# University of Colorado Department of Mathematics 

## Problem of the Month

## September 2013

Starting with a set $S$ of $n^{2}$ numbers, it is possible to create many different $n \times n$ matrices by placing the elements of $S$ into the $n^{2}$ different positions of the matix. Let $\operatorname{DET}(S)$ be the set of determinants of all matrices that can be created from $S$ in this way. For example, if $n=2$ and $S=\{1,2,3,4\}$, then

$$
\begin{aligned}
\operatorname{DET}(S) & =\left\{\operatorname{det}\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \operatorname{det}\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right], \ldots, \operatorname{det}\left[\begin{array}{ll}
4 & 1 \\
2 & 3
\end{array}\right],\right\} \\
& =\{-2,-5, \ldots, 10\} .
\end{aligned}
$$

Problem. For a given $n$, how large can the set $\operatorname{DET}(S)$ be if $S$ is a set of $n^{2}$ distinct integers?

