
RESIDUALLY FINITE VARIETIES OF NONASSOCIATIVE
ALGEBRAS

KEITH A. KEARNES AND YOUNG JO KWAK

Abstract. We prove that if V is a residually finite variety of nonassociative al-

gebras over a finite field, and the enveloping algebra of each finite member of V is

finitely generated as a module over its center, then V is generated by a single finite

algebra.

1. Introduction

A variety V of algebraic structures has residual character κ if κ is the least cardinal

such that |S| < κ for every subdirectly irreducible ( = SI) member S ∈ V . Write

χV = κ to denote that V has residual character κ and write χV = ∞ if there is

no cardinal bound on the size of the SI’s in V . V is residually finite if χV ≤ ω, or

equivalently if all SI members of V are finite.

In [11], Olshanskii described all residually finite varieties of groups. His main result

can be split into two theorems:

Theorem I A residually finite variety of groups is generated by a single finite group.

Theorem II A finite group G generates a residually finite variety if and only if G is

an A-group (i.e. iff G has abelian Sylow subgroups).

Analogous theorems were proved in [12] for varieties of Lie algebras over finite fields

of characteristic ≥ 5 by Premet and Semenov. Namely, they showed that a residually
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finite variety of Lie algebras over a finite field of characteristic ≥ 5 is generated

by a single finite Lie algebra, and that a finite Lie algebra L over a finite field

of characteristic ≥ 5 generates a residually finite variety if and only if L is an A-

algebra (i.e., iff the nilpotent subalgebras of L are abelian). In this paper we prove a

theorem that has as corollaries the results of Olshanskii and of Premet and Semenov,

and moreover completes the results of Premet and Semenov by being applicable in

characteristics 2 and 3.

The focus of this paper is the proof of a generalization of Theorem I, so we discuss

the generalization of Theorem II now. McKenzie has proved that the problem of

determining which finite algebraic structures generate residually finite varieties is

undecidable in general (cf. [8, 9]), but, in separate collaborations with Freese and

Hobby, he has shown it to be decidable in certain restricted settings. For example,

if one combines the main result of [1] with Theorems 9.8 and 10.4 of [3] and with

the main result from [6], then one obtains the following decidability results: if B is

a finite algebraic structure and V is the variety it generates, then (1) it is decidable

whether there is a nontrivial lattice identity valid in the congruence lattices of all

members of V , and (2) if such an identity is satisfied, then it is decidable whether V

is residually finite. Of particular relevance to this paper is the fact that any finite

algebra with underlying group structure generates a variety whose members have

modular congruence lattices, so by (2) it is decidable whether such algebras generate

residually finite varieties. The decision procedure, due to Freese and McKenzie, can

be easily described. If V is a variety whose members have modular congruence lattices,

then there is an analogue of the group commutator defined on all congruence lattices

of algebras in the variety (cf. [2]). The Freese-McKenzie result is that if B ∈ V is

finite, then B generates a residually finite variety iff every subalgebra C ≤ B satisfies
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the commutator identity

(C1) α ∩ [β, β] = [α ∩ β, β].

Here the commutator is applied to congruences of the subalgebra C. Condition (C1)

implies that nilpotent congruences on C are abelian (as one may deduce by taking

α = [β, β]), hence if subalgebras of B satisfy (C1) then each subalgebra of B is

an A-algebra. The converse does not hold for general algebraic structures, or even

for nonassociative algebras over a field. For example, if we define a 3-dimensional

nonassociative algebra over a finite field by specifying the multiplication on basis

elements e, f and g to be

e f g

e 0 0 0

f 0 g e

g 0 e f

then this is an A-algebra that fails (C1), hence it is a finite A-algebra that fails to

generate a residually finite variety. (For a failure of (C1), let α be the congruence

associated to the ideal (e) and let β be the congruence associated to the ideal (e, f, g).

Then α∩[β, β] = α 6= 0 = [α∩β, β].) The general form of Theorem II should therefore

not be stated in terms of A-algebras, but rather in terms of (C1):

Theorem II’ ([1]) A finite algebraic structure B in a variety with modular congru-

ence lattices generates a residually finite variety if and only if the subalgebras of B

satisfy the commutator identity (C1).

Henceforth we concentrate only on an analogue of Theorem I. The algebras that

interest us will be called “generalized nonassociative algebras of finite type”. Namely



4 KEITH A. KEARNES AND YOUNG JO KWAK

A = 〈A; +,−, 0, F1, F2, . . .〉 will be a generalized nonassociative algebra if 〈A; +,−, 0〉

is a group (not necessarily commutative) and each additional operation Fi(x1, . . . , xn)

is multilinear in the sense that for each j and for any elements a1, . . . , an ∈ A the

polynomial Fi(a1, . . . , aj−1, x, aj+1, . . . , an) is an endomorphism of 〈A; +,−, 0〉. A

generalized nonassociative algebra has finite type if it is the expansion of a group

by finitely many multilinear operations. Thus, groups themselves are generalized

nonassociative algebras of finite type, as are ordinary nonassociative algebras over

finite fields. Certain other types of algebras, like modules over finitely generated

rings, may be considered to be generalized nonassociative algebras of finite type after

a change of language.

Our main theorem is that if V is a residually finite variety of generalized nonas-

sociative algebras of finite type, then V is generated by a single finite algebra iff

the enveloping ring of any finite algebra in V is a finitely generated module over its

center. The condition on the enveloping rings of finite algebras will be seen to hold

for varieties of groups, varieties of associative rings, and varieties of Lie algebras over

a finite field of any characteristic.

2. Preliminaries

A generalized nonassociative algebra that is a group with no additional operations

will be called a pure group. If A = 〈A; +,−, 0, F1, F2, . . .〉 is a generalized nonasso-

ciative algebra, then A◦ = 〈A; +,−, 0〉 is the underlying pure group.

Definition 2.1. If A is a generalized nonassociative algebra, then an ideal of A is a

subset U ⊆ A such that

(i) U is a normal subgroup of A◦, and
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(ii) if F is an additional multilinear operation of A and a1, . . . , an ∈ A, then

F (a1, . . . , an) ∈ U whenever ai ∈ U for at least one i.

The ideal {0} may be written 0.

Lemma 2.2. The map θ 7→ 0/θ that assigns to a congruence its 0-class is an or-

der preserving bijection from congruences to ideals. The ideals of A form complete

sublattice of the lattice of normal subgroups of A◦.

Proof. Routine. �

Next we turn to ideal generation.

Definition 2.3. If A is a generalized nonassociative algebra with additional multi-

linear operations F1, F2, . . ., then a basic translation is a polynomial of the form

T (i,j)
c (x) = Fi(c1, . . . , cj−1, x, cj+1, . . . , cn)

where c = (c1, . . . , cn) ∈ An and the superscripts on T
(i,j)
c indicate which operation

symbol and variable are involved. The type of a basic translation T
(i,j)
c is the symbol

T (i,j).

A k-translation is a composition of k basic translations. The identity polynomial

is taken to be the only 0-translation. A k-translate of a ∈ A is an element obtained

from a by applying a k-translation. A translation is a k-translation for some k, and

a translate is a k-translate for some k.

Note now for later use that in a variety of generalized nonassociative algebras of

finite type there are only finitely many types of basic translations.

Lemma 2.4. If Z ⊆ A, then the ideal of A that is generated by Z is the normal

subgroup of A◦ that is generated by the elements obtained from Z by translation.
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Proof. Let U be the ideal generated by Z and let V be the the normal subgroup of

A◦ that is generated by the elements obtained from Z by translation. Ideals have

been defined so that they are normal subgroups closed under translation, hence Z ⊆

V ⊆ U . Conversely, it follows from the multilinearity of the additional operations

that V is closed under translation, hence is an ideal. Thus U = V . �

Definition 2.5. If U, V ⊆ A are ideals of A, then their commutator is the least ideal

[U, V ] of A containing all elements of the form

(i) commutator elements of the underlying pure group, (−u) + (−v) + u + v, for

u ∈ U and v ∈ V .

(ii) Elements F (a1, . . . , an) for any multilinear additional operation F , provided

there exist i 6= j such that ai ∈ U and aj ∈ V .

Lemma 2.6. The commutator of Definition 2.5 is the translation of the the modular

commutator defined in [2] into the context of generalized nonassociative algebras and

the language of ideals.

Proof. Let θU denote the congruence on A whose classes are the cosets of the ideal

U . The lemma asserts that [θU , θV ] = θ[U,V ].

We establish the inclusion θ[U,V ] ⊆ [θU , θV ] first. If s(x, y) = (−x) + (−y) + x + y,

t(x, y) = F (c1, . . . , ci−1, x, ci+1, . . . , cj−1, y, cj+1, . . . , cn), u ∈ U and v ∈ V , then the

matrices s(0, 0) s(0, v)

s(u, 0) s(u, v)

 =

0 0

0 s(u, v)


and t(0, 0) t(0, v)

t(u, 0) t(u, v)

 =

0 0

0 t(u, v)


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suffice to show that the generators identified in Definition 2.5 (i) & (ii) are congruent

to zero modulo the commutator of congruences, so θ[U,V ] ⊆ [θU , θV ].

Now we prove the reverse inclusion. Our commutator of ideals U and V is an ideal

generated by all “products”, b(u, v), where b(x, y) = s(x, y) or t(x, y) is a binary

polynomial of a certain form, and u ∈ U, v ∈ V . This kind of definition is preserved

in passing to quotients in the sense that in A/[U, V ] the images of U and V have

trivial commutator. The commutator of congruences is preserved and reflected by

passing to quotients, so we only need to show that if [U, V ] = 0, then [θU , θV ] = 0.

For this we use the criterion of Exercise 6.7 of [2]. Assume that [U, V ] = 0 in A.

Then condition (i) of Definition 2.5 implies that the group commutator [U, V ] is zero

in A◦, while condition (ii) implies that F (c1, . . . , u, . . . , v, . . . , cn) = 0 whenever F

is an additional multilinear operation and u ∈ U, v ∈ V . Let A ×u A ×V A be the

subalgebra of A3 consisting of tuples (u + w,w, v + w) where u ∈ U, v ∈ V, w ∈ A.

The criterion we will use is that [θU , θV ] = 0 holds iff

(2.1) x− y + z : A×u A×V A → A : (u + w,w, v + w) 7→ u + v + w

is a homomorphism. The fact that the group commutator [U, V ] is zero in A◦ implies

that x− y + z respects the additive structure, so we only need to show that x− y + z

respects each multilinear operation F .

We shall need an identity that describes the expansion by multilinearity of F (x +

y) := F (x1 + y1, x2 + y2, . . . , xn + yn). Expanding on each place from left to right we
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get

F (x + y) = F (x1,x
′ + y′) + F (y1,x

′ + y′)

= (F (x1, x2,x
′′ + y′′) + F (x1, y2,x

′′ + y′′))

+ (F (y1, x2,x
′′ + y′′) + F (y1, y2,x

′′ + y′′))

= · · · .

After this expansion is completed, assign to each summand on the right the binary

number obtained by replacing each xi with 0 and each yj with 1. Thus, for example,

when n = 5, a summand of the form F (x1, y2, y3, x4, x5) will be assigned 01100.

Every binary number of length n will occur exactly once in this way, and since we

are expanding from left to right it is easy to see that all binary numbers occur in

lexicographic ordering. In particular, the first summand of the completed expansion

will be the one that is assigned 00 · · · 0, namely F (x) = F (x1, x2, . . . , xn), and the

last one will be the one that is assigned 11 · · · 1, namely F (y) = F (y1, y2, . . . , yn).

We write this expansion identity as

(2.2) F (x + y) =

(∑
lex

F (x/y)

)
+ F (y).

That is, we abbreviate the lexicographic sum of the first 2n − 1 terms and separate

out the last term.

Now we return to the problem of showing that (2.1) is a homomorphism. This

requires showing that

F (u + w)− F (w) + F (v + w) = F (u + v + w)
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whenever u ∈ Un,v ∈ V n. This is best approached by first subtracting F (w) from

the right of both sides:

(F (u + w)− F (w)) + (F (v + w)− F (w)) = (F (u + v + w)− F (w)).

Applying expansion identity (2.2) with y = w we reduce our problem to that of

establishing ∑
lex

F (u/w) +
∑
lex

F (v/w) =
∑
lex

F ((u + v)/w).

In the multilinear expansion of
∑

lex F ((u+v)/w) the terms that involve both ui and

vj are zero, because [U, V ] = 0, so this expansion is just
∑

lex(F (u/w) + F (v/w))

Elements of ideal U commute with elements of ideal V , since [U, V ] = 0, so we can

separate this sum into two sums while preserving the lex ordering to obtain

∑
lex

F ((u + v)/w) =
∑
lex

(F (u/w) + F (v/w)) =
∑
lex

F (u/w) +
∑
lex

F (v/w).

Thus, [U, V ] = 0 implies [θU , θV ] = 0, as desired. �

Lemma 2.7. If W, Z ⊆ A are subsets and U = 〈W 〉 and V = 〈Z〉 are the ideals they

generate, then [U, V ] = 0 iff

(i) every conjugate of a translate of an element of W commutes with every con-

jugate of a translate of an element of Z, and

(ii) for every w ∈ W, z ∈ Z, translations T1, T2, multilinear operation F , places

i 6= j, and elements c ∈ An it is the case that

F (c1, . . . , T1(w), . . . , T2(z), . . . cn) = 0

when T1(w) and T2(z) are substituted in places i and j.



10 KEITH A. KEARNES AND YOUNG JO KWAK

Proof. It follows from Definition 2.5 that [U, V ] = 0 iff elements of U commute with

elements of V and F (c1, . . . , u, . . . , v, . . . , cn) = 0 whenever u ∈ U and v ∈ V . By

Lemma 2.4, U is the subgroup of A◦ generated by the conjugates of translates of

elements of Z and V is the subgroup generated by the conjugates of translates of

elements of W . Thus, item (i) of this lemma is equivalent to the statement that

elements of U commute with elements of V . Since F is multilinear, item (ii) is

equivalent to the statement that F (c1, . . . , u, . . . , v, . . . , cn) = 0 whenever u ∈ U and

v ∈ V . �

3. Residually finite varieties

Our goal is to prove χV 6= ω for certain varieties of generalized nonassociative

algebras of finite type. The statement that χV 6= ω is the statement that if V is

residually finite (χV ≤ ω), then there is a finite bound on the size of the SI’s in V

(χV < ω). Because V has finite type, a finite bound on the size of the SI’s in V

implies that there are finitely many SI’s, all finite, hence the product of these SI’s

will be a single finite algebra that generates V .

It follows from the work of Freese and McKenzie in [1] that if χV 6= ∞, then all

algebras in V satisfy (C1), where thos commutator identity is expressed in terms

of the commutator of congruences. This commutator corresponds to the one we

introduced in Definition 2.5, according to Lemma 2.6, so we may express (C1) in

terms of ideals: For a generalized nonassociative algebra A, (C1) is the property that

whenever U, V ⊆ A are ideals, then U ∩ [V, V ] = [U ∩ V, V ]. If A is SI with smallest

nonzero ideal M (the monolith of A) and N is the annihilator of M , then (C1) forces

N to be abelian. For if [N, N ] > 0, then [N, N ] ≥ M , leading to the contradiction

M ∩ [N, N ] = M > 0 = [M, N ] ≥ [M ∩N, N ]. Thus, in this section, where we study
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residually finite varieties of generalized nonassociative algebras, any SI will have the

property that the annihilator of its monolith is abelian.

For the purpose of obtaining a contradiction we assume throughout this section

that V is a variety of generalized nonassociative algebras of finite type for which

χV = ω. Hence all SI’s in V are finite, but there is no finite bound on the their

cardinality. Let A1, A2, . . . be a representative list of the SI’s in V , let Mi be the

smallest nonzero ideal of Ai, and let Ni be the annihilator of Mi. The main task we

set for ourselves in this section is to prove that the indices [Ai : Ni] are bounded by

a finite number.

Lemma 3.1. There is a first-order formula ϕ(x, y) that is a universally quantified

conjunction of equations such that for all a, b ∈ A ∈ V it is the case that A |= ϕ(a, b)

iff [(a), (b)] = 0 (the commutator of principal ideals is zero).

Proof. Let us say that an element a ∈ A annihilates an element b ∈ A if every

conjugate of a commutes with every conjugate of b and if

(3.1) ∀c1, . . . ,∀cn(F (c1, . . . , a, . . . , b, . . . , cn) = 0)

whenever a and b are substituted into the ith and jth positions, some i 6= j, of an

operation F that is one of the multilinear additional operations of V . It follows from

Lemma 2.7 that [(a), (b)] = 0 in A iff every translate of a annihilates every translate

of b.

The property that x annihilates y may be expressed by a first-order formula α(x, y)

that is a conjunction of universally quantified equations. We may take α(x, y) to be
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the conjunction of

(3.2) ∀z1∀z2(((−z1)+x+z1)+((−z2)+y+z2)−((−z2)+y+z2)+((−z1)+x+z1) = 0)

with all equations of the form

(3.3) ∀z1, . . . ,∀zn(F (z1, . . . , x, . . . , y, . . . , zn) = 0)

where F ranges over all additional multilinear operations of V and x and y appear in

all pairs of distinct places. For later reference, α(x, y) = ∀z
∧

(Gi(x, y, z) = 0) where

Gi is a term of the type appearing on the left side of the atomic subformula in (3.2)

or (3.3).

It follows that there is a formula αp,q(x, y) that expresses the fact that every

p-translate of x annihilates every q-translate of y. This formula will also be a

conjunction of universally quantified equations. Namely, αp,q(x, y) may be con-

structed by forming the conjunction of all formulas α(T1(x), T2(y)) where T1(x) =

T
(e1,f1)
c1 ◦ · · · ◦ T

(ep,fp)
cp (x) and T2(x) = T

(g1,h1)
d1

◦ · · · ◦ T
(gq ,hq)
dq

(x), then universally quan-

tifying over the subscript c’s, and d’s used in the translations.

Finally let α≤p,≤q(x, y) be the conjunction of all αr,s(x, y) for r ≤ p and s ≤ q. This

formula is also a universally quantified conjunction of equations, and it expresses

the fact that every element obtained from x by a translation of length at most p

annihilates every element obtained from y by a translation of length at most q.

Claim 3.2. There is a positive integer ` such that whenever a, b ∈ A ∈ V it is the

case that if a annihilates every k-translate of b for every k ≤ `, then a annihilates

every translate of b.
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We assume that the claim is false, and construct an infinite SI in V from this

assumption, contradicting our global assumption in this section that χV = ω. Assume

therefore that for every ` ∈ ω there exist B` ∈ V and a`, b` ∈ B` that refute the

statement of the claim for this value of `. This means that a` annihilates every k-

translate of b for every k ≤ `, but a` does not annihilate some k-translate of b` for

some k > `.

We describe a tree that represents all the translation types. Begin with the alpha-

bet of symbols T = {T (i1,j1), . . . , T (iµ,jµ)} representing the finite set of basic trans-

lation types. Any string of length k in T ∗ can be taken to represent the type of a

k-translation; namely the empty string e represents the identity translation, a string

of length 1, T (i,j), represents the translations T
(i,j)
c (x) that have this type, a a string

of length 2, T (i1,j1)T (i2,j2), represents the 2-translations T
(i1,j1)
c1 ◦T

(i2,j2)
c2 (x), etc. Order

the elements of T ∗ by defining σ ≤ τ if σ is an initial segment of τ . The resulting

ordered set is a meet semilattice that is in fact a tree rooted at e. The fact that the

alphabet T is finite implies that the tree T ∗ has finite branching, i.e. each element

σ ∈ T ∗ has finitely many successors (which are those strings obtained by adding a

single symbol from T to the end of σ).

We will make use of several copies of the tree T ∗, say T ∗
1 , . . . , T ∗

m, one for every

conjunct of α(x, y) = ∀z
∧m

i=1(Gi(x, y, z) = 0). Call a string T (i1,j1) · · ·T (ih,jh) a bad

node of height h in T ∗
i if there exist a, b ∈ B ∈ V such that

(1) a annihilates every k-translate of b for k < h but

(2) there exist cj such that a does not annihilate the h-translate b′ := T
(i1,j1)
c1 ◦

· · · ◦ T
(ih,jh)
ch (b) because

(3) B |= ∃z(Gi(a, b′, z) 6= 0).
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These conditions are intended to record minimal failures of the annihilation relation.

Items (1) and (2) identify a minimal translate b′ of b that fails to be annihilated

by a, while item (3) indicates that a fails to annihilate b′ because the ith conjunct

(Gi(x, y, z) = 0) of α(x, y) fails to be satisfied by (x, y) = (a, b′) for some choice of

z. We record this information in the ith tree at the address indicated by the type of

the translation taking b to b′.

Our earlier assumption about the properties of a`, b` ∈ B` guarantee that for every

` there is a bad node of height h for some h ≥ ` in at least one of the T ∗
i ’s. Hence

there are bad nodes of arbitrarily large height in at least one of the trees. On the

other hand, if a, b ∈ B ∈ V witness that T (i1,j1) · · ·T (ih,jh) is a bad node of height

h in T ∗
i , because a does not annihilate b′ = T

(i1,j1)
c1 ◦ · · · ◦ T

(ih,jh)
ch (b) in the sense

that B |= ∃z(Gi(a, b′, z) 6= 0), then the elements a, T
(ih,jh)
ch (b) ∈ B witness that

T (i1,j1) · · ·T (ih−1,jh−1) is a bad node of height h − 1 in the same tree. Thus the bad

nodes in each tree form an order ideal in that tree.

Combining the information so far we obtain that at least one of the trees contains

an infinite order ideal of bad nodes. Kőnig’s Lemma guarantees that an infinite order

ideal in a rooted tree with finite branching contains an infinite branch. This means

that there is some tree T ∗
i and some infinite sequence σ = T (i1,j1)T (i2,j2)T (i3,j3) · · ·

such that every initial subsequence of σ is a bad node in T ∗
i . We use this information

to build our infinite SI.

Expand the language of V by adding additional constant symbols p, q, ri, si, t, i ∈ ω.

Let Σ denote a set of first-order sentences in this language which includes

(i) an equational basis for V ,

(ii) the sentences ru = T
(iu,ju)
su (ru+1) for each u ∈ ω,

(iii) α0,≤`(p, r`+1) for each ` ∈ ω,
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(iv) Gi(p, r0, t) = q, and

(v) q 6= 0.

Because of the sentences in (i), a model of Σ is an algebra S ∈ V with some elements

named by constants. Because of the sentences in (ii), the elements named by the r’s

are related by basic translations in the following way:

(3.4) · · ·
T

(i4,j4)
s4−→ r4

T
(i3,j3)
s3−→ r3

T
(i2,j2)
s2−→ r2

T
(i1,j1)
s1−→ r1

T
(i0,j0)
s0−→ r0.

(Here we emphasize that the uth translation T
(iu,ju)
su (x) is of type T (iu,ju), which is

the uth symbol in the string σ obtained above using Kőnig’s Lemma, so (3.4) reflects

the structure of the sequence σ.) The sentences in (iii) guarantee that the element

named by the constant p annihilates every k-translate of the element named by r` if

k < `. But the sentences in (iv) and (v) guarantee that the element named by p does

not annihilate the element named by r0 because the ith conjunct (Gi(x, y, z) = 0) of

α(x, y) is not satisfied when (x, y, z) = (p, r0, t). (Again, the conjunct in question is

the one obtained above using Kőnig’s Lemma.)

A model of Σ must exist, since Σ is finitely satisfiable, a fact that we now demon-

strate. For any ` ≥ 0 the `th initial segment of σ, T (i1,j1)T (i2,j2) . . . T (i`,j`), is a bad

node in some tree T ∗
i . This means that there exist a, b ∈ B ∈ V such that a annihi-

lates every k-translate of b for k < `, but there exist ci such that a does not annihilate

the `-translate b′ := T
(i1,j1)
c1 ◦ · · · ◦ T

(i`,j`)
c` (b) because B |= (Gi(a, b′,d) 6= 0) for some

d. Interpret the new constant symbols p, q, ri, si, t in B so that p = a, t = d and, for

0 ≤ u ≤ `, su = cu and r`−u = T
(i1,j1)
c1 ◦ · · · ◦ T

(iu,ju)
cu (b). Interpret ru, su arbitrarily for

u > `. Finally, if b′ = T
(i1,j1)
c1 ◦ · · · ◦T

(i`,j`)
c` (b) is the element named by r0, let the sym-

bol q name the element Gi(a, b′,d). The properties that made T (i1,j1)T (i2,j2) . . . T (i`,j`)
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a bad node in tree T ∗
i guarantee that B expanded by the extra constants satisfy all

sentences in Σ of types (i), (iii), (iv), (v), and also satisfies the first ` sentences of

type (ii). Thus, any finite subset of the sentenecs in Σ can be satisfied by some such

B for ` chosen large enough.

The Compactness Theorem guarantees that Σ has a model, say K. By factoring

K by an ideal maximal for not containing the element denoted q we obtain an SI

model of Σ. (The reason this factor is still a model of Σ is that all the universally

quantified conjunctions of equations in Σ are preserved in passing to quotients, while

we have have arranged that the one inequation q 6= 0 was preserved by factoring by

an ideal not containing q.) Thus we may assume that K is an SI member of V . K

must be infinite, since the elements denoted r0, r1, . . . must be distinct. (If u < v,

then Σ implies that q is an u-translate of ru that is not annihilated by p. But since

α0,≤v−1(p, rv) holds, p must annihilate all k-translates of rv for k ≤ v − 1, hence p

annihilates all u-translates of rv. This implies that ru 6= rv for u < v.)

The existence of the infinite SI K ∈ V is contrary to our assumption that V has

residual character ω. This contradiction resulted from the assumption that Claim 3.2

was false, so that claim is true. Recall that this is the claim that associated to V a

positive integer ` such that whenever a, b ∈ A ∈ V it is the case that if a annihilates

every k-translate of b for every k ≤ `, then a annihilates every translate of b.

Claim 3.3. The formula α≤`,≤`(x, y) defines the annihilation relation between prin-

cipal ideals of algebras in V. (If a, b ∈ A ∈ V, then A |= α≤`,≤`(a, b) iff [(a), (b)] = 0.)

If a, b ∈ A ∈ V and [(a), (b)] = 0, then every translate of a annihilates every

translate of b, so A |= α≤`,≤`(a, b). Conversely, if A |= α≤`,≤`(a, b) and r, s ≤ `,

then every r-translate of a annihilates every s-translate of b. Hence if a′ is any such
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r-translate of a, then it follows from Claim 3.2 that a′ annihilates every translate of

b. Turning the situation around, any translate b′ of b annihilates every r translate of

a whenever r ≤ `. Another application of Claim 3.2 shows that every translate of b

annihilates every translate of a, and therefore [(a), (b)] = 0.

We may take ϕ(x, y) = α≤`,≤`(x, y), since this formula is a universally quantified

conjunction of equations. �

Lemma 3.4. The indices [Ai : Ni] are bounded by a finite number.

Proof. Recall that A1, A2, . . . is a representative list of the SI’s in V , that they are

finite but there is no finite bound on their size, that Mi is the least nonzero ideal in

Ai and Ni is the largest ideal in Ai such that [Ni, Mi] = 0.

Assume that this lemma is false, so that there is no finite bound on the indices

[Ai, Ni]. After thinning out the sequence if necessary, assume that in fact [Ai, Ni] ≥ i

for all i. We will find that this assumption contradicts the residual finiteness of V .

Claim 3.5. If the formula ϕ(x, y) from Lemma 3.1 is ∀z
∧m

i=1(Hi(x, y, z) = 0) and

a, b ∈ B ∈ V, then Hi(a, b, c) ∈ (a) and Hi(a, b, c) ∈ (b) for every c and i.

In the quotient B/[(a), (b)] the image ideals (a) and (b) annihilate one another, so

B/[(a), (b)] |= ∀z
∧m

i=1(Hi(a, b, z) = 0). This implies that Hi(a, b, c) = 0 for every c

and every i, hence back in B we have Hi(a, b, c) ∈ [(a), (b)] for every c and i. Since

[(a), (b)] ⊆ (a) ∩ (b), this implies that Hi(a, b, c) ∈ (a) and Hi(a, b, c) ∈ (b) for every

c and i.

Claim 3.5 identifies some particular ways to generate elements of a principal ideal

(a), namely any element of the form Hi(a, b, c) or Hi(b, a, c) is such an element. We
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introduce the notation {a, b} −→ {g, h} to represent that g − h belongs to the ideal

(a− b) in this way. Specifically, {a, b} −→ {g, h} will mean that

(3.5) ∃e ∃c ({g, h} = {0, Hi(a− b, e, f)} or {g, h} = {0, Hi(e, a− b, f)}).

It is evident from the form of (3.5) that {a, b} −→ {g, h} is a first-order definable 4-

ary relation. It follows from Claim 3.5 that g−h ∈ (a−b) whenever {a, b} −→ {g, h}.

Claim 3.6. If a, b, c, d ∈ B ∈ V and if [(a−b), (c−d)] 6= 0, then there exists g, h ∈ B

with g 6= h such that {a, b} −→ {g, h} and {c, d} −→ {g, h}.

If [(a−b), (c−d)] 6= 0, then there exists f and i such that Hi(a−b, c−d, f) 6= 0. Thus,

with {g, h} = {0, Hi(a− b, c− d, f)} we have {a, b} −→ {g, h} and {c, d} −→ {g, h}.

This proves the claim.

Extend the arrow notation in the following ways. Write {a, b} −→k {g, h} to mean

that there exists a chain

{a, b} = {a1, b1} −→ {a2, b2} −→ · · · −→ {a`, b`} = {g, h}

for some ` ≤ k. The relation {a, b} −→k {g, h} is also definable by a formula, and if

the relation holds then g−h ∈ (a− b). For a set S = {s1, . . . , sk} write S =⇒k {g, h}

to indicate that {si, sj} −→k {g, h} for each i 6= j.

Claim 3.7. Let A ∈ V be one of the SI algebras Ai, let M = Mi and N = Ni.

Suppose that {a, b} ⊆ M is a 2-element subset and S ⊆ A consists of k elements

that are pairwise incongruent modulo N . There exists a 2-element subset {g, h} ⊆ M

such that {a, b} −→(k
2)
{g, h} and S =⇒(k

2)
{g, h}.
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Let ` =
(

k
2

)
and let T1, . . . , T` be an enumeration of the 2-element subsets of S

where T1 = {s1, s2}. Since a − b ∈ M − {0}, s1 − s2 /∈ N , and N is the annihilator

of M it follows that [(a − b), (s1 − s2)] 6= 0. From Claim 3.6 there is a 2-element

set {a2, b2} such that {a, b} −→ {a2, b2} and T1 −→ {a2, b2}. It follows from the

definition of the arrow relation that one of the elements of {a2, b2} is zero while it

follows from Claim 3.5 that a2 − b2 ∈ (a − b) = M . Hence {a2, b2} is another 2-

element subset of M . We can repeat the argument with {a2, b2} and T2 replacing

{a, b} and T1 to obtain a new doubleton {a3, b3} ⊆ M such that {a2, b2} −→ {a3, b3}

and T2 −→ {a3, b3}. Continuing to the end we get

{a, b} - {a2, b2} - {a3, b3} - · · · - {a`+1, b`+1} = {g, h}

T1

?

T2

?

T`

?

Each of the doubletons {a, b}, T1, . . . , T` is related to {g, h} by an −→-path of length

at most `, hence by −→`. This proves the claim.

Claim 3.8. The algebra Ak contains subsets Si ⊆ Ak and doubletons {ai, bi} ⊆ M for

1 ≤ i ≤ k such that |Si| = i, {ai+1, bi+1} −→(i+1
2 ) {ai, bi} and Si+1 =⇒(i+1

2 ) {ai, bi}

for 1 ≤ i < k.

Start by choosing Sk to be a set of k elements that are pairwise incongruent modulo

Nk. This is possible by our assumption that [Ak : Nk] ≥ k. Next choose an arbitrary

doubleton {ak, bk} ⊆ Mk. Use Claim 3.7 to find a doubleton {ak−1, bk−1} ⊆ Mk

such that {ak, bk} −→(k
2)
{ak−1, bk−1} and Sk =⇒(k

2)
{ak−1, bk−1}. To continue, let

Sk−1 ⊆ Sk be a subset of size k − 1, and repeat the steps just described with Sk−1
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the doubleton {ak−1, bk−1} to produce a new doubleton {ak−2, bk−2}. Continuing to

the end we get

{ak, bk} →(k
2)
{ak−1, bk−1} →(k−1

2 ) {ak−2, bk−2} →(k−2
2 ) · · ·→(2

2)
{a1, b1}

Sk

⇓(k
2)

Sk−1

⇓(k−1
2 )

S2

⇓(2
2)

This proves the claim.

Claim 3.9. There is some algebra A ∈ V that contains subsets Si ⊆ A and doubletons

{ai, bi} for all positive i ∈ ω such that |Si| = i, {ai+1, bi+1} −→(i+1
2 ) {ai, bi} and

Si+1 =⇒(i+1
2 ) {ai, bi} for all i.

This claim asserts that A has elements related as in

· · · →(5
2)
{a4, b4} →(4

2)
{a3, b3} →(3

2)
{a2, b2} →(2

2)
{a1, b1}

S5

⇓(5
2)

S4

⇓(4
2)

S3

⇓(3
2)

S2

⇓(2
2)

where |Si| = i for all i. This follows from the Compactness Theorem using the facts

that all arrow relations are describable by formulas and that every finite fragment

of this configuration of elements is realizable in some algebra in V , as we proved in

Claim 3.8.

Now we complete the proof of the lemma. Claim 3.9 guarantees that V contains

an algebra A that has subsets Si ⊆ A and doubletons {ai, bi} for all positive i ∈ ω

such that |Si| = i, {ai+1, bi+1} −→(i+1
2 ) {ai, bi} and Si+1 =⇒(i+1

2 ) {ai, bi} for all i.

As V is a residually finite variety and a1 6= b1, there must exist a homomorphism

h : A → B onto a finite algebra B such that a1 − b1 /∈ ker(h). If k > |B|, then the

restriction of h to Sk cannot be 1-1, since |Sk| = k > |B| ≥ |h(Sk)|. Hence there exist
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si, sj ∈ Sk such that si − sj ∈ ker(h). There is an arrow path from Sk to {a1, b1},

hence from {si, sj} to {a1, b1}, so it follows from Claim 3.6 and the definition of

arrows that a1 − b1 ∈ (si − sj). But now we have the contradictory conclusions that

a1−b1 ∈ (si−sj), (si−sj) ⊆ ker(h), and a1−b1 /∈ ker(h). This shows that our initial

assumption that the indices [Ai : Ni] have no finite bound is false, so the lemma is

proved. �

We now have that if V is a variety of generalized nonassociative algebras of finite

type and χV = ω, then there is a finite number ` that bounds the index of the

annihilator of the monolith in every SI of V . If this bound ` is equal to 1, then

the annihilator of the monolith of any SI Ai is Ai itself, so by (C1) the algebra Ai

is abelian. For [Ai, Ai] = 0 to hold, the underlying additive group of Ai must be

commutative and all additional multilinear operations of at least 2 variables must be

constant zero operations. There is no restriction on the additional unary multilinear

operations other than they be linear, so every SI is an abelian group equipped with

finitely many unary endomorphisms. This makes V is equivalent to a variety of

modules over a finitely generated ring.

We have not fully reduced to the case where V is equivalent to a variety of modules

over a finitely generated ring, since we do not know that ` = 1, but it is clear now

that the module case is an important special case of the problem we are investigating.

4. Residually finite varieties of modules

The main goal of this section is to prove that if R is a finitely generated ring that

is a finitely generated module over its center and V is some variety of R-modules,

then χV 6= ω.
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Definition 4.1. A ring R is minimal if R is finitely generated, infinite, and every

proper homomorphic image of R is finite.

Lemma 4.2. If R is a finitely generated infinite ring and I �R is an ideal of infinite

index, then I can be enlarged to an ideal I ′ such that R/I ′ is minimal.

Proof. Recall that a homomorphism from a finitely generated algebraic structure onto

a finitely presentable algebraic structure has finitely generated kernel. Applying this

to the natural map R → R/K where K � R is an ideal of finite index, and using

the fact that a finite algebraic structure in a finite language is finitely presentable,

one obtains that K is a finitely generated ideal. In summary, ideals of finite index in

finitely generated rings are finitely generated. Thus we may apply Zorn’s Lemma to

enlarge any ideal I of infinite index to an ideal I ′ that is maximal among ideals of

infinite index. R/I ′ is minimal by the choice of I ′ coupled with the fact that quotients

of finitely generated rings are finitely generated. �

Corollary 4.3. If R is a finitely generated ring and V is any variety of R-modules

for which χV = ω, then R has a quotient R = R/I ′ that is minimal and has the

property that the variety U of all R-modules satisfies χU = ω.

Proof. Note that we are not assuming that V is the variety of all R-modules, but

rather is a subvariety. Hence the annihilator, Ann(V), may be nonzero. (Ann(V) is,

by definition, the largest ideal of R that annihilates all members of V). Because the

map from varieties of R-modules to ideals of R that assigns to a variety its annihilator

is a bijection, V is definitionally equivalent to the variety of all R/I-modules where

I = Ann(V). If R/I were finite, then it would follow from [5] that χV ≤ |R/I| < ω

contrary to our assumption χV = ω. Therefore, by Lemma 4.2 there is an ideal I ′ ⊇ I

such that R := R/I ′ is minimal.
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Because R is isomorphic to a quotient of R/I, the variety of all R-modules, U , is

definitionally equivalent to a subvariety of V , hence χU ≤ χV = ω. To show that

χU = ω, assume instead that U contains only finitely many isomorphism types of

SI’s, S1, . . . , Sn. Since this is a representative list of SI’s, R acts faithfully on the

product
∏

Si, which is a finite module. This can only happen if R is finite, which is

not the case since R is minimal. Thus χV = ω. �

Now we know that if R is a finitely generated ring for which some variety of R-

modules has residual character ω, then R has a minimal quotient R for which the

variety of all R-modules has residual character ω. Let us examine the structure of

such quotient rings.

Theorem 4.4. Let R be a minimal ring such that the variety of all R-modules has

residual character ω.

(a) R is a prime ring (i.e., if I, K � R and IK = 0, then I = 0 or K = 0).

(b) The center of R is a finite field.

Proof. To prove (a), assume that I and K are nonzero ideals of R whose product is

zero. Since R is minimal, I and K have finite index in R, therefore the intersection

J := I ∩ K is an ideal of finite index for which J2 ⊆ IK = 0. This shows that

the radical of R has finite index, and consequently the isomorphisms types of simple

R-modules are the same (up to definitional equivalence) as the isomorphism types of

simple modules over the finite ring R/rad(R). Since finite rings have finitely many

isomorphism types of simple modules, all of which are finite, the same is true of the

simple R-modules. Let T1, . . . , Tm be a representative set of simple R-modules.

The fact that the variety of all R-modules has residual character ω means that all

SI R-modules are finite, but there is no finite bound on their size. Thus, there exists
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a sequence of SI R-modules, S1, S2, . . . whose sizes increase without bound. Each SI

has a smallest nonzero submodule, which is simple, hence is isomorphic to one of the

Ti’s. Since there are only finitely many Ti’s, we may thin out the sequence S1, S2, . . .

and henceforth assume that this is an infinite sequence of SI’s whose smallest nonzero

submodule is equal to a fixed finite simple R-module T .

Let T̂ be the injective hull of T . The inclusion ι : T → T̂ may be lifted to any Si:

Si

ι

&&M
M

M
M

M
M

M

T
?�

OO

� � ι
// T̂

The kernel of the lifted map, ι, is trivial, since it restricts trivially to T . Thus every

Si is embeddable in T̂ . Since the Si’s increase in size without finite bound, T̂ is

infinite. Since T is simple, and T̂ is an essential extension of T , T̂ is an infinite SI

R-module, contradicting the assumption that variety of all R-modules has residual

character ω. This concludes the proof that R is prime.

Next, as a first step toward proving (b), we argue that that the center of R is a

field. Choose a nonzero element t ∈ Z(R). Consider the R-module M presented by

generators vi, i ∈ ω, and relations tv0 = 0, tvi+1 = vi, i ∈ ω. If v0 6= 0 in this module,

then let N ≤ M be a submodule that is maximal for v0 /∈ N . Then M/N is SI with

smallest nonzero submodule 〈v0〉. Moreover, all elements v̄i are distinct in this SI,

since if i < j, then tj v̄i = 0 and tj v̄j = v̄0 6= 0, forcing v̄i 6= v̄j. This proves that M/N

is an infinite SI R-module when v0 6= 0 in M , contrary to our assumption that the

variety of all R-modules has residual character ω.

Hence it must be that v0 = 0 in M . In this case, the set of sentences {tvi+1 =

vi}∪{tv0 = 0}∪{v0 6= 0} together with the axioms of R-modules is inconsistent. By
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the Compactness Theorem there is a finite inconsistent subset, which after a possible

enlargment is:

(4.1) {tvi+1 = vi, i < p} ∪ {tv0 = 0} ∪ {v0 6= 0}

together with the axioms for R-modules. If we let v = vp, then vi = tp−iv, tpv = v0,

and the inconsistency of these sentences expresses that (tp+1v = 0) ⇒ (tpv = 0)

holds in every R-module. Apply this implication to the module R/(tp+1). If v = 1̄,

then tp+1v = 0. The quasi-identity forces tpv = 0, or tp · 1 ∈ (tp+1) in R. This

means that there is some s ∈ R such that tp = stp+1, or (1 − st)tp = 0. Hence

the ideals (1 − st) and (tp) = Rtp = (t)p have product equal to zero (since t is in

the center). Since we have established in (a) that R is prime, either (1 − st) = 0

or (t) = 0, so either 1 − st = 0 or t = 0. The former must hold, since we chose t

to be nonzero, so st = 1 in R. Necessarily s ∈ Z(R), since for any r ∈ R we have

sr = sr1 = sr(st) = (st)rs = rs, and this proves that nonzero elements of Z(R) are

invertible in Z(R).

We conclude the proof of (b) by arguing that the subfield Z(R) is finite. Since

every nonzero R-module is a Z(R)-vector space via restriction of scalars, and R must

have nonzero finite modules if its variety of modules has residual character ω, the

field Z(R) must be finite. �

Corollary 4.5. If R is a finitely generated ring that is a finitely generated module

over its center, then no variety of R-modules has residual character ω. Hence any

residually finite variety of R-modules is generated by a single finite module.

Proof. Suppose that R is a finitely generated ring that is a finitely generated module

over its center, and there is a variety of R-modules satisfying χV = ω. Then according
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to Corollary 4.3, some quotient R of R is minimal and the variety of all R-modules

has residual character ω. R must also be a finitely generated module over its center.

By Theorem 4.4 (b), the center of R is a finite field, so in fact R must be finite. This

contradicts the fact that R is minimal.

To prove the last claim of the corollary, observe that the first claim shows that

if V is a residually finite variety of R-modules, then V has a finite bound on the

cardinality of its SI members. Since R is finitely generated, this implies that V has

only finitely many SI modules, all finite. Such varieties are generated by a single

finite member, as we have noted earlier. �

5. Enveloping rings

Exact sequences 0 → U
α→ A

β→ Q → 0 make sense for generalized nonassociative

algebras. In this section we only consider the case where α is inclusion, so that U is an

ideal of A. If U is abelian, it can be thought of as a “Q-module”, as we now explain.

For each q ∈ Q let q̂ ∈ β−1(q) be a fixed element of the preimage. Let γq(x) = q̂+x−q̂

denote conjugation by q̂ considered as a polynomial function restricted to U . The

subscript here is q rather than q̂ since the function of conjugation by an element of

β−1(q) on U is independent of the choice of the element when U is abelian. To see

this, suppose that q̂, q̂ + u ∈ β−1(q). Then for x ∈ U we have

(q̂ + u) + x− (q̂ + u) = q̂ + (u + x− u)− q̂ = q̂ + x− q̂.

For each additional multilinear operation Fi and each tuple q ∈ Qn consider the

translation T
(i,j)
q (x) = Fi(q̂1, . . . , q̂j−1, x, q̂j+1, . . . , q̂n) as a polynomial function re-

stricted to U . Our notation here is slightly in conflict with earlier use, because

we are placing q in the subscript instead of the proper tuple q̂. But again this
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function does not depend on the choices of preimages, and our use of q in place

of q̂ is intended to indicate that. To see why the function does not depend on

choice of preimage when U is abelian, suppose that Fi(q̂1, q̂2, . . . , q̂j−1, x, q̂j+1, . . . , q̂n)

and Fi(q̂1 + u, q̂2, . . . , q̂j−1, x, q̂j+1, . . . , q̂n) agree on U . The difference is the function

Fi(u, q̂2, . . . , q̂j−1, x, q̂j+1, . . . , q̂n), which is zero on U when [U,U ] = 0. (We are using

Definition 2.5 (ii).)

The functions of the form γq(x) and T
(i,j)
q (x) are endomorphisms of the abelian

group U◦ = 〈U ; +,−, 0〉. The collection of these functions generates a subring RQ,U ≤

End(U◦) of the (unital) additive endomorphism ring of U◦. The significance of this

unital ring is indicated by the following lemma.

Lemma 5.1. If 0 → U → A → Q → 0 is exact and [U,U ] = 0, then a function

P : Un → U is the restriction from A of an algebra polynomial iff P is an RQ,U -module

polynomial.

Proof. Since translations and conjugations are algebra polynomials, any function on

U of the form M(x1, . . . , xn)+a for some RQ,U -module polynomial M(x1, . . . , xn) and

some element a ∈ A is the restriction of an algebra polynomial. We prove conversely

that if P is any algebra polynomial, then restricting the domain of P to Un yields a

function P : Un → A that agrees with a function of the form M(x1, . . . , xn) + a for

some RQ,U -module polynomial M(x1, . . . , xn) and some element a ∈ A.

The proof is by induction. Certainly any variable or constant has the form M(x)+a.

Now suppose that Pi(xi, . . . , xn), 1 ≤ i ≤ m, are n-ary algebra polynomials that agree

with Mi(x1, . . . , xn) + ai on Un. For each i, let q̂i be the unique hatted element that

is congruent to ai modulo U . Then
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• −P1 agrees with −(M1 + a1) = −a1 − M1 = (−a1 + (−M1) + a1) − a1 =

(−q̂1 + (−M1) + q̂1) − a1 = γ−q1(−M1) − a1 on Un. Note that γ−q1(−M1) is

a module polynomial and −a1 ∈ A is a constant.

• P1+P2 agrees with (M1+a1)+(M2+a2) = (M1+(a1+M2−a1))+(a1+a2) =

(M1+γq1◦M2)+(a1+a2) on Un. Note that M1+γq1◦M2 is a module polynomial

and a1 + a2 ∈ A is a constant.

• F (P1, . . . , Pm) agrees with F (M1 + a1, . . . ,Mm + am) on Un. We may expand

this using identity (2.2) to obtain

F (M + a) =

(∑
lex

F (M/a)

)
+ F (a).

Since F (a) ∈ A is a constant, it suffices to show that the restriction of∑
lex F (M/a) to Un is a module polynomial. If one substitutes values from

U for the variables of
∑

lex F (M/a), each Mi assumes a value in U , so if in

some summand F (M/a) at least two places are occupied by M ’s, then the

fact that[U,U ] = 0 implies that the summand assumes the value 0. It is part

of the notation that at least one place in each summand F (M/a) is occu-

pied by some M . Hence the restriction of
∑

lex F (M/a) to Un agrees with∑m
i=1 F (a1, . . . , ai−1, Mi, ai+1, . . . , an). If F = Fr, then on Un we have

∑
lex F (M/a) =

∑m
i=1 F (a1, . . . , ai−1, Mi, ai+1, . . . , am)

=
∑m

i=1 Fr(q̂1, . . . , q̂i−1, Mi, q̂i+1, . . . , q̂m)

=
∑m

i=1 T
(r,i)
q ◦Mi,

which is a module polynomial.
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To complete the proof, observe (by substituting 0 for all variables) that a function

of the form M(x1, . . . , xn) + a maps Un into U iff a ∈ U iff M(x1, . . . , xn) + a is a

polynomial of the RQ,U -module U . �

The enveloping ring of Q will be a ring that encodes all rings RQ,U as U varies. It

is defined relative to some variety containing Q, and is a specialization of the kind of

ring introduced in Chapter 9 of [2].

Definition 5.2. Let V be a variety of generalized nonassociative algebras. If Q ∈ V ,

then the enveloping ring of Q (relative to V) is the ring RQ (or RV
Q) presented by

〈G | R〉 where the generators are the symbols γq and T
(i,j)
q and the relations are those

satisfied by all rings RQ,U arising from exact sequences 0 → U → A → Q → 0 with

A ∈ V and [U,U ] = 0.

If Q ∈ V ⊆ W , where V and W are varieties of generalized nonassociative algebras,

then RV
Q has the same set of generators as RW

Q but more relations, hence is a quotient

ring. It may be difficult to know exactly what ring RV
Q is, but is sometimes easy to

identify rings that map onto RV
Q by identifying rings presented by the same generators

and a subset of the most obvious relations.

Example 5.3. (The enveloping ring of a group) Let W be the variety of pure groups

and let Q ∈ W be a member. Since there are no additional multilinear operations,

the enveloping ring of R is generated by symbols {γq | q ∈ Q}. If q + r = s in Q,

then the relation

(5.1) γq ◦ γr = γs,
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which records the group operation, holds in any RQ,U , hence is among the defining

relations of RQ. The presentation whose generators are {γq | q ∈ Q} and whose

relations are those in (5.1) is the standard presentation of the integral group ring

Z[Q]. Hence RW
Q is a homomorphic image of Z[Q]. But in fact it is an isomorphic

image, since we can construct an exact sequence 0 → U → A → Q → 0 with A ∈ W

and [U,U ] = 0 showing that no other relations hold. For this, take U = 〈Z[Q]; +,−, 0〉

to be the additive group of Z[Q], let Q act on U by left multiplication, then form the

corresponding semidirect product A = U o Q. It is clear that U is an abelian ideal

of A, and that the ring generated by the functions of the form γq acting on U (i.e.,

the left multiplications by elements of Q) generate a ring isomorphic to Z[Q].

On the other hand, suppose that A ⊆ V is the subvariety of abelian groups and

Q ∈ A. While the enveloping ring of Q relative to V is Z[Q], the enveloping ring of

Q relative to A is just Z. This is because the enveloping ring is generated by the

same elements, but in an abelian group each conjugation function γq ∈ RQ,U is the

identity function, so among the relations defining RQ are the relations saying that

all generators equal the identity. This much shows that RQ is a quotient of Z, but

consideration of the sequence 0 → Z → Z×Q → Q → 0 shows that RQ
∼= Z.

Example 5.4. (The enveloping ring of a nonunital associative ring) A nonuni-

tal associative ring is an abelian group expanded by a single bilinear operation

F1(x, y) = xy that is associative. If V is the variety of all nonunital associative

rings, 0 → U → A → Q → 0 is exact with A ∈ V , [U,U ] = 0, and Q finite, then

the ring RQ,U is generated by the restrictions to U of the conjugations γq, and the

left and right multiplications T
(1,1)
c (x) = cx and T

(1,2)
c (x) = xc. It is easily seen
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that, whatever ring A is, these functions satisfy relations expressing that all conju-

gations equal the identity function (since the additive group of a ring is abelian),

all left multiplications commute with all right multiplications (since multiplication

is associative), the left multiplications and identity function generate a subring of

RQ,U that is a homomorphic image of Q1 (the universal unital ring of Q of the same

characteristic), and the right multiplications comprise a subring of RQ,U that is a

homomorphic image of (Q1)op. This is enough to deduce that for any choice of exact

sequence ending in Q with abelian kernel the ring RQ,U is a homomorphic image of

Q1⊗Z (Q1)op. Since the relations we have identified are independent of U , RQ is itself

a homomorphic image of Q1 ⊗Z (Q1)op. This is all we shall need to know about RQ

for later application.

Example 5.5. (The enveloping ring of a Lie algebra) A Lie algebra over a field k

is an abelian group expanded by a family of unary endomorphisms Fr(x), r ∈ k,

and a single bilinear operation F (x, y) = [x, y], such that a number of identities

are satisfied. These identities state that the binary operation F is alternating and

satisfies the Jacobi identity, and also that it is bilinear with respect to the unary

operations: F (Fr(x) + Fs(y), z) = Fr(F (x, z)) + Fs(F (y, z)). If k is a finite field

the variety V of Lie algebras over k has finite type. (Note that a nontrivial variety

of Lie algebras over a field k cannot be residually finite unless k is finite, since the

1-dimensional Lie algebra over k is residually finite only in this case.)

If 0 → U → A → Q → 0 is exact with A ∈ V , [U,U ] = 0, and Q finite,

then the ring RQ,U is generated by the restrictions to U of the conjugations γq, the

unary endomorphisms Fr, and the left and right multiplications T
(1,1)
c (x) = [c, x] and

T
(1,2)
c (x) = [x, c]. These functions satisfy relations expressing that all conjugations
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equal the identity function. The unary operations satisfy relations that encode the

field structure: F1 = id, Fr+s = Fr+Fs, and Fr·s = Fr◦Fs. Since the binary operation

is alternating, T
(1,1)
c (x) = [c, x] == ad c(x) = −[x, c] = −T

(1,2)
c (x), and this relation

allows us to eliminate the right multiplications from the generating set for RQ,U , and

in fact take the translations ad c, c ∈ Q, as our set of generators. The bilinearity of

the Lie bracket guarantees that if an element d is a linear combination of elements

c1, . . . , cn, say d =
∑

Fri
(ci), then ad d =

∑
Fri

◦ ad ci. Finally, the Jacobi identity

guarantees that if [c, d] = e, then the relation ad e = ad c ◦ ad d− ad d ◦ ad c holds

among the generators of RQ,U . We have not proven that the relations discovered so

far exhaust all relations satisfied by RQ,U , but the relations that we have exhibited

among the generators Fr and ad c suffice to prove that RQ,U is a quotient of U(Q),

the usual universal enveloping algebra of Q. Since the relations we have identified

are independent of the ideal U , RQ is itself a quotient of U(Q).

Now we prove the main theorem of the paper.

Theorem 5.6. If V is a residually finite variety of generalized nonassociative algebras

of finite type, then the following conditions are equivalent.

(1) χV < ω.

(2) V is generated by a single finite algebra.

(3) The enveloping ring of any finite algebra in V is finite.

(4) The enveloping ring of any finite algebra in V is a finitely generated module

over its center.

Proof. [(1)⇒(2)] If χV is finite, then since V is of finite type there only finitely many

algebras in V of cardinality < χV , so V contains finitely many SI algebras, all of which

are finite. Their product is a finite algebra that generates V .
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[(2)⇒(3)] If V is generated by a finite algebra, then V is locally finite. If 0 → U →

A → Q → 0 is exact with A ∈ V, [U,U ] = 0 and Q finite, then the ring RQ,U is

generated by (the restrictions to U of) unary polynomial functions of A which involve

at most |Q| parameters. The total number of such functions is no greater than the

size of the free algebra FV(|Q|+ 1), which by local finiteness is some finite cardinal,

say N . Thus, RV
Q satisfies all relations that hold in all rings of size ≤ N , hence RV

Q

belongs to the variety of rings generated by all rings of sice ≤ N . This variety of

rings is a finitely generated variety, so RV
Q is locally finite. Since V has finite type,

RV
Q is finitely generated, hence it is finite.

[(3)⇒(4)] Any finite ring is a finite module over its center.

[(4)⇒(1)] We prove this implication by contradiction. Assume that (1) fails, so that

χV = ω. V has infinitely many SI’s, all finite; let A1, A2, . . . be a representative list of

them. As before, let Mi denote the monolith of Ai and let Ni denote the annihilator

of Mi. By Lemma 3.4, there is a finite number ` that bounds all indices [Ai : Ni], so

the quotient algebras Ai/Ni have size ≤ ` for all i. Since V is of finite type, there

are only finitely many algebras of size ≤ `, so there is one fixed algebra Q ∈ V such

that Ai/Ni
∼= Q infinitely often. After thinning out the sequence A1, A2, . . . we may

assume that Ai/Ni
∼= Q for all i, and we may fix a homomorphism βi : Ai → Q that

determines an exact sequence 0 → Ni → Ai
βi→ Q → 0 for each i. It follows from

(C1) that [Ni, Ni] = 0, so each Ni is a Q-module.

The ideals of Ai that are contained in Ni are exactly the normal subgroups con-

tained in Ni that are closed under translation. This means that they are exactly the

RQ,Ni
-submodules of Ni. Since the interval [0, Ni] of the ideal lattice has a small-

est nonzero member Mi, it follows that each Ni is an SI RQ,Ni
-module. The action

of RQ on Ni is obtained by restriction of scalars via the natural homomorphism
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νi : RQ → RQ,U guaranteed by the universal property of presentations. (RQ has the

same generators as RQ,U , but only a subset of the relations.) Since νi is surjective,

each Ni is subdirectly irreducible as an RQ-module.

Claim 5.7. There is a submodule K of some product
∏

Nj such that (
∏

Nj)/K is

an infinite SI RQ-module.

The assumption in (4) of this theorem implies that RQ is a finitely generated

module over its center. By Corollary 4.5, no variety of RQ-modules has residual

character ω. Since the Ni’s are examples of arbitrarily large finite SI RQ-modules,

the variety HSP({Ni | i ∈ ω}) must therefore contain an infinite SI RQ-module, say

S. There must exist submodules B ≤ C ≤
∏

Nj such that C/B ∼= S. If K is a

submodule of
∏

Nj that is maximal with respect to the condition that C ∩K = B,

then S ∼= C/(C∩K) ∼= (C +K)/K ≤ (
∏

Nj)/K, so (
∏

Nj)/K is an extension of the

infinite SI module S. The maximality of K guarantees that (
∏

Nj)/K is an essential

extension of the SI S, so (
∏

Nj)/K is SI itself.

Next we use the result of Claim 5.7 to produce an infinite SI nonassociative algebra

in V . In this claim we did not specify precisely which product we were considering —

some Ni’s may not have appeared as factors and others may have appeared multiple

times — so fix now an index set J such that
∏

Nj =
∏

j∈J Nj. Now consider the

subalgebra D ≤
∏

j∈J Aj consisting of all tuples d such that βi(di) = βj(dj) for all

i, j ∈ J . Then the function β : D → Q : d 7→ βi(di) is a well-defined homomorphism,

which is surjective since each βi is surjective. This homomorphism determines an

exact sequence 0 → U → D
β→ Q → 0 where U = ker(β) consists of all tuples

d ∈
∏

j∈J Aj such that βi(di) = 0 for all i, in other words U =
∏

j∈J Nj. The ideal

U ⊆ D is easily seen to satisfy [U,U ] = 0 using Definition 2.5: the tuples in U
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commute because they commute coordinatewise, and if F is multilinear, di ∈ D, and

there exist i 6= k such that di, dk ∈ U =
∏

j∈J Nj, then F (d1, . . . , dn) = 0 because it

is zero in each coordinate. (In each coordinate, then ith and jth entries are from U .)

Thus U is an RQ-module. An examination of how conjugation and translation

behave on the set U =
∏

j∈J Nj shows that U equals the product
∏

j∈J Nj as a

module. In particular, the submodule K of Claim 5.7 is an ideal of D contained in

U . Extend K to an ideal L ≤ D that is maximal for U ∩ L = K. Then D/L is SI

and contains the infinite ideal U/(U ∩ L) = U/K = (
∏

j∈J Nj)/K. This contradicts

the assumption that V is residually finite. The proof is complete. �

Corollary 5.8. If V is a locally finite and residually finite variety of generalized

nonassociative algebras of finite type, then V is generated by a single finite algebra.

Proof. As noted in the proof of Theorem 5.6, (2)⇒(3), if V is locally finite and of

finite type, then the enveloping ring of any finite Q ∈ V is finite. �

Corollary 5.9. (Olshanskii) Any residually finite variety of groups is generated by

a single finite group.

Proof. It suffices to show that the enveloping ring of a finite group Q relative to the

variety of all groups is a finitely generated module over its center. We showed in

example (5.3) that this ring is isomorphic to Z[Q], which is generated as a module

over its center by the finite set Q. �

Corollary 5.10. Any residually finite variety of nonunital associative rings is gen-

erated by a single finite ring.
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Proof. It suffices to show that the enveloping ring of a nonunital associative ring Q

relative to the variety of all such rings is finite. We showed in example (5.4) that the

enveloping ring of Q is a quotient of Q1 ⊗ (Q1)op, which is a finite ring if Q is. �

Corollary 5.11. (Premet and Semenov, for characteristics ≥ 5) Any residually finite

variety of Lie algebras is generated by a single finite Lie algebra.

Proof. It suffices to show that the enveloping ring of a finite Lie algebra Q over

the field k, relative to the variety of all Lie algebras over k, is a finitely generated

module over its center. We showed in example (5.5) that this ring RQ is a quotient

of the classical universal enveloping algebra U(Q) of Q. It suffices therefore to prove

that U(Q) itself is a finitely generated module over its center since this property is

inherited by quotients. But in essence this has already been done by Jacobson. In

Proposition 1 of his paper [4] he shows that for any element ad c, c ∈ Q, there is a

polynomial p(x) ∈ k[x] such that p(ad c) ∈ Z(U(Q)). Applying this to the normal

form provided by the PBW Theorem this proves that the finitely generated algebra

U(Q) is generated as a module over its center by monomials of bounded total degree,

hence U(Q) is a finitely generated module over its center. �

We close this paper with a remark connected to the discussion in the introduction

of this paper. We stated there that for any variety V , (1) it is decidable whether

there is a nontrivial lattice identity valid in the congruence lattices of all members of

V , and (2) if such an identity is satisfied, then it is decidable whether V is residually

finite. From this it is natural to ask whether the result of this paper extends to the

more general setting of varieties satisfying nontrivial congruence identities. It has

recently been announced by R. D. Willard and the first author that it does extend.

The announced extension improves upon our Theorem 5.6 by generalizing its scope,
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and also by proving that the conditions in Theorem 5.6 are not merely equivalent,

but are true (when V is residually finite, as is assumed there).
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