H € L such that the interval [H, G| contains a
finite maximal chain. Since the interval [G,, G] contains only three elements, namely
G, G and the setwise stabilizer G'(a,_ay of {a, —a}, it follows that each G, is in the
cf-filter. Since Ga A Gy, = {1} when G, # Gy, it follows that {1} is a cf-element. By
Theorem 2.5, L is not the congruence lattice of a locally finite algebra.

Example 2.11. It has been shown that certain finite lattices are not representable
as the congruence lattice of an infinite locally finite algebra. Here is will be shown
that every finite distributive lattice is the congruence lattice of a locally finite algebra
of cardinality s for any infinite £ (and for infinitely many finite ).

Let D be a finite distributive lattice, and let B be a Boolean lattice of cardinality
 that contains D as a 0, 1-sublattice. For each z € B, let ¢(z) be the least ele-
ment of the sublattice D that lies above z. Then ¢: B — B is an increasing join
homomorphism whose fixed points are the elements of D. Let A = (B;V, A, c).

A is locally finite, since if C is a subalgebra generated by a finite subset X, C B,
then C is contained in the sublattice of B generated by the finite set Xq U D. Since
B is a locally finite lattice, C is finite.

Any congruence on A is a congruence on the Boolean lattice B, hence is uniquely
determined by the ideal I of elements congruent to 0. For the congruence to be
compatible with ¢ also, it is necessary to have ¢(I) C I, which means that I must
be a principal ideal generated by an element of D. Conversely, if I is a principal
ideal generated by an element d € D, then the lattice congruence corresponding to
Iis Cg®(0,d) = {(z,y) € B> | x Vd = y Vv d}. This is the kernel of the lattice
endomorphism z +— x V d of B, which is readily seen to be an endomorphism of A
also. Hence Cg®(0,d) is a congruence of A when d € D. Altogether this shows that
the congruences of A are those of the form CgB(O, d), d € D. Since D is a sublattice,
Cg(0,z) Vv Cg(0,y) = Cg(0,zVy) and Cg(0,z) A Cg(0,y) = Cg(0,z Ay). This proves
that ¢: D — Con(A): z — Cg(0, ) is an isomorphism.
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