University of Colorado Department of Mathematics

Problem of the Month

February 2014

Assume that integers $m, n>1$ satisfy $\operatorname{gcd}\left(\binom{m}{2},\binom{n}{2}\right)=1$. Show that if a group G satisfies $(x y)^{m}=x^{m} y^{m}$ and $(x y)^{n}=x^{n} y^{n}$ for all $x, y \in G$, then G is abelian.

